SIEMENS

SINUMERIK 802D SI Maschine-/ Setting Data - Explanation Maschine Data Setting Data - Description Interface Signals PLC User Interface SINAMICS Parameter SINAMICS Parameter

Index

Valid for

Control Software - Version

SINUMERIK 802D sl 1.4

Drive SINAMICS S120

SINUMERIK®-Documentation

Printing history

Brief details of this edition and previous editions are listed below.

The status of each edition is shown by the code in the "Remarks" column.

Status codes in the "Remarks" column.

Status codes in the "Remarks" column.

A New documentation.

B Unrevised reprint with new Order No.

C Revised edition with new status.

Edition	Order-No.	Remarks
02/2006	6FC5397-5CP10-0BA0	С
06/2007	6FC5397-5CP10-1BA0	С
06/2009	6FC5397-5CP10-2BA0	С

Registered Trademarks

All designations with the trademark symbol ® are registered trademarks of Siemens AG. Other designations in this documentation may be trademarks whose use by third parties for their own purposes may infringe the rights of the owner.

Liability disclaimer

We have checked that the contents of this document correspond to the hardware and software described. Nonetheless, differences might exist and therefore we cannot guarantee that they are completely identical. The information contained in this document is, however, reviewed regularly and any necessary changes will be included in the next edition.

Preface

Structure of the documentation

The SINUMERIK documentation is available in three versions:

- General Documentation
- User Documentation
- Manufacturer/Service Documentation

Information on the following topics is available at http://www.siemens.com/motioncontrol/docu:

- Ordering documentation
 Here you can find an up-to-date overview of publications.
- Downloading documentation
 Links to more information for downloading files from Service & Support.
- Researching documentation online Information on DOConCD and direct access to the publications in DOCon-WEB.
- Compiling individual documentation on the basis of Siemens contents with the My Documentation Manager (MDM), refer to http://www.siemens.com/mdm.
 My Documentation Manager provides you with a range of features for generating your own machine documentation.
- Training and FAQs
 Information on the range of training courses and FAQs (frequently asked questions) are available via the page navigation.

Target group

This publication is intended for project engineers, commissioners, machine operators and service and maintenance personnel.

Utility value

The present Lists Manual provides knowledge in respect of parameters and their effects on the system.

Standard scope

This Parameter Manual describes only the functionality of the standard version. Extensions or changes made by the machine tool manufacturer are documented by the machine tool manufacturer.

Preface 06/2009

Other functions not described in this documentation might be executable in the control. However, no claim can be made regarding the availability of these functions when the equipment is first supplied or in the event of servicing.

Furthermore, for the sake of clarity, this documentation does not contain all detailed information about all types of the product and cannot cover every conceivable case of installation, operation or maintenance.

Technical Support

If you have any questions, please contact the following hotline:

	Europe / Africa	
Phone	+49 180 5050 222	
Fax	+49 180 5050 223	
€0.14/min. from German landlines, mobile phone prices may differ.		
Internet	http://www.siemens.de/automation/support-request	

	America	
Phone	+1 423 262 2522	
Fax	+1 423 262 2200	
Email	mailto:techsupport.sea@siemens.com	

	Asia / Pacific	
Phone	+86 1064 757575	
Fax	+86 1064 747474	
Email	mailto:support.asia.automation@siemens.com	

Note

Country-specific telephone numbers for technical support are provided under the following Internet address:

http://www.automation.siemens.com/partner

06/2009 Preface

Questions about this documentation

If you have any queries (suggestions, corrections) in relation to this documentation, please send a fax or email to the following address.

Fax	+49 9131 98 2176
Email	mailto:docu.motioncontrol@siemens.com

A fax form is available at the end of this document.

SINUMERIK Internet address

http://www.siemens.com/sinumerik

Purpose of this manual

The Lists Manual provides a complete overview of the functions, machine data, variables, interface signals and PLC blocks.

CompactFlash cards for the user (only for hardware descriptions)

- The SINUMERIK CNC supports the file systems FAT16 and FAT32 for CompactFlash cards. You may need to format the memory card if you want to use a memory card from another device or if you want to ensure the compatibility of the memory card with the SINUMERIK. However, formatting the memory card will permanently delete all data on it.
- Do not remove the memory card while it is being accessed. This can result in damage to the memory card and the SINUMERIK as well as the data on the memory card.
- If you cannot use a memory card with the SINUMERIK, it is probably because
 the memory card is not formatted for the control system (e.g. Ext3 Linux file
 system), the memory card file system is faulty or it is the wrong type of memory
 card.
- Insert the memory card carefully and the right way round into the memory card slot (observe indicators such as arrow or similar). This way you avoid mechanical damage to the memory card or the device.
- Only use memory cards that have been approved by Siemens for use with SINUMERIK. Even though the SINUMERIK complies with the general industry standards for memory cards, it is possible that memory cards from some manufacturers will not function perfectly in this device or are not completely compatible with it (you can obtain information on compatibility from the memory card manufacturer or supplier).
- The "CompactFlash® 5000 Industrial Grade" CompactFlash card from SanDisk has been approved for SINUMERIK (Order Number 6FC5313-5AG00-0AA0).

Preface 06/2009

Safety information

This manual contains information which you should observe to ensure your own personal safety as well as to protect the product and connected equipment. Notices referring to your personal safety are highlighted in the manual by a safety alert symbol; notices referring to property damage only have no safety alert symbol. These notices shown below are graded according to the degree of danger.

Danger

Indicates that death or severe personal injury will result if proper precautions are not taken.

Warning

means that there can be severe physical injury or even death if the corresponding safety measures are not followed.

Caution

means that there can be slight physical injury if the corresponding safety measures are not followed.

Caution

means that there can be damage to property if the corresponding safety measures are not followed.

NOTICE

indicates that an undesirable result or state may occur if the corresponding instruction is not followed.

In the event of a number of levels of danger prevailing simultaneously, the warning corresponding to the highest level of danger is always used. A warning notice accompanied by a safety alert symbol indicating a risk of bodily injury can also indicate a risk of property damage.

Qualified persons

The associated device/system must only be set up and operated using this documentation. The device/system must be commissioned and operated by qualified personnel only. Qualified personnel as defined under the safety guidelines in this documentation are those who are authorized to start up, earth and label units, systems and circuits in accordance with the relevant safety standards.

Content

1	Machine	and Setting Data - Explanation	. 1-11
	1.1	Specifications in the list	. 1-11
	1.2	Overview of machine and setting data	. 1-17
2	Machine	Data	. 2-19
	2.1	Display machine data	. 2-19
	2.2 2.2.1 2.2.2 2.2.3	General machine data	2-36 2-152
	2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6	Channel-specific machine data Basic channel machine data Machine data for grinding function Channel auxiliary function settings Transformation definitions in channel Punching and nibbling Channel-specific memory settings	2-226 2-289 2-292 2-317 2-362
	2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8	Axis-specific machine data Configuration Encoder matching Closed-loop control Reference point approach Spindles Monitoring functions Travel to fixed stop Axis-specific memory settings	2-391 2-406 2-411 2-452 2-465 2-484 2-500
3	Setting E	Data - Description	3-523
	3.1 3.1.1 3.1.2 3.1.3	Setting data	3-523 3-540
4	Interface	Signals	4-581
	<i>1</i> 1	General	1 591

	4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	Signals from/to HMI. Program-control signals from HMI. Signals from HMI. Signals from operator panel General selection/status signals from HMI. General selection/status signals to HMI.	4-582 4-584 4-585 4-586
	4.3	Auxiliary function transfer from NC channel	4-588
	4.4 4.4.1 4.4.2	NC signals	4-591
	4.5	Mode signals	4-594
	4.6 4.6.1 4.6.2	Channel-specific signals	4-598
	4.7 4.7.1 4.7.2 4.7.3	Axis-/spindle-specific signals Transferred axis-specific M and S functions Signals to axis/spindle Signals from axis/spindle.	4-624 4-625
	4.8	Tool management functions from NC channel	4-653
5	PLC Use	Adressranges	
	5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	User data	5-657 5-657 5-657 5-657 5-658 5-658
	5.3	Retentive data area	5-659
	5.4 5.4.1 5.4.2 5.4.3	User alarm. User alarm: Activation. Variable for alarm. Active alarm reaction.	5-660 5-661
	5.5 5.5.1 5.5.2 5.5.3 5.5.4 5.5.5 5.5.6	Signals from/to HMI. Program control signals from HMI (retentive area). Program selection from PLC (retentive area). Checkback signal Program selection from HMI (retentive area). Signals from HMI. Signals from PLC. Signals from operator panel (retentive area).	5-662 5-662 5-663 5-663 5-664
	5.5.7 5.5.8	General selection/status signals from HMI (retentive area)	

	Index		I-693
6	SINAMIC	CS Parameter	6-691
	5.11	Tool management functions from NC channel	5-689
	5.10.4 5.10.5	User alarm: Configuration (MD 14516 USER_DATA_PLC_ALARM) Reading and writing PLC variables	
	5.10.3	FLOAT values (MD 14514 USER_DATA_FLOAT)	
	5.10.2	HEX values (MD 14512 USER_DATA_HEX)	5-687
	5.10.1	INT values (MD 14510 USER_DATA_INT)	
	5.10	PLC machine data	
	5.9.2 5.9.3	Signals to axis/spindle	
	5.9.1	Transferred M/S functions, axis-specific	
	5.9	Axis/spindle signals	
	5.8.2	Signals from NC channel.	
	5.8 5.8.1	Channel Signals	
	5.7.5	Operating mode signals	
	5.7.4	Signal from fast inputs and outputs	5-671
	5.7.3	Signals to fast inputs and outputs	
	5.7.1 5.7.2	General signals to NCKGeneral signals from NCK	
	5.7	NCK signals	
	5.6.6	Transferred H functions	
	5.6.5	Transferred D functions	
	5.6.3 5.6.4	Transferred M functions	
	5.6.2	Transferred T functions	
	5.6.1	Decoded M signals: (M0 - M99)	
	5.6	Auxiliary function transfer from NC channel	5-665

Content 06/2009

Machine and Setting Data - Explanation

1

1.1 Specifications in the list

The machine and setting data are listed in the form of tables.

MD nummer	MD identifier				Cross reference
Unit	Brief description				Activation
Display filter				Attribute	Data type
System	Dimension	Default value	Minimalvalue	Maximal value	Protection

The following information are specified:

Number and identifier

MD and SD are addressed via their numbers or their names (identifiers). The number and the name, as well as the activation type and the unit are displayed on the screen of the control system.

In the field "identifier", you can see the name of the data.

Cross reference

For a detailed description of the appropriate data, please refer to the description of functions or manual/guide specified.

Example: [F-S1] Description of Functions 802D sl, Chapter "Spindle (S1)"

Specifications in the list

Unit/unit system

Depending on MD 10240 SCALING_SYSTEM_IS_METRIC, the physical units of the machine data (MD) differ as follows:

MD 10240 = 1 MD 10240 = 0 mm inch mm/min inch/min m/s^2 inch/s³ inch/s³

mm/rev. inch/rev

If there are machine data with no physical unit assigned, a hyphen ("-") can be found in the relevant field.

Hinweis:

The default setting is MD 10240 SCALING_SYSTEM_IS_METRIC = 1 (metric)

Activation

In the "Activation" field, the following short designator specifies when the data takes effect after a change.

po POWER ON "RESET" key on the front plate of the NCU module

cf NEW CONF - The "Activate MD" softkey on the HMI

- "RESET" key on the control unit

It is possible to modify block limits during program

operation

re RESET – at end of program M2/M30 or

"RESET" key on the control unit

so IMMEDIATELY After entry of value

The levels of effectiveness have been listed above in order of priority.

Display filter

A short designator for the filter setting is listed in the "Display filter" field. With the aid of this filter setting, it is possible to selectively reduce the number of the displayed machine/setting data of a section.

Display criteria:

EXP Expert mode:

Active: the MD is assigned to the expert mode (display of MD)

Depending on the machine data section, there are different display filters. These short designations return in the operator interface to activate the filters.

The short designations of the display filter and their meanings are listed below for the individual machine data.

General machine data

N01 Configuration / Scaling N02 Memory configuration N03 PLC machine data N04 Drive control N05 Status data/Diagnostics N06 Monitors/Limitations N07 **Auxiliary functions** N08 Corrections/Compensations N09 Technological functions N10 Peripheral configuration N11 Standard machine N12 NC language ISO dialect

Channelspecific machine data

C01	Configuration
C02	Memory configuration
C03	Initial settings
C04	Auxiliary functions
C05	Velocities
C06	Monitors/Limitations
C07	Transformations
C08	Corrections/Compensations
C09	Technological functions
C10	Standard machine
C11	NC language ISO dialect

Specifications in the list

Axis-specific machine data

A01 Configuration (including memory)

A02 Measuring system

A03 Machine geometry

A04 Speeds/Accelerations

A05 Monitors/Limitations

A06 Spindle

A07 Controller data

A08 Status data

A09 Corrections/Compensations

A10 Technological functions

O11 Standard machine

A12 NC language ISO dialect

Data type

In the "Data type" field, the short designators indicate the data types. The have the following meanings:

BOOLEAN Boolean value: 1(TRUE) or 0 (FALSE)

BYT E 18-bit value

as a INTEGER value. -128::: 127as a hexadecimal value: 00 ... FF

• as a character as per ASCII character set, e.g. "a"

STRING Sequence of characters (max. 16)

WORD 16-bit value,

as an INTEGER value: -32768 ... 32767
as a hexadecimal value: 0000 ... FFFF

UNSIGNED WORD 116-bit value,

as an INTEGER value: 0 ... 65535,
as a hexadecimal value: 0000 ... FFFF

INTEGER I16-bit value (here defined locally),

• INTEGER value: -32768 ... 32767

DWORD 32-bit value,

• as an INTEGER value: -2147483648 ... 2147483647

• as a hexadecimal value: 0000 0000 ... FFFF

UNSIGNED DWORD 132-bit value,

• as an INTEGER value: 0 ... 4294967295,

• as a hexadecimal value: 0000 0000 ... FFFF FFFF

DOUBLE 64-bit value,

• floating point value: $\pm 4.19 \times 10^{-307}$ to $\pm 1.67 \times 10^{308}$)

FLOAT DWORD Realwerte (von \pm 8,43 x 10⁻³⁷ bis "3,37 x 10³⁸)

UBYTE Integerwerte (von 0 - 255)

LONG Integerwerte (von 4294967296 - 4294967295)

System

Specifies the control system for which the data with the entered values applies. The following entries are possible:

default

The entered values apply for all SINUMERIK 802D sl. Any deviations in the range of values must be entered in the following lines of the table. If no "default" entry exists, the data only applies for the control variants specified.

802d-cu3	Customised pro
802d-ng2	Nibbling/grinding plus
802d-ng3	Nibbling/grinding pro
802d-tm1	Turning/milling value
802d-tm2	Turning/milling plus
802d-tm3	Turning/milling pro

Default values

This value is used to specify a default value for the machine data. If the default values for the channels are different, this is marked by a ", ".

Range of values (minimum/maximum value)

Specifies the input limits. If no range of values is specified, the data type determines the input limits, and the field is marked with "***".

If no range of values is specified, the value in the "Data type" field determines the input limits and the field is marked with "***".

Specifications in the list

Protection

The SINUMERIK 802D sI provides a concept of protection levels for enabling data areas. There are the protection levels 0 to 7 whereby 0 is the highest and 7 the lowest level. The protection levels can be set for certain function areas (e.g. program editor) using the display machine data (USER_CLASS...). When the control system is delivered, certain default passwords are already set for the pro-tection levels 1 to 3. If necessary, the appropriate authorized person can change these pass-words.

Tabelle 1-1

Protection Locked by level		Area	
0		Siemens, reserved	
1	Password: SUNRISE (default)	Expert mode (OEM HIGH)	
2	Password: EVENING (default)	Machine manufacturer (OEM LOW)	
3	Password: CUSTOMER (default)	Authorized operator, setter	
4 to 7	No password anduser interface from PLC NCK	Authorized operator, setter or appropriate graduations as desired	

Protection levels 1 ... 3

The protection levels 1 to 3 require a password. The passwords can be changed after activation. For example, if the passwords are no longer known, the control system must be reini-tialized (booting with default machine data). This will reset all passwords to their defaultsaccording to the software release you have acquired.

The password remains set until it is reset by selecting the **Delete password** softkey. **POWER ON** will **not** reset the password.

Protection levels 4 ... 7

Protection level 7 is set automatically if no password is set and no protection level interfacesignal is set. The protection levels 4 to 7 can be set from the PLC user program even wi-thout a password by setting the bits in the user interface.

Overview of machine and setting data

1.2 Overview of machine and setting data

The machine data and setting data are divided into the following areas:

Tabelle 1-2 Overview of the machine and setting data areas

Area	Designation
from 200 to 400	Display machine data1
from 1 000 to 19 999	General machine data
from 20 000 to 29 999	Channel-specific machine data
from 30 000 to 39 999	Axis-specific machine data
from 41 000 to 41 999	General setting data
from 42 000 to 42 999	Channel-specific setting data
from 43 000 to 43 999	Axis-specific setting data

Overview of machine and setting data

Machine Data 2

2.1 Display machine data

Number	Identifier			Display filters	Reference
Unit	Name	Name			Active
Attributes					
System	Dimension	Default value	Minimum value	Maximum value	Protection
Description:	·		·		
200	LCD_CONTR	RAST		-	-
-	Foreground la	anguage		BYTE	PowerOn
-					<u>.</u>
-	0	7	0	15	0/0
Description:	With 802S	contrast of t	he b/w display.		
201	LCD_INVERS	SE		-	-
-	Foreground la	anguage		BYTE	PowerOn
-					•
-	0	0	0	1	0/0
Description:	Not assig	ned			
202	FIRST_LANG	GUAGE		-	-
-	Foreground la	anguage		BYTE	PowerOn
-					•
-	0	2	1	2	0/0
Description:	Internal	assignment			
203	DISPLAY_RE	DISPLAY_RESOLUTION			-
-				BYTE	Immediately
-					

Description:

This MD is used to define the number of decimal places of the position display, for linear axes in metric systems, in general for rotary axes.

Spindle positions are treated like rotary axis positions. The position display is displayed with a max. of 10 characters including signs and decimal places. A positive sign is not displayed.

By default 3 digits are displayed after the decimal point. MD value=3: display resolution = 10-3 [mm] or [degree], Related to:

MD 10200: INT_INCR_PER_MM bzw. MD 10210: INT_INCR_PER_DEG

204	DISPLAY_RESOLUTION_INCH			-	-
-	Display resoluti	Display resolution for inch system of measurement			Immediately
-					
-	0	4	0	5	3/2
Description:	This MD is	used to define t	the number of	decimal places	s of the posi-

This MD is used to define the number of decimal places of the position display for linear axes in the inch system of measurement. The position display is displayed with a max. of 10 characters including signs and decimal places. A positive sign is not displayed.

By default 4 digits are displayed after the decimal point.

MD value=4: display resolution = 10-4 [mm]

For rotary axes and spindle positions the display is maintained as in MD 203.

Related to:

MD 10200: INT INCR PER MM, MD 203: DISPLAY RESOLUTION

205	DISPLAY_RESOLUTION_SPINDLE			-	-
-	Display resoluti	Display resolution for spindle values			Immediately
-					
-	0	1	0	5	3/2

Description:

This MD is used to define the number of decimal places for spindle speed display.

The values are displayed with a max. of 10 characters including sign and decimal point. A positive sign is not displayed. By default 1 digit is displayed after the decimal point. MD value=1: display resolution = 10-1

207	USER_CLASS_READ_TOA			-	-
-	Read tool offse	ts protection level, gene	ral	BYTE	Immediately
-					
-	0	3	0	7	3/3

Description: Protection level of the tool offsets, general

208	USER_CLASS_WRITE_TOA_GEO			-	-
-	Write tool geom	Write tool geometry protection level			Immediately
-					
-	0	3	0	7	3/3

Description: Protection level for tool offsets (geometry) for writing

209	USER_CLASS_WRITE_TOA_WEAR			-	-
-	Write tool wear	data protection level		BYTE	Immediately
-					
-	0	3	0	7	3/3

Description: Protection level of tool offsets (wear) for writing

210	USER_CLASS_WRITE_ZOA			-	-
-	Write settable v	vork offset protection lev	el	BYTE	Immediately
-					
-	0	3	0	7	3/3

Description:

Protection level Settable work offset for writing

212	USER C	LASS_WRITE_SEA		_	-			
-		n level write setting o		BYTE	Immediately			
-				<u> </u>				
-	0	7	0	7	3/3			
Description:	Protect	Protection level Setting data for writing						
213	USER_C	LASS_READ_PROC	GRAM	-	-			
-	Read pro	tection level of part p	program	BYTE	Immediately			
-								
-	0	7	0	7	3/3			
Description:	Read pr	rotection leve	el of part prog	ram				
214	USER_C	LASS_WRITE_PRO	GRAM	-	-			
-	Enter par	t program protection	level	BYTE	Immediately			
-								
-	0	3	0	7	3/3			
Description:	Enter p	part program p	protection leve	1				
215	USER_CI	LASS_SELECT_PR	OGRAM	-	-			
-	Program	selection protection	level	BYTE	Immediately			
-								
-	0	3	0	7	3/3			
Description:	Protect	tion level pro	ogram selection					
217	USER_C	LASS_WRITE_CYC	LES	-	-			
-	Write cyc	les protection level		BYTE	Immediately			
-			<u> </u>					
-	0	3	0	7	0/0			
Description:	Not ass	signed						
218	USER_C	LASS_WRITE_RPA		-	-			
-	Protection	n level write R variat	oles	BYTE	Immediately			
-								
-	0	3	0	7	3/3			
Description:	Protect	tion level wri	ite R variables					
219	USER_CI	LASS_SET_V24		-	-			
-	Set RS-23	32 protection level		BYTE	Immediately			
-								
-	0	3	0	7	3/3			
Description:	Protect	tion level Cha	ange parameters	for RS-232 int	erface			
221	USER_C	LASS_DIR_ACCES	S	-	-			
-	Directory	access protection le	evel	BYTE	Immediately			
-								
-	0	3	0	7	3/3			
Description:		orv access pro						

		ACC DIC ACCES	20	1_	
222	USER_CLASS_PLC_ACCESS			-	_
-	PLC project protection level		BYTE	Immediately	
-				•	
-	0	3	0	7	2/2
Description:	PLC pro	ject protect:	ion level		·
223	USER_CL	.ASS_WRITE_PWA	A	-	-
-	Protected	work area protection	on level	BYTE	Immediately
-					
-	0	7	0	7	3/2
Description:	Protect	ed work area	protection level		•
247	V24_PG_I	PC_BAUD		-	-
-	PG: baud 38400)	rate (300, 600, 120	00, 2400, 4800, 9600, 19200,	BYTE	Immediately
-				•	•
-	0	7	5	9	3/3
- Description:			5 mming tool (9600,192	1	
•	Baudrat			1	
•	Baudrat V24_PPI_	e for progran		1	
Description:	Baudrat V24_PPI_	e for program ADDR_PLC		00,38400,57	600,115200)
•	Baudrat V24_PPI_	e for program ADDR_PLC		00,38400,57	600,115200)
280	Baudrat V24_PPI_ PLC statio	e for program ADDR_PLC on address	mming tool (9600,192	00,38400,57 - BYTE	600,115200) - PowerOn
280 - - - Description:	Baudrat V24_PPI_ PLC statio	e for program ADDR_PLC on address	mming tool (9600,192	00,38400,57 - BYTE	600,115200) - PowerOn
280 - - - Description:	Baudrat V24_PPI_ PLC statio - PLC sta V24_PPI_	e for program ADDR_PLC on address 2 tion address	mming tool (9600,192	00,38400,57 - BYTE	600,115200) - PowerOn
•	Baudrat V24_PPI_ PLC statio - PLC sta V24_PPI_	e for program ADDR_PLC on address 2 tion address ADDR_NCK	mming tool (9600,192	00,38400,57 - BYTE 126	600,115200) - PowerOn 3/3
280 - - - Description:	Baudrat V24_PPI_ PLC statio - PLC sta V24_PPI_	e for program ADDR_PLC on address 2 tion address ADDR_NCK	mming tool (9600,192	00,38400,57 - BYTE 126	600,115200) - PowerOn 3/3
280 - - - Description: 281 - -	Baudrat V24_PPI_ PLC station - PLC sta V24_PPI_ NCK station	e for program ADDR_PLC on address 2 tion address ADDR_NCK on address	mming tool (9600,192	- BYTE 126 - BYTE	600, 115200)
280 Description: 281 Description:	Baudrat V24_PPI_ PLC station - PLC sta V24_PPI_ NCK station - NCK station	e for program ADDR_PLC on address 2 tion address ADDR_NCK on address	0 0	- BYTE 126 - BYTE	600, 115200)
280 - - - Description:	PLC station PLC station PLC station PLC station V24_PPI_ NCK station NCK station CTM_SIM	e for program ADDR_PLC on address 2 tion address ADDR_NCK on address 3 tion address	0	- BYTE 126 - BYTE	600, 115200)
280 Description: 281 Description:	PLC station PLC station PLC station PLC station V24_PPI_ NCK station NCK station CTM_SIM	e for program ADDR_PLC In address 2 tion address ADDR_NCK In address 3 tion address	0	00,38400,57 - BYTE 126 - BYTE	600,115200)

Description:

Use this MD to define the time intervals in which the simulation graphic is updated on the current machine tool machining. Value = 0 means no update

290	CTM_POS_COORDINATE_SYSTEM			-	-
-	Coordinate syst	Coordinate system position			Immediately
-					
-	0	2	0	7	4/3

Description: The position of the coordinate system can be changed as follows:

Value	G02 direction of rotation left	Coordinate system	Operations
0	0	²↑	no operation no operation
1	1		mirroring Y no operation
2	1	2	mirroring X no operation
3	0	1	mirroring X mirroring Y
4	1	11	rotation 270° mirroring Y
5	0	<u></u>	rotation 270° no operation
6	0	1	rotation 90° no operation
7	1	2	rotation 90° mirroring Y

291	CTM_CROSS_AX_DIAMETER_ON			-	-		
-	Diameter display active for transv. axes			BYTE	Immediately		
-							
-	0	1	0	1	4/3		

Description:

0: Input of absolute values as radius value

Work offsets always in radius
Tool lengths always in radius
Tool wear always in radius

Position display in diameter
Distance to go in diameter
Absolute paths in diameter

292	CTM_G91_DIA	METER_ON	-	-				
-	Incremental infeed			BYTE	Immediately			
-								
-	0	1	0	1	7/3			

Description: 0: Input in radius

1: Input in diameter

305	G_GROUP1			-	-
-	User-oriented G group for position display			BOOLEAN	Immediately
-					
-	0	1	1	1000	7/3

Description: User-oriented G group for position display

306	G_GROUP2			-	-
-	User-oriented G group for position display			BOOLEAN	Immediately
-					
-	0	2	1	1000	7/3

Description: User-oriented G group for position display

307	G_GROUP3			-	-
-	Jser-oriented G group for position display			BOOLEAN	Immediately
-					
-	0	8	1	1000	7/3

 $\textbf{Description:} \qquad \text{User-oriented G group for position display}$

308	G_GROUP4			-	-
-	User-oriented G group for position display			BOOLEAN	Immediately
-					
-	0	9	1	1000	7/3

Description: User-oriented G group for position display

309	G_GROUP5			-	-			
-	Jser-oriented G group for position display			BOOLEAN	Immediately			
-								
-	0	10	1	1000	7/3			

Description: User-oriented G group for position display

310	FG_GRO	DUP1		-	-
-	User-orie language		sition display (external	BOOLEAN	Immediately
-					
-	0	1	1	1000	7/3
Description:	User-o	riented G grou	up for position di	splay (ext. la	anguage)
311	FG_GRO	UP2		-	-
-	User-orie language		sition display (external	BOOLEAN	Immediately
-					
-	0	2	1	1000	7/3
Description:	User-o	riented G grou	up for position di	splay (ext. la	anguage)
312	FG_GRO	DUP3		-	-
-	User-orie language		sition display (external	BOOLEAN	Immediately
-					
-	0	8	1	1000	7/3
Description:	User-o	riented G grou	up for position di	splay (ext. la	anguage)
313	FG_GRO	UP4		-	-
-	User-orie language		sition display (external	BOOLEAN	Immediately
-					
-	0	9	1	1000	7/3
Description:	User-o	riented G grou	up for position di	splay (ext. la	anguage)
314	FG_GRO	UP5		-	-
-	User-orie language		sition display (external	BOOLEAN	Immediately
-					
-	0	19	1	1000	7/3
Description:	User-o	riented G grou	up for position di	splay (ext. la	anguage)
330	_	OS_COORDINATE_		-	-
-	Coordina	te position of the ma	achine axis	BYTE	Immediately
-					
-	0	0	0	7	7/3
Description:	Coordin	nate position	of the machine		
331	CONTOL	JR_MASK		-	-
-	Enable 80	02 contour definition	programming	BYTE	Immediately
-					

Description: Enable 802 contour definition programming

332	TOOL LIS	TOOL_LIST_PLACE_NO					
-		e location numbe	r in the tool list	BOOLEAN	Immediately		
-				L	<u>-</u>		
-	0	0	0	1	3/3		
Description:	Enable	the locatio	n number in the to	ol list	1		
343	V24_PPI_	ADDR_MMC		-	-		
-				BOOLEAN	PowerOn		
-							
-	0	4	0	126	3/3		
Description:	HMI sta	tion addres	s	•	•		
344	V24_PPI	MODEM_ACTIV	E	-	-		
-	<u> </u>			BYTE	Immediately		
-				1	1 -		
-	0	0	0	1	3/3		
Description:	Enable	modem funct	ion		1		
345	V24_PPI	MODEM_BAUD		-	-		
-		for modem conn	ection	BYTE	Immediately		
-				L	<u>-</u>		
-	0	7	5	9	3/3		
Description:	Baud ra	te for mode	m connection				
346	V24_PPI_	MODEM_PARIT	Υ	-	-		
-	Parity for	modem connection	on	BYTE	Immediately		
-				1			
-	0	0	0	2	3/3		
Description:	Parity	for modem c	onnection		•		
356	HMI_COL	E_TITLE_FOCU	S_FOR	-	-		
-	Color sett	ing Title line Focu	us window Foreground	BYTE	Immediately		
-				1	"		
-	-	15	0	15	2/3		
Description:	Color s	etting Titl	e line Focus windo	w Foreground			
357	HMI_COL	E_TITLE_FOCU	S_BACK	-	-		
-	Color sett	ing Title line Focu	us window Background	BYTE	Immediately		
-							
-	-	2	0	15	2/3		
Description:	Color s	etting Titl	e line Focus windo	w Background			
360	SPINDEL	_LOAD_DISPLE	1	-	-		
-	Switch on	spindle 1 utilizati	ion display	BOOLEAN	Immediately		
-							
-	-	0	0	1	3/3		

Description: Switch on spindle 1 utilization display

361	USER MEAS	USER_MEAS_TOOL_CHANGE						
-		r T/D no. in tool measur	ing window	BYTE	Immediately			
-								
-	-	0	0	1	3/3			
Description:	0: Input	of T/D no. disa	bled	1				
	1: Input	of T/D no. enab	oled					
362	SPINDLE_LOA	D DISPLE2		_				
-		dle 2 utilization display		BOOLEAN	Immediately			
-								
-	-	1	0	1	3/3			
Description:	Switch on s	spindle 2 utiliz	ation display					
363	SPINDLE_LOA	D BAD LIM2			1			
-		ay spindle limit value 2		BOOLEAN	Immediately			
_	Otilization displi	ay Spiritic IIIIII value 2		BOOLLAIN	ininediately			
-	-	100	0	9999999	2/2			
Description:		n display spindl	e limit walue	2				
_			.c rimic varue	۷	-			
364	SPINDLE_LOA			-	-			
-	Utilization displa	ay spindle limit value 3		BOOLEAN	Immediately			
-		T	L	T	Tara			
-		100	0	9999999	2/2			
Description:	Utilization	n display spindl	e limit value	3				
365	SPINDEL_LOA	.D_BAR_MAX		-	-			
-	Utilization displ	ay spindle maximum		BOOLEAN	Immediately			
-								
-	-	120	0	120	2/2			
Description:	Utilization	n display spindl	e maximum					
366	SPINDEL_LOA	.D_BAR_COL1		-	T-			
-		display spindle area 1		BYTE	Immediately			
-				1	1			
-	-	10	0	15	3/3			
Description:	Color util:	ization display	spindle area	1				
367	SPINDLE_LOA	D_BAR_COL2		-	-			
-		display spindle area 2		BYTE	Immediately			
-	_			L				
-	-	9	0	15	3/3			
Description:	Color util:	ization display	spindle area	2				
368	SPINDLE_LOA	.D_BAR_COL3		-	-			
-	Color utilization			BYTE	Immediately			
-								
-	-	9	0	15	3/3			
		•						

369	PROBE_MODE			-	-
-	Type of measuring s procedure	ystem: 1: probe,	2: opt. measuring	BOOLEAN	Immediately
-					·
-	- 1		0	2	3/3
Description:	Type of measur	ing system:	1: probe, 2:	opt. measur	ing procedure
370	TOOL_REF_PROBE	_AXIS1		-	-
-	Absolute position pro	obe X		DOUBLE	Immediately
-					
-	- 0		-999999.999	999999.999	2/2
Description:	Absolute posit	ion probe X			
371	TOOL_REF_PROBE	_AXIS2		-	-
-	Absolute position pro	obe Y		DOUBLE	Immediately
-					
-	- 0		-999999.999	999999.999	2/2
Description:	Absolute posit	ion probe Y			
372	TOOL_REF_PROBE	E_AXIS3		-	-
-	Absolute position pro	obe 3		DOUBLE	Immediately
-					•
-	- 9		-999999.999	999999.999	2/2
Description:	Absolute posit	ion probe Z			
373	MEAS_SAVE_POS_	LENGTH2		-	-
-	Switch on Measure t	ool SK "Save Pos	s" for all values	BYTE	Immediately
-					
-	- 0		0	1	2/2
Description:	Controls softk ally': 0: SK 'Save Po 1: SK 'Save Po	os' is only	active when r		
374	TOOL_WEAR_LIMI	T VALUE			
-	Limit value wear con			DOUBLE	Immediately
-					,
-	- 9.99	9	0	9.999	2/2
Description:	Limit value we	ar control	on input		
375	USER_CLASS_REA	D_CUSS_DIR		-	-
-	Read user cycles pro	otection level		BYTE	Immediately
-				l	
-	0 7		0	7	0/0
Description:	Protection lev	el User cyc	les for readi	Ing	•
376	USER_CLASS_WR	TE_CUS_DIR		-	-
-	Write user cycles pro			BYTE	Immediately
-					
-	0 2		0	7	3/3
<u> </u>	Protection lev				1

 $\textbf{Description:} \qquad \text{Protection level User cycles for writing}$

377		LASS_WRITE_TO_N		-	-
-	Tool mon	nitoring protection leve	el	BYTE	Immediately
-					
-	0	3	0	7	3/2
Description:	Tool mo	onitoring prot	ection level		
378	USER_C	LASS_LADDER_VIE	W	-	-
-	Select Us	ser Ladder View prote	ection level	BYTE	Immediately
-					
-	0	2	0	7	2/2
Description:	Select	User Ladder V	iew protection	n level	
379	SPINDLE	_DISP_MODE		-	-
-		ard Mode; spindle spe	eed display	BYTE	Immediately
	1: Consta	ant cutting speed			
-				ı	1
-	0	0	0	2	3/3
Description:	1: Cons	ndard Mode; sp stant cutting ed display	_	when G96 is set	
383	V24_PPI	_ADDR_DRV1		-	-
-	Station a	ddress Drives		BYTE	PowerOn
-					-
-	0	5	0	126	3/3
Description:	Station	n address Driv	es	·	
384	WHEEL	TYPE_MASK		-	-
-	Foregrou	nd language		DWORD	Immediately
-					l
-	0	0xFFFF	1	0xFFFF	2/2
Description:	Bit0: 18 Bit1: 18 Bit2: 18 Bit3: 18 Bit4: 18 Bit5: 18	uration of sel free contour straight witho straight with bevelled left bevelled right straight profi	ut relief cut relief cut le roller tabl	Le	
385	DRESSE	R_FUNCTION_MAS	K	-	-
-				DWORD	Immediately
-					,
			1	1	
-	-	7	1	7	2/2

Description: Defines the number of dressers. Bit0 = dresser1; bit1 = dresser2; bit3 = dresser3

386	USER CL	ASS_WRITE_CMA_DIR	_	_	
-			-	BYTE	Immediately
_				1	
_	_	7	1	7	2/2
December 1					
Description:	Deilnes	the access leve	I for the CMA a	irectory in t	ne NCK
387	GRAPHIC_	_MIN_X		-	-
mm				DOUBLE	Immediately
-					
-	-	-999.999000	-99999999.999	99999999.999	7/2
Description:	MM Plus				
388	GRAPHIC	_MAX_X		-	-
mm				DOUBLE	Immediately
-					
-	-	999.999000	-99999999.999	99999999.999	7/2
Description:	MM Plus				
389	GRAPHIC	MIN Y		-	-
mm		<u> </u>		DOUBLE	Immediately
-					,
-	-	-999.999000	-99999999.999	99999999.999	7/2
Description:	MM Plus				
	mm 11us				
390	GRAPHIC_	_MAX_Y		-	-
mm				DOUBLE	Immediately
-					
-	-	999.999000	-99999999.999	99999999.999	7/2
Description:	MM Plus				
391	DISPLAY_	MODE_INDEXING_AXI	S	-	-
-				DWORD	Immediately
-				-	-
-	-	0	0	1	7/2
Description:		the display for = type-spec. ac		ing axis. 0 =	indexing posi-
392	USER_CL	ASS_WRITE_LOC_NO		-	-
-				BYTE	Immediately
-				1	
-	-	3	0	7	3/2
Description:		the access authool list	orization for w	riting the lo	cation number
393	DISPLAY_	TOLI_H_NO		-	-
-				BOOLEAN	Immediately
-				•	•
		0	0	1	3/3
-	-	ľ	•	-	0,0

Description: Controls the display of the H number in the tool list

394	DISPLA	Y_TOLI_SISTER_TO	OOL	-	-			
-				BOOLEAN	Immediately			
-								
-	-	0	0	1	3/3			
Description:	Contro	ols the displa	y of the replac	ement tool in the	e tool list			
395	COL_O\	VERSIZE_TYPE_CH	HECKBOX	-	-			
-				BOOLEAN	Immediately			
-				<u>.</u>	<u>.</u>			
-	-	1	0	1	3/2			
Description:	Check	box in tool 1	ist	•				
398	CUTEDO	GE_PARAM_CHEC	K_ON	-	-			
-				BOOLEAN	Immediately			
-								
-	-	0	0	1	3/3			
Description:	_	•	•	<u>, </u>				
399	SUBPRI	ESS_STOPPER_AL	ARM	-	-			
-				BOOLEAN	Immediately			
-				<u>.</u>	<u>.</u>			
-	-	0	0	1	3/2			
Description:	MM Plu	ıs						
400	USER_N	MANUAL_MA_TOOL	_CHANGE	-	-			
-				BOOLEAN	Immediately			
-				1	'			
-	-	0	0	1	3/2			
Description:	MM Plu	ıs	•	•				
	USER N	MANUAL_MA_SHO\	W_PAGE_NO	-	-			
401	002.1				•			
401 -				BOOLEAN	Immediately			
401 - -				BOOLEAN	Immediately			

Description: MM Plus

2.2 General machine data

Number	Identifier	Identifier			Reference		
Unit	Name			Data type	Active		
Attributes							
System	Dimension	Default value	Minimum value	Maximum value	Protection		
Description:	Descripti	on	·	<u> </u>			
1088	ASSIGN_SPI	N_TO_WP_SPIN1		-	-		
-				DWORD	Immediately		
-				- 1	•		
-	-	1	0	3	3/3		
Description:	play of t	he machine mair	number to the in screen	_	are in the dis		
1089	ASSIGN_SPI	N_TO_WP_SPIN2		-	-		
-				DWORD	Immediately		
-		T					
-	-	2	0	3	3/3		
Description:	_	t of a spindle he machine mair	number to the an screen	2nd tool spind	dle in the dis		
1090	OSCILATE_F	FUNCTION_MASK		-	-		
-				DWORD	Immediately		
-							
-	-	4095	0	0xFFFF	2/2		
Description:	Mask for	oscillator fund	ction		•		
	Bit0: no	Bit0: no function					
	Bit1: inf	eed X axis no d	oscillation				
	Bit2: inf	eed Y axis no d	oscillation				
		eed Z axis no d					
	Bit4: inf	eed X axis osc	illation Y/Z ax	es			
	Bit5. inf	and V avie nec-	illation V avie				

Bit3: infeed Z axis no oscillation
Bit4: infeed X axis oscillation Y/Z axes
Bit5: infeed Y axis oscillation X axis
Bit6: infeed Z axis oscillation X axis
Bit7: infeed X axis oscillation Y axis
Bit8: infeed Y axis oscillation X/Z axis
Bit9: infeed Z axis oscillation Y axis
Bit10: infeed X axis oscillation Z axis
Bit11: infeed Y axis oscillation Z axis
Bit12: infeed Z axis oscillation X/Y axis

1091	SINAMICS_IBN_TIMEOUT_VALUE			-	-
-	-			DWORD	Immediately
-					
-	-	230	0	1000	2/2

Description: Defines the wait time on read-in of the parameters for all SINAMICS devices during commissioning

1092	MAX SPI	NDEL_SPEED_MANUAI	_ MA	-	-
-			<u>–</u>	DOUBLE	Immediately
-					
-	-	99999.00000	0	99999.00000	2/2
Description:	Input 1	imit spindle spe	ed MM+		-
1093	MAX_SPE	ED_G96_MANUAL_MA		-	-
-				DOUBLE	Immediately
-				'	
-	-	99999.00000	0	99999.00000	2/2
Description:	Input 1	imit cutting met	er MM+	•	
1094	MAX_SPE	EED_G94_MANUAL_MA		-	-
-				DOUBLE	Immediately
-				•	•
-	-	99999.00000	0	99999.00000	2/2
Description:	Input 1	imit time feed M	M+		
1095	MAX_SPE	EED_G95_MANUAL_MA		-	-
-				DOUBLE	Immediately
-				,	1
-	-	99999.00000	0	99999.00000	2/2
Description:	Input 1	imit rotation fe	ed MM+	·	
1096	MAX_NUI	M_CYCLE_MANUAL_MA	4	-	-
-				DWORD	Immediately
-					
-	-	9	1	9	3/3
Description:	Number	of managed masks	per cycle i	in manual mode of	E MM+
1097	MAX_NUI	M_CUTT_EDGE_MANUA	AL_MA	-	-
-				DWORD	Immediately
-					·
-	-	9	1	9	3/3
Description:	Number	of managed cutti	ng edges in	MM+	•
1098	INVERT_	SPIN_ICON_MANUAL_N	ЛА	-	-
-				BOOLEAN	Immediately
-				•	•
-	-	1	0	1	3/2
Description:	The dir	ection of spindl	e rotation i	s displayed inve	erted.
1099	USE_FIXE	POINT_MANUAL_MA		-	-
-	<u>-</u>	_		BOOLEAN	Immediately
-				L	· L
-	-	1	0	1	3/3
	1	1		1	<u> </u>

Description: Tool change increment MM+:

The selection field for fixed-point approach is selected or dese-

lected by default

1100	MEAS_SPIN_ACTIV_MANUAL_MA			-	-			
-				BOOLEAN	Immediately			
-		·						
-	-	1	0	1	3/2			

1101	USER_TOOL_CHG_MANUAL_MA			-	-
-				BOOLEAN	Immediately
-					
-	-	1	0	1	3/3

Description: Tool change increment MM+:

If the value is 1, input of a tool or cutting edge number is permissible.

1102	CYC_TOOLNO_EDTMOD_MANUAL_MA			-	-			
-				BOOLEAN	Immediately			
-								
-	-	1 0			3/3			

Description: Input mode T no. in the cycle masks MM+:

0: No T no. input by the operator. T no. is automatically created from SGUD.

>=1: T no. input by the operator

1103	TAPPINGCYCLE_MODE_MANUAL_MA			-	-
-				BOOLEAN	Immediately
-					
-	-	1	0	1	3/3

Description: Preselection of cycle type on tapping MM+:

With compensating chuck without compensating

chuck

0 CYCLE840 CYCLE840 1 CYCLE840 CYCLE84

>=2 CYCLE840 not possible

1104	TOOL_CHG_MANUALMODE_MA			-	-			
-				BOOLEAN	Immediately			
-								
-	-	1 0			3/3			

 $\textbf{Description:} \qquad \text{Tool change enable in the JOG function of the MM+}$

1105	STARTUP_WITH_MMP			-	-
-				BOOLEAN	PowerOn
-					
-	-	1	0	1	3/3

Description: Automatic start of MM+ after power ON

1106	SOFTKEY_CENTRE_ADJ			-	-			
-				BOOLEAN	PowerOn			
-								
-	-	1	0	1	3/3			

Description: Text on the softkeys is justified

1107	AX_LOAD_DISPL			-	-
-				BOOLEAN	Immediately
-					
-	-	1	0	1	3/3

Description: Activate axis utilization display

2.2.1 System settings

10000	AXCON	AXCONF_MACHAX_NAME_TAB			K2,F1,G2,F2,K5, M1
-	Machine	axis name	STRING	PowerOn	
-					
802d-cu3	6	X1,Y1,Z1,SP,A1,PLC X1	-	-	2/2
802d-ng2	6	X1,Z1,C1,A1,B1,PLC X1	-	-	2/2
802d-ng3	6	X1,Z1,C1,A1,B1,PLC X1	-	-	2/2
802d-tm1	4	X1,Y1,Z1,SP	-	-	2/2
802d-tm2	6	X1,Y1,Z1,SP,A1,PLC X1	-	-	2/2
802d-tm3	6	X1,Y1,Z1,SP,A1,PLC X1	-	-	2/2

Description:

The name of the machine axis is entered in this MD.

The use of an axis identifier consisting of a valid address letter (A, B, C, Q, U, V, W, X, Y, Z), followed by an optional numerical extension (1-99) should be used with priority.

- The selected machine axis identifier must have a different name from the geometry axes $(X,\ Y,\ Z)$ and further channel axes (MD 20080:

AXCONF_CHANAX_NAME_TAB) - as long as a transformation (e.g.: TRANSMITT) is scheduled.

Note: Transformations are not available with SINUMERIK 802D in the SW version P1.

- A "free" entered machine axis identifier (axis name) must not have the name, $\$

address, key word or predefined identifier that has already been used in the control or has been reserved for some other functionality

(e.g.: SPOS, DIAMON,...).

Note: Not all the functionalities of the control system SINUMERIK have been documented under the 802D. A free axis name can, therefore, be used only conditionally. Related to:

MD20060 \$MC_AXCONF_GEOAX_NAME_TAB (geometry axis name) MD20080 \$MC_AXCONF_CHANAX_NAME_TAB (channel axis name)

10010	ASSIGN_CHAN_TO_MODE_GROUP			N01, N02, N11	K1,K5			
-	Channel valid in	n mode group	DWORD	PowerOn				
-								
-		1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	0	1	0/0			

Description:

This MD assigns the channel to a mode group Entry value 1 => Assigned to 1st mode group Entry value 2 => Assigned to 2nd mode group etc.

From software version 4, it is permissible not to assign a mode group number to individual channels.

Channel gaps are allowed, in order to favor uniform configuration in similar types of machines. In this case, the number 0 is assigned to the channel instead of assigning a mode group number equal to or greater than 1. The channel is not activated, however it is handled like an active channel when counting the channels. E.g.

ASSIGN_CHAN_TO_MODE_GROUP[0] = 1
ASSIGN_CHAN_TO_MODE_GROUP[1] = 1
ASSIGN_CHAN_TO_MODE_GROUP[2] = 0 ; gap
ASSIGN_CHAN_TO_MODE_GROUP[3] = 1
Application example:

Select desired channel via HMI and enter with MD10010 \pm MN ASSIGN CHAN TO MODE GROUP = 1.

Note:

This MD must still be entered even when only one mode group is present.

10050	SYSCLOCK_CYCLE_TIME			N01, N05, N11, -	G3,G2,R1			
s	System clock cycle			DOUBLE	PowerOn			
SFCO								
-	-	0.0015 0.0005			0/0			

Description:

Basic cycle time of the system software

The cycle times settings of cyclical tasks (position controller/IPO) are multiples of this basic cycle. Apart from special applications in which POSCTRL_SYSCLOCK_TIME_RATIO is set greater than 1, the basic cycle corresponds to the position controller cycle.

For PROFIBUS/PROFINET:

In the case of systems with a PROFIBUS DP connection, this MD corresponds to the PROFIBUS DP cycle time. This time is read from the configuration file (SDB-Type-2000) during startup and written to the MD.

This MD can only be changed via the configuration file. Note:

Reducing this MD can result in an automatic correction of POSCTRL_CYCLE_DELAY that cannot be undone by a subsequent increase!

General machine data

Details:

The basic cycle is incremented in multiples (SYSCLOCK_SAMPL_TIME_RATIO) of units of the measured value sampling cycle. During system startup, the entered value is automatically rounded up to a multiple of this incrementation.

Note:

Discrete timer division ratios can give rise to the entered value producing a value that is not an integer after a Power OFF/ON.

For example:

Input = 0.005s

after Power OFF/ON =0.00499840

or

Input = 0.006s

after Power OFF/ON =0.0060032

10059	PROFIBUS_ALARM_MARKER		N05	G3	
-	PROFIBUS/PR	FIBUS/PROFINET alarm flag (internal only)			PowerOn
NBUP, NDLD					
-	-	0	-	-	0/0

Description:

PROFIBUS/PROFINET alarm flag:

In this machine data, alarm requests for the PROFIBUS/PROFINET layer are stored beyond a reboot.

If conflicts arise between machine data 10050, 10060, 10070 and the data in the SDB on startup, the machine data are matched according to SDB, and an alarm is output on the next start up. These alarm requests are stored here.

Related to:

MD10050 \$MN_SYSCLOCK_CYCLE_TIME,
MD10080 \$MN SYSCLOCK SAMPL TIME RATIO

10060	POSCTRL_SYS	POSCTRL_SYSCLOCK_TIME_RATIO			G3
-	Factor for positi	actor for position control cycle			PowerOn
SFCO					
-	-	2	1	31	0/0

Description:

The position-control cycle is stated as a multiple of the time units of the system basic cycle SYSCLOCK CYCLE TIME.

The regular setting is 1. The position-control cycle then corresponds to the system basic cycle ${\tt SYSCLOCK_CYCLE_TIME}$.

Setting values > 1 costs computing time for the operating system to calculate the additional timer interrupts, and should therefore only be used in those cases in which there is a task in the system that is to run faster than the position-control cycle.

For PROFIBUS/PROFINET:

In the case of systems with a PROFIBUS DP connection, this MD represents the ratio between the PROFIBUS DP cycle and the position controller cycle.

10061	POSCTRL_CYCLE_TIME			N01, N05	G3
-	Position control cycle			DOUBLE	PowerOn
-					
-	-	0.0	-	-	0/0

Description:

Position controller cycle time:

Display of the position controller cycle time (not modifiable !). It is compiled internally from the machine data SYSCLOCK CYCLE TIME and POSCTRL SYSCLOCK TIME RATIO.

10062	POSCTRL_CYCLE_DELAY			N01, N05	G3
s	Position control cycle offset			DOUBLE	PowerOn
-					
-	-	0.0	0.000	0.008	0/0

Description:

For PROFIdrive only:

Only relevant to operation with PROFIBUS drives.

Position controller cycle offset in relation to the PROFIBUS DP cycle.

Offsets that exceed the set DP cycle or are smaller than the maximum Tdx, are automatically corrected to a substitute value half the size of the DP cycle.

 $\texttt{MD10062} \ \$\texttt{MN_POSCTRL_CYCLE_DELAY} > 0 \texttt{:} \texttt{Default} \ \texttt{for position controller} \ \texttt{offset}$

MD10062 \$MN_POSCTRL_CYCLE_DELAY = 0:Automatic determination of the position controller offset with max. Tdx from STEP7 project Tdx max is determined through all equidistant buses.

The actually active offset value is displayed in MD 10063[1]. Note:

MD10062 $MN_POSCTRL_CYCLE_DELAY > 0$ can reduce MD10050 $MN_SYSCLOCK_CYCLE_TIME$ to the automatic correction of this MD that cannot be undone by a subsequent increase.

Recommendation:

In this case set the original value or default value once again.

10063	POSCTRL_CYCLE_DIAGNOSIS			EXP, N01, N05	-
s	Active timing	Active timing			PowerOn
-					
-	3	0.0,0.0,0.0	-	-	0/RO

Description:

Diagnostic data related to the PROFIBUS/PROFINET cycle.

- [0]: Latest date at which the actual values must be available (Tdx)
- [1]: Actually active position controller cycle offset (Tm) $\,$
- [2]: Latest date at which the setpoints were output by the position controller

Diagnostic data are initialized with ZERO with each NCK power up

10070	IPO_SYSCLOO	IPO_SYSCLOCK_TIME_RATIO			G3,R1
-	Factor for interp	oolation cycle		DWORD	PowerOn
SFCO					
802d-cu3	-	6	1	100	0/0
802d-ng2	-	6	1	100	0/0
802d-ng3	-	6	1	100	0/0
802d-tm1	-	8	1	100	0/0
802d-tm2	-	1 1		100	0/0
802d-tm3	-	6	1	100	0/0

Description:

The interpolator cycle is stated as a multiple of the time units of the system basic cycle SYSCLOCK CYCLE TIME.

Only integer multiples of the position control cycle can be set (set in POSCTRL_SYSCLOCK_TIME_RATIO). Values that are not an integer multiple of the position control cycle are automatically increased to the next integer multiple of the position control cycle before they become active (on next power up).

This is accompanied by alarm 4102 "IPO cycle increased to [] ms".

10071	IPO_CYCLE_TIME I			N01, N05, N11, -	G3
-	Interpolator cyc	Interpolator cycle			PowerOn
-					
-	-	0.0	-	-	0/0

Description:

Interpolation time

Display of the interpolator cycle time (not modifiable !).

It is compiled internally from the machine data ${\tt SYSCLOCK_CYCLE_TIME}$ and ${\tt IPO_SYSCLOCK_TIME_RATIO}$.

10073	COM_IPO_STRATEGY		EXP	-	
-	Strategy for activation of communication.			DWORD	PowerOn
-					
-	-	0x0F 1 0			0/0

Description:

The call frequency of the communication task can be controlled by MD10072 $MN_COM_IPO_TIME_RATIO$.

The communication tasks are activated cyclically. That has some advantages and disadvantages:

Advantages:

 The communication behavior of the NCK is deterministic in relation to the communication task.

Disadvantages:

- The communication task can lead to level overflows.
- In an unloaded NCK system, the speed of communication is determined by MD10072 \$MN_COM_IPO_TIME_RATIO. As this machine data is power ON, it cannot adapt to the current NCK operating mode. A typical problem is that uploading a part program can take a very long time on an unloaded NCK. In this case, the bottleneck is the communication task that only progresses in the relation defined by machine data COM IPO TIME RATIO.

This machine data has been introduced to eliminate the above-mentioned disadvantages. It makes the times at which the communication software is activated controllable. The machine data is bitcoded. The bits have the following meanings:

Bit. 0:

The communication software is calculated cyclically

Bit 1:

The level time overflow monitoring is switched off for the cyclical communication task. This bit is only practical if bit zero is set. The task is implemented in a non-cyclical level that has a higher priority than the preparation/communication level. The communication task makes a delay of the time defined in COM IPO TIME RATIO after each cycle.

Bit 2:

The communication software is calculated at the start of the task which the domain services accept.

Bit 3:

The communication software is calculated at the end of the task which the domain services accept.

Bit 4:

The communication software is calculated at the start of the task which the domain services accept if a PDU upload has arrived. This bit is only useful if bit 2 is set.

Bit 5:

The communication software is calculated at the end of the task which the domain services accept if a PDU upload has arrived. This bit is only useful if bit 3 is set.

This machine data is only active in systems containing the Softbus communication software. This is in P6 the $840\,\mathrm{Di}$ with MCI2 software and the solution line systems for P7.

The default value is $0 \times 0 F$. This means that the COS is calculated prior to and after communiction in order to minimize latencies.

10074	PLC_IPO_TIME_RATIO			N01, N05	-
-	Factor of PLC task for the main run.			DWORD	PowerOn
-					
-	-	1 1			2/2

Description:

Division ratio between IPO and PLC tasks.

A value of 2 means, e. g. that the PLC task is only processed in every second IPO cycle. The PLC cycle time is then 2 IPO cycle times. This makes more runtime available for the other tasks. The PLC run time must not exceed this PLC cycle time, otherwise an alarm with PLC STOP is triggered.

10075	PLC_CYCLI	PLC_CYCLE_TIME			l01, N05	-
-	PLC cycle ti	PLC cycle time			OUBLE	PowerOn
-						
-	-	0.0				1/RO

Description:

Display of the PLC cycle time (not modifiable !)

It is compiled internally from MD10071 $MN_IPO_CYCLE_TIME$ and MD10074 MN PLC IPO TIME RATIO.

10080	SYSCLOCK_SAMPL_TIME_RATIO			EXP, N01	G3
-	Division ratio for actual value recording cycle time			DWORD	PowerOn
-					
-	-	1	1	31	-1/0

Description:

For SIMODRIVE 611D only:

 ${\tt SYSCLOCK_SAMPL_TIME_RATIO}$ sets the division factor of a cycle divider

that is arranged as hardware between the cycle of the measured value sampling $\ensuremath{\mathsf{T}}$

and the interrupt controller.

- The sampler cycle (upstream of the divider) taps the actual value inputs and triggers the digital analog converter.
- The output of the divider generates a timer interrupt as the basic cycle of the

operating system (SYSCLOCK CYCLE TIME).

A value greater than 1 may only be entered in SYSCLOCK SAMPL TIME RATIO in exceptional cases:

Values > 1 increase the size of the increments in which the basic cycle can be set. (see SYSCLOCK_CYCLE_TIME) Special cases:

1. When using the conventional drive interface (analog speed interface), the divider is set according to the following criteria:

It is advantageous for the control to keep the dead time between reading in the current axis actual positions and outputting the corresponding setpoint values as short as possible. The delay time of the position controller output can be set in fractions of the position control cycle time by setting SYSCLOCK_SAMPL_TIME_RATIO to values > 1. The difficulty with this is reliably determining the time after which the position controller delivers valid results. Multiple triggering of the input/output hardware during one position controller cycle could also be achieved by setting POSCTRL_SYSCLOCK_TIME_RATIO to values > 1. However, the disdvantage with this is the unnecessarily high rate of generating timer interrupts for the operating system. This procedure is not recommended.

2. When using the digital drive controller the division factor is set automatically. The sample cycle time is then set as the 1, 2, 3, \dots 8-fold of 125 μ s.

10088	REBOOT_DELAY_TIME			EXP	K3			
s	Reboot delay			DOUBLE	Immediately			
-								
-	-	0.2	0.0	1.0	2/2			

Description:

The reboot following PI "_N_IBN_SS" is delayed by the time MD10088 $MN_REBOOT_DELAY_TIME.$

The suppressable NOREADY alarm 2900 is triggered immediately by PI $^{\prime\prime}$ N IBN SS".

If MD10088 $MN_REBOOT_DELAY_TIME$ falls below the MD36620 $MA_SERVO_DISABLE_DELAY_TIME$ value of an axis, the axis is decelerated during MD10088 $MN_REBOOT_DELAY_TIME$. The servo enable is then disabled. That is, the full MD36620

\$MA SERVO DISABLE DELAY TIME is NOT waited.

Alarm 2900 does not become active if MD10088 \$MN_REBOOT_DELAY_TIME = 0.0, and there is no reboot delay.

The NCK waits beyond the stated delay time until the PI has been able to be acknowledged to the HMI. The total delay time may be as much as $2\ \mathrm{s.}$

10100	PLC_CYCLIC_TIMEOUT			EXP, N01, N06	P3		
s	Maximum PLC cycle time			DOUBLE	PowerOn		
-							
-	-	0.1	-	-	0/0		

Description:

Cyclical PLC monitoring time.

This machine data specifies the maximum monitoring time after which the PLC must have incremented its sign of life. Incrementing takes place within the interpolation cycles.

10110	PLC_CY	PLC_CYCLE_TIME_AVERAGE			B1
s	Average	PLC acknowledgeme	nt time	DOUBLE	PowerOn
-			<u>.</u>	·	
802d-cu3	-	0.018	-	-	0/0
802d-ng2	-	0.018	-	-	0/0
802d-ng3	-	0.018	-	-	0/0
802d-tm1	-	0.024	-	-	0/0
802d-tm2	-	0.018	.018		0/0
802d-tm3	-	0.018	-	-	0/0

Description:

By means of the MD, the status transitions:

"channel operates/ channel in RESET/ channel failure --> channel interrupted" can be delayed for the PLC in case of a RESET. With the output "channel interrupted", the NCK waits at least the time indicated in the MD + 1 IPO cycle.

With the time indication, the path feedrate during path control operation in case of an auxiliary function output during motion is controlled in a way to ensure that the minimum travel time corresponds to the time information. This ensures a uniform velocity behavior which is not disturbed by waiting for the PLC acknowledgement. The internal incrementation is performed in the interpolation cycle.

For the auxiliary function output in the continuous-path mode, the MD is also relevant for the FM357 and 802/802s systems. With SW 5.1 and higher, the other systems are parameterized directly via the PLC.

10120	PLC_RUNNING	SUP_TIMEOUT	EXP, N01, N06	H2	
s	Monitoring time for PLC power up			DOUBLE	PowerOn
-					
-	-	5.0	-	-	0/0

Description:

Power up PLC monitoring time

This machine data specifies the maximum monitoring time within which the PLC must report its first sign of life to the NCK. During the power up routine, the monitoring function has the task of verifying that the PLC has properly assumed cyclic operation. If the PLC does not issue a message within this time, the NC issues an alarm message when it powers up; NC-READY is not set. The incrementing takes place within the interpolation cycles.

10130	TIME_LIMIT_NETTO_COM_TASK			EXP, N01	OEM
s	Runtime limitati	Runtime limitation of communication to HMI			PowerOn
-					
-	-	0.005	.001	0.100	0/0

Description:

Net runtime limit of the communication sub-task

Preprocessing and the communications task share the time that is not used up by the cyclical tasks. Of this remaining time, communication uses the set time at the expense of preprocessing time; in other words, the net block cycle time is increased by the set value. This machine data serves the purpose of optimizing the block cycle time with the function "Reloading part programs block-by-block".

10131	SUPPRESS_SCREEN_REFRESH			EXP	A2			
-	Screen refresh	Screen refresh response under overload			PowerOn			
-		·						
-	-	2	0	2	1/1			

Description:

There are part programs in which the main run (HL) has to wait until the pre-processing (VL) makes new blocks available. The pre-processing and display update compete for NC computing time. The MD defines how the NC is to respond when the pre-processing is too slow.

- 0: When the VL of a channel is too slow, the updating of the display is suppressed in all channels.
- 1: When the VL of a channel is too slow, the updating of the display is suppressed only in the time-critical channels in order to gain time for the pre-processing.
- 2: The updating of the display is never suppressed.

10134	MM_NUM	M_MMC_UNITS	EXP, N01, N02	2 B3	
-	Possible partners	Possible number of simultaneous HMI communication partners			PowerOn
-					
-	-	6	1	10	0/0

Description:

Possible number of simultaneous HMI communication partners with which the NCU can exchange data.

This value affects the number of communication orders that the NCK can manage. The higher the value, the more HMIs that can be simultaneously connected to the NCK without leading to communication problems.

DRAM is made available for this function in the NCU corresponding to the input in the machine data. The inputs for changing the memory areas have to be taken into account.

The unit of MD10134 $MN_MM_NUM_MMC_UNITS$ is a "resource unit". A standard OP030 needs 1 resource unit, an HMI100/103 needs 2. OEM variants may need more or less resources.

- If the value is set lower than would be needed for the number of connected HMIs, this is not inevitably problematical. Actions may not function sporadically during multiple, simultaneous, communication-intensive operations (e.g. loading a program): Alarm 5000 is displayed. The operation then has to be repeated.
- If the value is set higher, more dynamic memory is occupied than necessary. The value should be reduced appropriately if the memory is required for other purposes.

References: /FB/, S7, "Memory Configuration"

10136	DISPLAY_MODE_POSITION 1			N01	-
-	Display mode for	play mode for actual position in the WCS			Reset
-					
-	-	0	0	1	1/1

Description:

Defines how the position and the distance to go are displayed in the $\ensuremath{\mathsf{WCS}}$

- 0: Display as in software version 5 and earlier
- 1: At end of block, the actual value display is in principle the same as the programmed end point, irrespective of where the machine actually is (e.g. as a result of the tool radius compensation). The distance to go is the same as the actual distance to be traversed. This means that the displayed actual postion has to be the same as the displayed end position minus the distance to go, irrespective of the actual machine position. If the block end points are changed by chamfers, radii, contour definitions, splines or SAR in comparison to the NC programm, then these changes are reflected in the display as if thay had been programmed. This does not apply to changes resulting from tool radius compensation or smoothing.

10160	PREP_COM_T	ASK_CYCLE_RATIO	EXP, N01	ECO	
-	Factor for communication with HMI			DWORD	PowerOn
-					
-	-	3	1	50	0/0

Description:

This machine data specifies the division ratio used for activating the communication task in the non-cyclic time level. This allows the time share of preparation in the non-cyclic time level to be increased, which reduces block cycle times. External communication (file transfer) is slowed down in particular during program execution (block reload).

10161	COM_CONFIGURATION I			EXP, N01	-
-	Configuration of communication			DWORD	PowerOn
-					
-	8	5, 5,18, 1,16, 8,18,18	-	-	0/0

Description:

Values 1-3 define the maximum number of PDUs that are accepted in one pass.

Value 0 stands for infinite, i.e. all present jobs are executed immediately. These three values become active after PowerOn.

1st value: max. number of variable job PDUs executed per pass.

2nd value: max. number of PI job PDUs executed per pass.

3rd value: max. number of domain job PDUs executed per pass.

Values 4-8 define the credit assignment for optimized download.

4th value: number of PDUs that are assigned as credit at the begin of acknowledgement under opt. domain service (here, the file header and therefore the file on NCK are still unknown)

5th value: number of PDUs that will be requested by default under opt. domain service, if there is no explicit memory limit for the file ${}^{\circ}$

6th value: min. number of PDUs that are requested with the data request message (so that data request messages are not displayed again and again)

7th value: max. number of PDUs that are requested with the data request message (max. value is 255, as the log cannot handle more than that!)

8th value: max. number of PDUs that may be present in total

10170	PREP_PLCBG_TASK_CYCLE_RATIO			EXP, N01	ECO
-	Factor for comm	nunication with SW PLC	DWORD	PowerOn	
-					
-	-	1	1	50	0/0

Description:

This machine data specifies the division ratio used for activation of the background task of the software PLC2xx in the non-cyclic time level.

As this cycle should be executed as often as possible (once in each PLC cycle), a ratio to the PREP task of 1:1 should be set. The frequency of activation depends on the computing time of the cyclic tasks (SERVO, IPO, COM, PLC) and the settings for the other subtasks (ratio to PREP, net runtime) or the utilization of the non-cyclic tasks PREP, EXCOM, DRIVE.

10171	TIME_LIMIT_NETTO_PLCBG_TASK			EXP, N01	ECO
s	Runtime limitation of communication to SW PLC2xx			DOUBLE	PowerOn
-					
-	-	0.005	.001	0.100	0/0

Description:

Net runtime limit of the Soft PLC2xx background subtask

The machine data determines the minimum computing time assigned to the SW PLC2xx $\,$

background task, if activated, as a whole (interrupted by the cyclic tasks $% \left(1\right) =\left(1\right) +\left(1\right)$

and Linux)

If the task does not give up control on its own (as there is nothing to do),

it will disable both the feed and the other subtasks for this period of time.

If there is only few computing time left, relatively long periods of time may be created this way.

10172	PLCINT_POSCTRL_TIME_RATIO			EXP, N01	ECO
-		Division ratio between servosynch. task of software PLC2xx and servotask			PowerOn
-					
-	-	1	1	10	0/0

Description:

A cyclic task of software PLC2xx, which is implemented on the servo level of the PLC, is started in a ratio synchronously with the servo task. A ratio of 1 must be set in order to achieve a quick reaction to external events.

10173	TIME_LIMIT_PLCINT_TASK			EXP, N01	ECO
s	Runtime limitation of servosynch. task of software PLC2xx			DOUBLE	PowerOn
-					
-	-	0.00005	0.00001	0.0001	0/0

Description:

Runtime limit of the servosynchronous soft PLC2xx interrupt task This machine data defines the maximum amount of computing time given at any one time to the servosynchronous task of the softeware PLC2xx to execute the PLC user program on the PLC servo interrupt level.

10174	TIME_LIMIT_PLCINT_TASK_DIAG			EXP, N01, N05	-
s	Runtimes of the servosynch. task of software PLC2xx with timeout			DOUBLE	PowerOn
-					
-	3	0.0,0.0,0.0	-	-	0/RO

Description:

Diagnostic data of the runtimes of the servosynchronous task of the SW-PLC2xx in the case of a time-out.

[0]: Current runtime that has led to a time-out

[1]: Minimum runtime so far measured

[2]: Maximum runtime so far measured

Diagnostic data are initialized with ZERO at each NCK power up

10185	NCK_PCOS_TIME_RATIO			EXP, N01	-
-	Processing time share NCK			DWORD	PowerOn
-					
-	-	65	10	90	0/0

Description:

This machine data defines the maximum proportion of CPU time given to the NCK in a PC-based system. The division specified by the user is implemented as well as possible.

When implementing the specification, the system takes into account limiting values for the absolute proportion of CPU time that must not be over or undershot.

Adaptations are made without generating an alarm.

10192	GEAR_CHANGE_WAIT_TIME			N01	S1
s	Gear stage change waiting time			DOUBLE	PowerOn
-					
-	-	10.0	0.0	1.0e5	1/1

Description:

External events which trigger reorganization, wait for the end of a gear stage change. GEAR_CHANGE_WAIT_TIME now determines the waiting time for the gear stage change. Time unit in seconds. When this time expires without the gear stage change having been terminated, the NCK reacts with an alarm.

Among others, the following events will cause reorganization:

User ASUB Mode change

Delete distance-to-go

Axis replacement Activate user data

10200	INT_INC	INT_INCR_PER_MM			G2,K3		
-	Calculation	Calculation resolution for linear positions		DOUBLE	PowerOn		
-							
802d-cu3	-	1000.	1.0	1.0e9	2/2		
802d-ng2	-	100000.	1.0	1.0e9	2/2		
802d-ng3	-	100000.	1.0	1.0e9	2/2		
802d-tm1	-	1000.	1.0	1.0e9	2/2		
802d-tm2	-	1000.	1.0	1.0e9	2/2		
802d-tm3	-	1000.	1.0	1.0e9	2/2		

Description:

This MD defines the number of internal increments per millimeter. The accuracy of the input of linear positions is limited to the calculation accuracy by rounding the product of the programmed value and the calculation accuracy to an integer.

In order to keep the executed rounding easily understandable it is useful to use powers of 10 for the calculation accuracy.

10210	INT_INCR_PER_DEG			N01	G2,K3,R2	
-	Calculation resolution for angular positions			DOUBLE	PowerOn	
-						
802d-cu3	-	1000.0	1.0	1.0e9	2/2	
802d-ng2	-	100000.	1.0	1.0e9	2/2	
802d-ng3	-	100000.	1.0	1.0e9	2/2	
802d-tm1	-	1000.0	1.0	1.0e9	2/2	
802d-tm2	-	1000.0	1.0	1.0e9	2/2	
802d-tm3	-	1000.0	1.0	1.0e9	2/2	

Description:

This MD defines the number of internal increments per degree. The accuracy of the input of angular positions is limited to the calculation accuracy by rounding the product of the programmed value and the calculation accuracy to an integer.

In order to keep the executed rounding easily understandable it is useful to use powers of 10 for the calculation accuracy.

10220	SCALING_USER_DEF_MASK			EXP, N01	G2
-	Activation of scaling factors			DWORD	PowerOn
SCAL					
-	-	0x200	0	0x3FFF	0/0

Description:

Bit mask for selecting the base values for the data (e.g. machine and setting data) that have a physical unit, they are interpreted in the default units shown below according to the basic system (metric/inch). If other input/output units are to be selected for individual physical units then these are activated with the scale factors associated with this machine data (entered in MD10230 $MN_SCALING_FACTORS_USER_DEF[n]$).

This does not affect the programming of geometry and feed values. Rit set:

Data of the assigned physical variable (see list) are scaled to the unit defined by MD10230 $MN_SCALING_FACTORS_USER_DEF[n]$.

Data of the assigned physical variable are scaled to the default unit shown below.

Assigned physical variable Default units for:

MD1024	40 \$MN_SCALING_SYST	TEM_IS_METRIC
Bit no.	1 = METRIC	0 = INCH
(Stated as hex value)		
0 Linear position	1 mm	1 inch
1 Angular position	1 degree	1 degree
2 Linear velocity	1 mm/min	1 inch/min
3 Angular speed	1 rpm	1 rpm
4 Linear acceleration	1 m/s^2	1 inch/s²
5 Angular acceleration	1 rev/s²	1 rev/s²
6 Linear jerk	1 m/s^3	1 inch/s³
7 Angular jerk	1 rev/s³	1 rev/s³
8 Time	1 s	1 s
9 Position-controller servo gain	1/s	1/s
10 Revolutional feedrate	1 mm/rev	1 mm/rev
11 Compensation value linear pos.	1 mm	1 mm
12 Compensation value angular pos.	1 degree	1 degree
13 Cutting rate	1 m/min	1 feet/min

General machine data

Example:

SCALING_USER_DEF_MASK =?H3?; (Bit nos. 0 and 1 as hex values)
The scale factor defined in the associated MD10230
\$MN_SCALING_FACTORS_USER_DEF[n] is activated for linear and angular positions.

If this machine data is changed, a startup is required as otherwise the associated machine data that have physical units would be incorrectly scaled.

Proceed as follows:

• MD changed manually

First start up and then enter the associated machine data with physical units.

• MD changed via machine data file

First start up and then reload the machine data file so that the new physical units are taken into account.

If the machine data are altered, alarm 4070 "Scaling machine data altered" is output.

Application example: Input/output of linear velocities is to be in cm/min.

MD10230 \$MN_SCALING_FACTORS_USER_DEF[n] (scaling factors of the physical variables)

10230	SCALING_FACTORS_USER_DEF			EXP, N01	G2
-	Scaling factors of physical variables			DOUBLE	PowerOn
SCAL					
-		1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0	1e-9	-	0/0

Description:

The scaling factor of a physical variable that has a unit other than the default unit setting (set bit in MD10220 $$MN_SCALING_USER_DEF_MASK$) is entered in this MD. The factor must refer to the unit used internally for the physical variable in question.

<pre>Index [n]</pre>	Assigned physical variable	Internal unit
0	Linear position	1 mm
1	Angular position	1 degree
2	Linear velocity	1 mm/s
3	Angular speed	1 degree/s
4	Linear acceleration	1 mm/s^2
5	Angular acceleration	1 degree/s²
6	Linear jerk	1 mm/s^3
7	Angular jerk	1 degree/s³
8	Time	1 s
9	Position-controller servo gain	1/s
10	Revolutional feedrate	1 mm/degree
11	Compensation value linear position	1 mm
12	Compensation value angular position	1 degree
13	Cutting rate	1 mm/s

The scaling factor is assigned to the physical variable using the index [0...12]. If this machine data is changed, a startup is required because otherwise the associated machine data that have physical units would be incorrectly scaled.

Proceed as follows:

MD changed manually

First start up and then enter the associated machine data with physical units.

• MD changed via machine data file

First start up and then reload the machine data file so that the new physical units are taken into account.

If the machine data are altered, alarm 4070 "Scaling machine data altered" is output.

Application example(s):

Input/output of angular speeds is to be in new degree/min:
\$MN_SCALING_USER_DEF_MASK = 'H8'; (bit no. 3 as hex value)
\$MN_SCALING_FACTORS_USER_DEF[3] = 0.01851852; (400/360/60)
[3]: Index for angular speed.

Related to:

 ${\tt MD10220~\$MN_SCALING_USER_DEF_MASK}$ (activation of scaling factors).

10240	SCALING_SYSTEM_IS_METRIC			N01	G2,K3,A3,S1			
-	Basic system n	Basic system metric			BOOLEAN	PowerOn		
SCAL		·						
-	-	TRUE -			-	2/2		

Description:

The MD defines the basic system used by the control for scaling length-dependent physical variables for data input/output. All corresponding data are stored internally in the basic units of 1 mm, 1 degree and 1 sec.

In the case of access from the interpreter (part program and download), from the operator panel (variable service) or through external communication, scaling takes place in the following units:

MD10240 \$MN_SCALING_SYSTEM_IS_METRIC = 1: scaled in:

mm, mm/min, m/s2 , m/s3, mm/rev.

MD10240 \$MN SCALING SYSTEM IS METRIC = 0: scaled in:

inch, inch/min, inch/s2, inch/s3, inch/rev.

The selection of the basic system also defines the interpretation of the programmed F value for linear axes:

If this machine data is changed, a startup is required because otherwise the associated machine data that have physical units would be incorrectly scaled.

Proceed as follows:

• MD changed manually

First start up and then enter the associated machine data with physical units.

• MD changed via machine data file

First start up and then reload the machine data file so that the new physical units are taken into account.

If the machine data are altered, alarm 4070 "Scaling machine data altered" is output.

Application example(s):

Startup in the metric system and then change to inch system. Special cases, errors:

The factor used for changing from 1 mm to 1 inch can be changed with MD10250 $MN_SCALING_VALUE_INCH$.

10250	SCALING_VALUE_INCH			EXP	G2			
-	Conversion factor for INCH			DOUBLE	PowerOn			
SCAL								
-	-	25.4 1e-9			0/0			

Description:

The MD contains the conversion factor from metric to inch. This factor is only active with the selection of the non-metric basic system (MD10240 $MN_SCALING_SYSTEM_IS_METRIC = 0$) in the following conversions:

- Programmed F values for linear axes
- Input/output of lengths and length-dependent data (e.g. when uploading machine data, work offsets)

Programmed geometry axis positions are converted by this factor when the measuring system programmed with G70/G71 is different from the selected basic system (SCAL-ING_ SYSTEM_IS_METRIC).

Programmed synchronous axis positions are converted by the corresponding axial factors (MD31200 $MA_SCALING_FAKTOR_G70_G71$) when the measuring system programmed with G70/G71 is different from the selected basic system (MD10240 $MN_SCALING_SYSTEM_IS_METRIC$). Settings other than the default 25.4 should only be made in exceptional cases as the correct display of the unit on the operator interface depends on this value.

If this machine data is changed, a startup is required because otherwise the associated machine data that have physical units would be incorrectly scaled.

Proceed as follows:

- MD changed manually
 - $\operatorname{---}$ Start up and then enter the associated machine data with physical units.
- MD changed via machine data file
 - -->Start up and then reload the machine data file so that the new physical units are taken into account.

If the machine data are altered, alarm 4070 "Scaling machine data altered" is output.

Application example(s):

This conversion factor is used if a changeover is made from metric to inch or a customized measuring system after startup. Then all the input machine data, among other things, are converted by this factor. The converted values are then given at the next read out and on the operator panel.

Related to:

MD10240 \$MN SCALING SYSTEM IS METRIC

10260	CONVERT_SCALING_SYSTEM			EXP	-
-	Enable basic system conversion			BOOLEAN	PowerOn
LINK					
-	- TRUE			-	1/1

Description:

Determines the handling of MD10240 \$MN SCALING SYSTEM IS METRIC.

- 0: Inch/metric behavior conforms to SW1-SW4
- 1: Inch/metric behavior from SW5

Inch/metric functionality of SW5:

- 1. Switch over the systems of units with HMI softkey
- 2. New G codes G700/G710
- 3. Data backup with system of unit recognition INCH/METRIC
- 4. Automatic data conversion on change of system of units
- All zero point offsets
- Compensation data (EEC, QEC)
- Tool offsets
- etc.

The change from MD10260 \$MN_CONVERT_SCALING_SYSTEM leads to alarm 4070!

This alarm is designed to indicate that data which remain active after a POWERON are not subjected to automatic conversion from SW1-SW4 and SW5 formats.

10270	POS_TAB_SCALING_SYSTEM			N01, N09	T1,N3,G2
-	System of units of position tables			BYTE	Reset
-					
-	-	- 0 0 1			0/0

Description:

Defines the measuring system for the positional data for the following machine data

MD10910 \$MN INDEX AX POS TAB 1

MD10930 \$MN INDEX AX POS TAB 2

SD41500 \$SN SW CAM MINUS POS TAB 1

SD41501 \$SN SW CAM PLUS POS TAB 1

SD41502 \$SN_SW_CAM_MINUS_POS_TAB_2

SD41503 \$SN_SW_CAM_PLUS_POS_TAB_2

SD41504 \$SN_SW_CAM_MINUS_POS_TAB_3

SD41505 \$SN_SW_CAM_PLUS_POS_TAB_3

SD41506 \$SN_SW_CAM_MINUS_POS_TAB_4

SD41507 \$SN SW CAM PLUS POS TAB 4

0: metric

1: inch

This machine data is only evaluated for MD10260

\$MN CONVERT SCALING SYSTEM = 1.

General machine data

Related to:
MD10260 \$MN_CONVERT_SCALING_SYSTEM
MD10910 \$MN_INDEX_AX_POS_TAB_1
MD10930 \$MN_INDEX_AX_POS_TAB_2
SD41500 \$SN_SW_CAM_MINUS_POS_TAB_1
SD41501 \$SN_SW_CAM_PLUS_POS_TAB_1
SD41502 \$SN_SW_CAM_MINUS_POS_TAB_2
SD41503 \$SN_SW_CAM_PLUS_POS_TAB_2
SD41504 \$SN_SW_CAM_PLUS_POS_TAB_3
SD41505 \$SN_SW_CAM_PLUS_POS_TAB_3
SD41506 \$SN_SW_CAM_PLUS_POS_TAB_3
SD41506 \$SN_SW_CAM_MINUS_POS_TAB_4
SD41507 \$SN_SW_CAM_PLUS_POS_TAB_4

10280	PROG_FUNCTION_MASK			EXP, N01	K1		
-	Comparing (> and <) compatible with SW6.3			DWORD	PowerOn		
-		·					
-	-	0x0	0	0x7	0/0		

Description:

value

0: 0x1Comparison commands ">" and "<" are processed as for SW 6.3 and earlier:

Sub-program data of the type REAL are mapped internally in the IEEE 64 bit format. This mode maps decimal numbers inaccurately if this format's 52-bit wide mantissa is inadequate to map the number in binary notation. To solve this problem, all comparison commands (==, <>, >=, <=, > and <) are checked for relative equality of 1E-12.

This procedure is switched off for greater than (>) and less than (<) comparisons by setting bit 0. (Compatibility setting for software releases earlier than SW 6.4)

1: 0x2Programming the channel names from machine data MD20000 $\mbox{\rm SMC}$ CHAN_NAME

By setting bit 1, the channel name stored in machine data MD20000 MC_{CHAN_NAME} can be programmed in the part program. The channel name can thus also be programmed instead of a numerical value for the channel number in programming coordination commands such as MATT(), MATT() etc.

2: 0x4reserved

10284	DISPLAY_FUN	CTION_MASK	EXP, N01	-				
-	BTSS-variable lastBlockNoStr active			DWORD	PowerOn			
-		·						
-	-	· 0x0 -			0/0			

Description:

Bit mask for parameterizing various display variables:

BitNo. Hexadec. Meaning with bit set

value

Bit0: 0x1

Parameters are assigned to the OPI variable lastBlockNoStr in the SPARP and SPARPP blocks.

Bit1: 0x2

Concerns the OPI variable cmdSpeed in the SPARPP block. If the bit is set, the variable returns the programmed speed even if the spindle is at a standstill or in another mode (positioning mode, axis mode).

Bit2 0x4

Concerns the OPI variable cmdSpeed in the SPARPP block. (reserved for constant cutting speed)

Bit8: 0x100

Servotrace manages larger numerical values internally. Overruns in data format are avoided. The accuracy may be reduced with large numerical values.

10290	CC_TDA_PARAM_UNIT			N09	G2			
-	Physical units of tool data for compile cycles			DWORD	PowerOn			
-								
-	1	0,0,0,0,0,0,0,0 0			0/0			

Description:

Physical units for the user-defined tool-specific data:

0 ;No unit

1 ;Linear position [mm ; inch] 2 ; Angular position [degree ; degree] 3 ;Linear velocity [mm/min ; inch/min] 4 ; Angular speed [rpm ; rpm] 5 ;Linear acceleration $[m/s^2 ; inch/s^2]$ 6 ; Angular acceleration. [rev/s 2 ; rev/s 2] 7 ;Linear jerk [m/s ³ ; inch/s ³][rev/s 3 ; rev/s 3] 8 ;Angular jerk 9 ;Revolutional feedrate [mm/rev ; inch/rev] Only available if bit 2 (0x4) is set in MD18080

\$MN MM TOOL MANAGEMENT MASK

10291	CCS_TDA_PARAM_UNIT	N09	-				
-	physical units of SIEMENS-OEM tool	DWORD	PowerOn				
-							
-	1 0,0,0,0,0,0,0,0,0	0	9	0/0			

Description: Physi

```
Physical units for application-specific tool-specific data:
0: No unit
1:
    Linear position
                                 [ mm; inch ]
2:
   Angular position
                                 [ degree ; degree ]
3: Linear velocity
                                [ mm/min ; inch/min ]
4: Angular speed
                                [ rpm ; rpm ]
5: Linear acceleration
                                [ m/s^2 ; inch/s^2 ]
6: Angular acceleration
                                [ rev/s^2 ; rev/s^2 ]
7: Linear jerk
                                 [ m/s^3 ; inch/s^3 ]
8:
   Angular jerk
                                 [ rev/s^3 ; rev/s^3 ]
                            [ mm/rev; inch/rev]
   Feedrate per revolution
9:
Only available if Bit 2 (0x4) is set in MD18080
$MN_MM_TOOL_MANAGEMENT_MASK.
```

Related to:

MD18204 \$MN_MM_NUM_CCS_TDA_PARAM

10292	CC_TOA_PARAM_UNIT			N09	G2			
-	Physical units of cutting edge data for compile cycles			DWORD	PowerOn			
-		·						
-	1	0,0,0,0,0,0,0,0,0 0			0/0			

Description:

Physical units for the user-defined cutting edge data:

```
0 ; No unit
```

```
1
  ;Linear position
                            [ mm ; inch ]
2 ;Angular position
                           [ degree ; degree ]
3 ;Linear velocity
                           [ mm/min ; inch/min ]
4 ;Angular speed
                           [ rpm ; rpm ]
5 ; Linear acceleration [ m/s^2 ; inch/s^2 ]
6 ; Angular acceleration. [ rev/s 2 ; rev/s 2 ]
                            [ m/s <sup>3</sup> ; inch/s <sup>3</sup>
7 ;Linear jerk
8 ;Angular jerk
                            [ rev/s <sup>3</sup>; rev/s <sup>3</sup>]
  ;Revolutional feedrate [ mm/rev ; inch/rev ]
Only available if bit 2 (0x4) is set in MD18080
$MN_MM_TOOL_MANAGEMENT_MASK
```

10293	CCS_TOA_PARAM_UNIT			N09	-			
-	Physical units of SIEMENS-OEM cutting edge data			DWORD	PowerOn			
-								
-	1	0,0,0,0,0,0,0,0,0	0	9	0/0			

Description:

Physical units for application-specific cutting data:

4 : Angular speed [rpm ; rpm]
5 : Linear acceleration [m/s² ; inch/s²]
6 : Angular acceleration [rev/s² ; rev/s²]
7 : Linear jerk [m/s³ ; inch/s³]
8 : Angular jerk [rev/s³ ; rev/s³]
9 : Feedrate per revolution [mm/rev; inch/rev]

Only available if Bit 2 (0x4) is set in MD18080

\$MN_MM_TOOL_MANAGEMENT_MASK.

Related to:

MD18206 \$MN_MM_NUM_CCS_TOA_PARAM

10300	FASTIO_ANA_NUM_INPUTS			N10	A4,TE1		
-	Number of active analog NCK inputs			BYTE	PowerOn		
-		<u> </u>					
-	- 0 0			8	0/0		

Description:

This machine data defines the number of usable analog NCK inputs on the control.

Only these analog NCK inputs can be addressed by the NC part program or assigned by NC functions.

If more analog NCK inputs are defined with the machine data than are available in the hardware of the control, the binary analog actual value is set to zero in the control for the inputs that do not exist in the hardware. The NCK value can be altered by the PLC. Note:

CPU computing time on the interpolation level is required for processing the digital and analog NCK I/Os. The number of active NCK I/Os should therefore be limited to the demands of the machine so that the interpolation cycle time is not unnecessarily loaded.

10310	FASTIO_ANA_NUM_OUTPUTS			N10	A4		
-	Number of active analog NCK outputs			BYTE	PowerOn		
-							
-	. 0			8	0/0		

Description:

This machine data defines the number of usable analog NCK outputs on the control.

Only these analog NCK outputs can be addressed by the NC part program or assigned by NC functions.

If more analog NCK outputs are defined with the machine data than are available in the hardware of the control, no alarm is triggered. The analog values specified by the part program can be read by the PLC.

Note:

CPU computing time on the interpolation level is required for processing the digital and analog NCK I/Os. The number of active NCK I/Os should therefore be limited to the demands of the machine so that the interpolation cycle time is not unnecessarily loaded.

10350	FASTIO_DIG_NUM_INPUTS			N10	A4,TE1
-	Number of active digital NCK input bytes			BYTE	PowerOn
-					
-	-	2	1	5	2/2

Description:

The number of bytes of the digital NCK inputs that can be used on the control are defined in this machine data.

These digital NCK inputs can be read directly by the part program. Moreover, the signal state at the HW inputs can also be changed by the PLC.

If more digital NCK inputs are defined in the machine data than are available in the control hardware, a signal status of 0 is set in the control for the inputs that do not exist in the hardware. The NCK value can be altered by the PLC.

Related to:

NC/PLC interface signal V2800 0000 (Disable the digital NCK inputs 1-8)

NC/PLC interface signal VB2800 1000 (Disable the external digital inputs 9-40)

NC/PLC interface signal V2800 0001(PLC setting for digital NCK inputs 1-9)

NC/PLC interface signal VB2800 1001 (PLC values for external digital inputs 9-40)

NC/PLC interface signal V2900 0000,1000 (Actual value for digital NCK inputs)

10360	FASTIO_DIG_NUM_OUTPUTS			N10	A4,TE8
-	Number of active digital NCK output bytes			BYTE	PowerOn
-					
-	-	2	0	5	2/2

Description:

The number of bytes for digital NCK outputs that can be used on the control are defined in this machine data.

These digital NCK outputs can be set directly by the part program. From the PLC can $\,$

- the digital outputs with the NC/PLC interface signal V2800 0004,1008 (Disable the digital NCK outputs).
- with the NC/PLC interface signal V2800 0005,1009 (Overwrite mask for digital NCK outputs).
- \bullet with the NC/PLC interface signal V2800 0007,1011 (Setting mask for digital NCK outputs).

If more digital NCK outputs are defined in the machine data than are available in the control hardware, no alarm is triggered. The signal states specified by the part program can be read by the PLC.

Special cases:

Digital NCK outputs 5 to 8 can be processed only by the PLC (no hardware outputs).

Related to:

NC/PLC interface signal V2800 0004,1008 (Disable the digital NCK outputs)

NC/PLC interface signal V2800 0005,1009 (Overwrite mask for digital NCK outputs) $\,$

NC/PLC interface signal V2800 0006,1001 (PLC setting value for digital NCK outputs) $\,$

NC/PLC interface signal V2800 0007,1011 (Setting mask for digital NCK outputs)

NC/PLC interface signal V2900 0004,1004 (Setpoint for digital NCK outputs)

10361	FASTIO_DIG_SHORT_CIRCUIT			N10	A4
-	Short circuit of digital inputs and outputs			DWORD	PowerOn
-					
-	10	0,0,0,0,0,0,0,0,0	-	-	1/1

Description:

Defined short circuits between digital output and input signals of the high-speed NCK I/Os are realized by linking the signals read in from the high-speed NCK I/Os or the PLC interface to defined output signals.

The output signals always remain unchanged by the link, the inputs that have to be taken into account internally arise from the read inputs and the link. If a plurality of output bits are specified for one input bit in overwrite mode, the last defined assignment in the list determines the result.

The definition of non-existent or non-activated inputs/outputs is ignored without an alarm.

Bits 0-7:Number of the input byte to be written (1-5) Bits 8-15:Bit number within the input byte (1-8)

General machine data

```
Link:
The type of link is selected by adding a hexadecimal number to the
input bit number:
       Overwrite input identically to output
      Input is AND-gated to the read input with the status of the
  stated output
       Input is OR-gated to the read input with the status of the
  stated output
Bits 16-23: Number of the output byte to be used (1-5)
Bits 24-31:Bit number within the output byte (1-8)
Example:
$MN FASTIO DIG SHORT CIRCUIT[ 0 ] = 0 \times 04010302
  Input: 3rd bit of the 2nd byte
  Output: 4th bit of the 1st byte ( = 4th onboard NCU output )
  The input status is overwritten by the specified output
$MN FASTIO DIG SHORT CIRCUIT[ 1 ] = 0x0705A201
  Input: 2nd bit of the 1st byte ( = 2nd onboard NCU input )
  Output: 7th bit of the 5th byte
  The input status is AND-gated with the specified output
$MN FASTIO DIG SHORT CIRCUIT[ 2 ] = 0 \times 0103B502
  Input: 5th bit of the 2nd byte
  Output: 1st bit of the 3rd byte
  The input status is OR-gated with the specified output
Related to:
  MD10350 $MN FASTIO DIG NUM INPUTS,
  MD10360 $MN_FASTIO_DIG_NUM_OUTPUTS.
```

10362	HW_ASSIGN_ANA_FASTIN			N10	A4,TE1
-	Hardware assignment of the fast analog NCK inputs			DWORD	PowerOn
-					
-		0x01000000,0x01000 000,0x01000000	0x01000000	0x060003FF	0/0

Description:

For PROFIBUS/PROFINET:

References:

1st + 2nd byte indicate the logical start address of the I/O slot on the PROFIBUS/PROFINET:

/FB/, A4, "Digital and Analog NCK I/Os"

Value 0000 means NO active slot

Values 0001..0100 are reserved for the PLC process image (the value of input slots can be read by the NCK without errors, but output slots are forbidden in this range, and cause an alarm on power up)

1st byte = LowByte of the logical start address

2nd byte = HighByte of the logical start address

3nd byte = 0 = without meaning

4th byte = 5 = segment no. for PROFIBUS/PROFINET

The individual bytes are explained in MD10366

\$MN HW ASSIGN DIG FASTIN.

[hw] = Index (0 to 7) for addressing the external analog inputs Related to:

MD10366 \$MN HW ASSIGN DIG FASTIN

MD10368 \$MN_HW_ASSIGN_DIG_FASTOUT

MD10364 \$MN_HW_ASSIGN_ANA_FASTOUT

10364	HW_ASSIGN_ANA_FASTOUT			N10	A4,TE3
-	Hardware assignment of external analog NCK outputs			DWORD	PowerOn
-					
-		0x01000000,0x01000 000,0x01000000	0x01000000	0x060003FF	0/0

Description:

For PROFIBUS/PROFINET:

1st + 2nd byte indicate the logical start address of the I/O slot on the PROFIBUS/PROFINET:

Value 0000 means NO active slot

Values 0001..0100 are reserved for the PLC process image (the value of input slots can be read by the NCK without errors; how-ever, output slots are forbidden in this range, and cause an alarm on power up)

1st byte = LowByte of the logical start address 2nd byte = HighByte of the logical start address

3rd byte = 0 = without meaning

4th byte = 5 = segment no. for PROFIBUS/PROFINET

The individual bytes are explained in MD10366

\$MN HW ASSIGN DIG FASTIN.

Related to:

MD10366 \$MN_HW_ASSIGN_DIG_FASTIN MD10368 \$MN_HW_ASSIGN_DIG_FASTOUT MD10362 \$MN_HW_ASSIGN_ANA_FASTIN

10366	HW_ASS	HW_ASSIGN_DIG_FASTIN			A4,TE1			
-	Hardwar	Hardware assignment of external digital NCK inputs			PowerOn			
-								
802d-cu3	1	0x0	0x0	0x00010101	2/2			
802d-ng2	1	0x00010101	0x0	0x00010101	2/2			
802d-ng3	1	0x00010101	0x0	0x00010101	2/2			
802d-tm1	1	0x0	0x0	0x00010101	2/2			
802d-tm2	1	0x0	0x0	0x00010101	2/2			
802d-tm3	1	0x0	0x0	0x00010101	2/2			

Description:

For SIMODRIVE611D (terminal block):

The following 4 bytes assign the external digital NCK I/Os to the hardware:

1st byte: I/O no.
2nd byte: Submodule no.
3rd byte: Module no.
4th byte: Segment no.

As soon as value 0 is entered in byte 3 (module no.), the output byte concerned is not processed by the control.

I/O no.:

Number of the I/O byte on the DP compact module (range: 1 to 2; always 1 with analog inputs/outputs)

Submodule no.:

Submodule slot on the terminal block into which the DP compact module is inserted (range: 1 to 8)

General machine data

```
Module no.:
  Number of the logical slot into which the terminal block with
  the external I/Os is inserted. The logical slot is assigned to
  a physical slot by MD13010 $MN DRIVE LOGIC NR (logical drive
  number). Each module occupies a physical slot.
Seament no.:
  Always 1 for 840D (ID for SIMODRIVE611D bus)
       Example:
               HW ASSIGN DIGITAL FASTIN[3] = 01 04 03 02
   1st byte: 02 =
                     2nd input byte of a 16 bit input module
                    Input module inserted in slot 3 of the termi-
   2nd byte: 03 =
nal block
  3rd byte: 04 =
                    Terminal block inserted at logical drive num-
ber 4
  4th byte: 01 =
                    ID for 611D bus
For PROFIBUS/PROFINET:
   1st + 2nd byte indicate the logical start address of the I/O
slot on the PROFIBUS/PROFINET:
Value 0000 means NO active slot
Values 0001..0100 are reserved for the PLC process image (the
value of input slots can be read by the NCK without errors; how-
ever, output slots are forbidden in this range, and cause an alarm
on power up)
   1st byte = LowByte of the logical start address
   2nd byte = HighByte of the logical start address
   3rd byte = 0 = without meaning
   4th byte = 5 = segment no. for PROFIBUS/PROFINET
            1 ... MD MAXNUM SIMO611D AXES:
  Number of the logical slot in which the terminal block with the
  external I/Os is inserted. The logical slot is assigned to a
  physical slot by MD13010 $MN_DRIVE_LOGIC_NR, it is activated by
  MD13000 $MN_DRIVE_IS_ACTIVE.
1st + 2nd bytes give the logical start address of the I/O slot on
the PROFIBUS
1st byte = low byte
2nd byte = high byte
Value 0000 means NO active slots
Values 0001..007F \, are reserved for the PLC (NCK can also read the
value for input slots without error, but output slots are forbid-
den in this range and lead to an alarm during startup)
Values 0080..02FF are valid
Values > 02FF are invalid
Example:
HW_ASSIGN_DIGITAL_FASTIN[3] = '05000302'
1st + 2nd byte: 0302 (hex) = logical start address 770 (decimal)
3rd byte: 00 = no significance
4th byte: 05 = ID for PROFIBUS/PROFINET
Related to:
  MD10368 $MN HW ASSIGN DIG FASTOUT
  MD10362 $MN HW ASSIGN ANA FASTIN
  MD10364 $MN HW ASSIGN ANA FASTOUT
```

06/2009 Machine Data

General machine data

10368	HW_ASSIGN_	HW_ASSIGN_DIG_FASTOUT			A4		
-	Hardware assign	gnment of external digita	I NCK outputs	DWORD	PowerOn		
-							
802d-cu3	1	0x0	0x0	0x00010101	2/2		
802d-ng2	1	0x00010101	0x0	0x00010101	2/2		
802d-ng3	1	0x00010101	0x0	0x00010101	2/2		
802d-tm1	1	0x0	0x0	0x00010101	2/2		
802d-tm2	1	0x0	0x0	0x00010101	2/2		
802d-tm3	1	0x0	0x0	0x00010101	2/2		

Description:

For PROFIBUS/PROFINET:

1st + 2nd byte indicate the logical start address of the I/O slot on the PROFIBUS/PROFINET:

Value 0000 means NO active slot

Values 0001..0100 are reserved for the PLC process image (the value of input slots can be read by the NCK without errors; how-ever, output slots are forbidden in this range, and cause an alarm on power up)

1st byte = LowByte of the logical start address

2nd byte = HighByte of the logical start address

3rd byte = 0 = without meaning

4th byte = 5 = segment no. for PROFIBUS/PROFINET

The individual bytes are explained under MD10366 \$MN HW ASSIGN DIG FASTIN.

[hw] = Index (0 to 3) for addressing the external digital output bytes

Related to:

MD10366 \$MN_HW_ASSIGN_DIG_FASTIN MD10362 \$MN_HW_ASSIGN_ANA_FASTIN MD10364 \$MN_HW_ASSIGN_ANA_FASTOUT

10430	CC_HW_DEBUG_MASK			EXP	OEM
-	Hardware debug mask for compile cycles			DWORD	PowerOn
NBUP, NDLD					
-	-	0	0	0x7fffffff	0/0

Description:

Setting of special responses to peripheral ${\tt HW}$ interfaces for NCK debug

For practical debugging of NCK software, among other things, the response of peripheral units to the loss of the NCK sign of life must be suppressed when the NCK software has run to a breakpoint. Bit $0 \, \text{(LSB)} - 3$:

For practical debugging of NCK software, among other things, the response of peripheral units to the loss of the NCK sign of life must be suppressed when the NCK software has run to a breakpoint.

General machine data

Meaning of set bits:
Bit 0:
Drive modules ignore the loss of the NCK sign of life
Bit 1:
Terminal blocks ignore the loss of the NCK sign of life
Bit 3:
PLC ignores the loss of the NCK sign of life
Bit 4:

Recording of internal and external control commands. Recording the control sequences and storing them in a file in the passive file system. One can trace the exact sequence between the incoming harware signals of the PLC interface and the internal sequences with the aid of the recording file.

Bit 5:

Servotrace: Enable physical addresses without access control Bit10:

Test for measuring function. If this bit is set, one can use the GUD Variables CHAN INT MEA_TASK and CHAN INT MEA_COUNTER to transfer the inverse transformation of the measured values into cyclical and non-cyclical tasks.

Bit11:

No EMERGENCY STOP alarm on loss of PLC sign of life. If the PLC sign of life is not obtained within the time defined in MD10100 \$MN_PLC_CYCLIC_TIMEOUT, an alarm is not issued, merely the axis release withdrawn. (Application case: debugging the PLC user program)

Bit15:

Reserved for gantry startup help.

10450	SW_CAN	SW_CAM_ASSIGN_TAB			N3
-	Assignm	ent of software cams to machir	ne axes	BYTE	PowerOn
-					
802d-cu3	8	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	31	2/2
802d-ng2	8	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	31	2/2
802d-ng3	8	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	31	2/2
802d-tm1	1	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	31	0/0
802d-tm2	1	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	31	0/0
802d-tm3	1	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	31	0/0

Description:

This machine data allows one machine axis to be assigned to each of the 16 possible cam pairs (each is comprised of one minus and one plus cam).

If a "0" is entered, the corresponding cam is not processed. The cam signal output is activated via the axial NC/PLC interface signal V380x 0002.0 (Cam activation).

Index [n] of the machine data addresses the cam pair: n = 0, 1, ..., 15 correspond to cam pairs 1, 2, ..., 16 Related to:

NC/PLC interface signal V380x 0002.0 (Cam activation) Example:

Cam pair 1 is to be assigned to machine axis 3, and cam pair 3 to machine axis 4. Cam pair 2 is not to be assigned to an axis.

MD10450 \$MN_SW_CAM_ASSIGN_TAB[0]= 3 MD10450 \$MN_SW_CAM_ASSIGN_TAB[1]= 0

MD10450 \$MN_SW_CAM_ASSIGN_TAB[2]= 4

General machine data

10460	SW_CAN	M_MINUS_LEAD_TIME	N09	N3
S	Lead or o	delay time at minus cams 1-16	DOUBLE	PowerOn
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	3/3
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	3/3
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	3/3
802d-tm1	1	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	0/0
802d-tm2	1	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	0/0
802d-tm3	1	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	0/0

Description:

A lead or delay time can be assigned in this machine data to each minus cam 1-16 to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered.

Positive value: --> Lead time
Negative value: --> Delay time

Serves to compensate for the constant proportion of the internal delay time $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) +\left(1\right) \left(1\right) +\left(1\right) +$

between actual value acquisition and signal output.

Index [n] of the machine data addresses the cam pair: n = 0, 1, ..., 15 correspond to cam pairs 1, 2, ..., 16 This machine data is added to the setting data SD41520 $SN_SW_CAM_MINUS_TIME_TAB_1[n]$ and SD41522

 $SN_SW_CAM_MINUS_TIME_TAB_2[n]$.

Related to:

SD41520 $SN_SW_CAM_MINUS_TIME_TAB_1[n]$ (lead or delay time on minus cams 1 - 8)

 ${\tt SD41522~\$SN_SW_CAM_MINUS_TIME_TAB_2[n]}$ (lead or delay time on minus cams 9 - 16)

06/2009 Machine Data

General machine data

10461	SW_CAN	M_PLUS_LEAD_TIME	N09	N3
s	Lead or o	delay time at plus cams 1-16	DOUBLE	PowerOn
-			<u>.</u>	
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	3/3
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	3/3
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	3/3
802d-tm1	1	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	0/0
802d-tm2	1	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	0/0
802d-tm3	1	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	0/0

Description:

A lead or delay time can be assigned in this machine data to each plus cam 1--16 to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered.

Positive value: --> Lead time
Negative value: --> Delay time

Serves to compensate for the constant proportion of the internal delay time $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) +\left(1\right) \left(1\right) +\left(1\right) +$

between actual value acquisition and signal output.

Index [n] of the machine data addresses the cam pair: n = 0, 1, ..., 15 correspond to cam pairs 1, 2, ..., 16 This machine data is added to the setting data SD41521 $SN_SW_CAM_PLUS_TIME_TAB_1[n]$ and SD41523

\$SN_SW_CAM_PLUS_TIME_TAB_2[n].

Related to:

SD41521 $SN_SW_CAM_PLUS_TIME_TAB_1[n]$ (lead or delay time on plus cams 1 - 8)

 ${\tt SD41523~\$SN_SW_CAM_PLUS_TIME_TAB_2[n]}$ (lead or delay time on plus cams 9 - 16)

General machine data

10470	SW_CAM_ASSIGN_FASTOUT_1			N09	N3
-	Hardware assig	nment for output of cam	s 1-8 to NCK I/Os	DWORD	PowerOn
-					
802d-cu3	-	0	-	-	2/2
802d-ng2	-	0	-	-	2/2
802d-ng3	-	0	-	-	2/2
802d-tm1	-	0	-	-	0/0
802d-tm2	-	0	-	-	0/0
802d-tm3	-	0	-	-	0/0

Description:

The cam signal status can be output to the NCK I/Os as well as to the PLC.

The hardware assignment of the minus and plus cam signals to the digital output bytes used for the NCK I/Os is made in this machine data for cam pairs $1\,$ - 8.

The assigned output signals can also be inverted with this machine data.

The MD is coded as follows:

Bits 0-7: No. of 1st HW byte used with digital outputs Bits 8-15: No. of 2nd HW byte used with digital outputs Bits 16-23: Inversion mask for writing 1st HW byte used Bits 24-31: Inversion mask for writing 2nd HW byte used

Bit=0: Do not invert

Bit=1: Invert

If both HW bytes are specified, the 1st byte contains the minus cam signals and the 2nd byte the plus cam signals.

If the 2nd byte is not specified (="0"), then the 8 cams are output as an AND operation of the minus and plus cam signals via the 1st HW byte using the 1st inversion mask.

The status of the non-inverted output signal for linear axes and for rotary axes with "plus cam - minus cam < 180 degrees" is:

"1" between minus and plus cams

"0" outside this range

The status of the non-inverted output signal for rotary axes with "plus cam - minus cam >= 180 degrees" is:

"0" between minus and plus cams

"1" outside this range

The following must be specified as the byte address for the digital outputs:

1: for on-board byte 2 - 5: for external bytes

06/2009 Machine Data

General machine data

10471	SW_CAM_ASSIGN_FASTOUT_2			N09	N3
-	Hardware assignment for the output of cams 9-16 to NCK I/Os			DWORD	PowerOn
-					
-	-	0	-	-	0/0

Description:

The cam signal status can be output to the NCK I/Os as well as to the PLC.

The hardware assignment of the minus and plus cam signals to the digital output bytes used for the NCK I/Os can be made in this machine data for cam pairs 9-16.

The assigned output signals can also be inverted with this machine data.

The MD is coded as follows:

Bits 0-7: No. of 1st HW byte used with digital outputs
Bits 8-15: No. of 2nd HW byte used with digital outputs
Bits 16-23: Inversion mask for writing 1st HW byte used
Bits 24-31: Inversion mask for writing 2nd HW byte used
Bit=0: Do not invert

Bit=1: Invert

If both HW bytes are specified, the 1st byte contains the minus cam signals and the 2nd byte the plus cam signals.

If the 2nd byte is not specified (= "0"), then the 8 cams are output as an AND operation of the minus and plus cam signals via the 1st HW byte using the 1st inversion mask.

The status of the non-inverted output signal for linear axes and for rotary axes with "plus cam - minus cam < 180 degrees" is:

"1" between minus and plus cams

"0" outside this range

The status of the non-inverted output signal for rotary axes with "plus cam - minus cam >= 180 degrees" is:

"0" between minus and plus cams

"1" outside this range

The following must be specified as the byte address for the digital outputs:

1: for on-board byte 2 - 5: for external bytes

General machine data

10472	SW_CAM_ASSIGN_FASTOUT_3			N09	N3
-	Hardware assignment for output of cams 17-24 to NCK I/Os			DWORD	PowerOn
-					
-	-	0	-	-	0/0

Description:

The cam signal status can be output to the NCK I/Os as well as to the PLC.

The hardware assignment of the minus and plus cam signals to the digital output bytes of the NCK I/Os used can be made in this machine data for cam pairs 17-24.

The assigned output signals can also be inverted with this machine data.

The MD is coded as follows:

Bits 0-7: Number of 1st HW byte used with digital outputs Bits 8-15: Number of 2nd HW byte used with digital outputs Bits 16-23: Inversion mask for writing 1st HW byte used Bits 24-31: Inversion mask for writing 2nd HW byte used

Bit=0: Do not invert

Bit=1: Invert

If both HW bytes are specified, the 1st byte contains the minus cam signals and the 2nd byte the plus cam signals.

If the 2nd byte is not specified (= "0"), then the 8 cams are output as an AND operation of the minus and plus cam signals via the 1st HW byte using the 1st inversion mask.

The status of the non-inverted output signal for linear axes and for rotary axes with "plus cam - minus cam < 180 degrees" is:

"1" between minus and plus cams

"0" outside this range

The status of the non-inverted output signal for rotary axes with "plus cam - minus cam >= 180 degrees" is:

"0" between minus and plus cams

"1" outside this range

The following must be specified as the byte address for the digital outputs:

1: for on-board byte

2 - 5: for external bytes

06/2009 Machine Data

General machine data

10473	SW_CAM_ASSIGN_FASTOUT_4			N09	N3	
-	Hardware assignment for output of cams 25-32 to NCK I/Os			DWORD	PowerOn	
-						
-	-	0	-	-	0/0	

Description:

The cam signal status can be output to the NCK I/Os as well as to the PLC $\,$

The hardware assignment of the minus and plus cam signals to the digital output bytes of the NCK I/Os used can be made in this machine data for cam pairs 25-32.

The assigned output signals can also be inverted with this machine data.

The MD is coded as follows:

Bits 0-7: Number of 1st HW byte used with digital outputs Bits 8-15: Number of 2nd HW byte used with digital outputs Bits 16-23: Inversion mask for writing 1st HW byte used Bits 24-31: Inversion mask for writing 2nd HW byte used

Bit=0: Do not invert

Bit=1: Invert

If both HW bytes are specified, the 1st byte contains the minus cam signals and the 2nd byte the plus cam signals.

If the 2nd byte is not specified (= "0"), then the 8 cams are output as an AND operation of the minus and plus cam signals via the 1st HW byte using the 1st inversion mask.

The status of the non-inverted output signal for linear axes and for rotary axes with "plus cam - minus cam < 180 degrees" is:

"1" between minus and plus cams

"0" outside this range

The status of the non-inverted output signal for rotary axes with "plus cam - minus cam >= 180 degrees" is:

"0" between minus and plus cams

"1" outside this range

The following must be specified as the byte address for the digital outputs:

1: for on-board byte

2 - 5: for external bytes

General machine data

10480	SW_CAM_TIMER_FASTOUT_MASK			N09	N3
-	Mask for output	r output of cam signals via timer interr. to NCU		DWORD	PowerOn
-					
802d-cu3	-	0	-	-	2/2
802d-ng2	-	0	-	-	2/2
802d-ng3	-	0	-	-	2/2
802d-tm1	-	0	-	-	0/0
802d-tm2	-	0	-	-	0/0
802d-tm3	-	0	-	-	0/0

Description:

A timer-controlled output to the 4 on-board outputs of the NCK $\rm I/Os$ can be selected in this machine data for 4 cam pairs.

In this case, the minus and plus signals of a cam pair are "EXCLU-SIVE OR'd" for output as one signal.

Meaning for set bit:

Associated cam (minus and plus cam signals "EXCLUSIVE OR'd") is output via a timer interrupt at one of the 4 on-board outputs of the NCU.

The on-board outputs are assigned in order of increasing machine axis numbers (with assigned cam pairs).

Example:

```
Machine axis 3 = cam pair 1 \rightarrow on-board output 3 Machine axis 1 = cam pair 2 \rightarrow on-board output 1 Machine axis 7 = cam pair 3 \rightarrow on-board output 4 Machine axis 2 = cam pair 4 \rightarrow on-board output 2
```

If a plurality of cam pairs are set for one machine axis, then this axis is assigned in ascending order of the cam pairs.

Example:

```
Machine axis 3 = cam pair 1 --> on-board output 2
Machine axis 3 = cam pair 2 --> on-board output 3
Machine axis 7 = cam pair 3 --> on-board output 4
Machine axis 2 = cam pair 4 --> on-board output 1
```

This function works independently of the assignment set in MD10470 \pm MN SW CAM ASSIGN FASTOUT 1 or MD10471

\$MN SW CAM ASSIGN FASTOUT 2.

Note:

The on-board byte must not be used more than once.

If there is more than one signal change in the IPO cycle for the cam pairs specified in the MD, then the cam pair with the lowest number determines the instant of output. The other signals change at the same time.

10485	SW_CAM_MOI	SW_CAM_MODE			N3
-	Behavior of SW	cams		DWORD	PowerOn
-					
802d-cu3	-	0	-	-	2/2
802d-ng2	-	0	-	-	2/2
802d-ng3	-	0	-	-	2/2
802d-tm1	-	0	-	-	0/0
802d-tm2	-	0			0/0
802d-tm3	-	0	-	-	0/0

Description:

Meaning of the individual bits:

Bit 0(LSB) = 0:

If more than 1 signal change per interpolation cycle is due for the cams specified in MD10480 \$MN_SW_CAM_TIMER_FASTOUT_MASK, the cam having the lowest number will determine the output instant. The other signals change at the same instant. That is, a maximum of one interrupt-controlled output is effected per interpolation cycle.

Bit 0(LSB) = 1:

Each cam specified in MD10480 \$MN_SW_CAM_TIMER_FASTOUT_MASK will be output precisely at the time of the interpolation cycle. There is no output priority of the cams. A maximum of 8 interrupt-controlled outputs can be performed per interpolation cycle.

Bit 1 = 0:

Inversion of signal behavior from plus cam, where plus cam - \min cam >= 180 degr.

Bit 1 = 1:

No inversion of signal behavior from plus cam, where plus cam - minus cam >= 180 degr.

Signal behavior on-board output:

Overtravelling:

Minus cam plus cam

Traversing direction:

positive 0->1 1->0 negative 1->0 0->1

Bit 2 = 0:

No path-time cam

Bit 2 = 1:

Path-time cam for cams where minus position = plus position. The lead/delay time applied is independent of:

- velocity of the axis
- position of the axis
- reversal of traversing direction

The cam is only activated on overtravelling of the cam position. A lead/delay time applied to the minus cam is active and leads to a shift of the whole cam.

Bit 3 = 0:

No alignment signal in case of measurement area selection.

Bit 3 = 1:

Output of an alignment signal for measurement area selection $(FM \ only)$. On-board output 8 is used permanently.

General machine data

On-board output 8 = 1: Measurement possible (active range enabled)

On-board output 8 = 0: Measurement not possible

Bit 4 = 0:

and following free

10490	SW_CAM_COMP_NCK_JITTER			N09	-	
S	Cam jitter compensation			DOUBLE	NEW CONF	
-						
-	-	0 0.0 0			0/0	

Description:

The compensation value reduces system-related time inaccuracies during output of highly precise cam signals. The default time encumbers the cyclic time level of the control, and should therefore be selected as short as possible. It is recommended to return a cam signal to a measuring input of the control and to increase the compensation value until the scatter of the measured positions cannot be reduced any further.

Currently only active when MD10485 \$MN_SW_CAM_MODE Bit0 = 0.

10500	DPIO_LOGIC_ADDRESS_IN			N10	A4
-	Logical slot add	ogical slot address of the PROFIBUS/PROFINET I/Os			PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	8191	-1/2

Description:

Logical slot address of the PROFIBUS/PROFINET I/Os usable by the NCK.

10501	DPIO_RANGE_LENGTH_IN			N10	A4
-	Length of the F	ROFIBUS/PROFINET I/	O range	DWORD	PowerOn
-					
-	16	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	128	-1/2

Description:

Length of the PROFIBUS/PROFINET I/O range consistently usable for the NCK. This range must be defined in STEP 7, hardware configuration.

0: only the first data slot is used.

x: length of the consistent PROFIBUS/PROFINET I/O range
 Note: in PROFINET it is not possible to combine several slots
in one area.

10502	DPIO_RANGE_ATTRIBUTE_IN			N10	A4
-	Attributes of the	PROFIBUS/PROFINE	Γ I/Os	DWORD	PowerOn
-					
-		0x01,0x01,0x01,0x01, 0x01,0x01,0x01	0x00	0x0F	-1/2

Description:

Attributes of the PROFIBUS/PROFINET I/Os

Bit 0: Little/Big Endian format of the system variable $A_DPx_IN[n,m]$

0: Little Endian format1: Big Endian format

Bit 1: (reserved)

Bit 2: Read input data

1: Read only possible for CC binding (low performance requirements)

Bit 3: Slot sign-of-life alarm

0: Slot sign-of-life alarms are output

1: Slot sign-of-life alarms are suppressed

10510	DPIO_LOGIC_ADDRESS_OUT			N10	A4			
-	Logical slot add	cal slot address of the PROFIBUS/PROFINET I/Os			PowerOn			
-								
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	8191	-1/2			

Description:

Logical slot address of the PROFIBUS/PROFINET I/Os usable by the NCK.

10511	DPIO_RANGE_LENGTH_OUT			N10	A4
-	Length of the P	Length of the PROFIBUS I/O range			PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	128	-1/2

Description:

Length of the PROFIBUS I/O range consistently usable for the NCK. This range must be defined in STEP 7, hardware configuration.

0: only the first data slot is used.

x: length of the consistent PROFIBUS I/O range

Note: in PROFINET it is not possible to combine several slots in one area.

10512	DPIO_RANGE_ATTRIBUTE_OUT			N10	A4
-	Attributes of the	PROFIBUS/PROFINE	Γ I/Os	DWORD	PowerOn
-					
-		0x01,0x01,0x01,0x01, 0x01,0x01,0x01	0x00	0x0F	-1/2

Description:

Attributes of the PROFIBUS/PROFINET I/Os

Bit 0: Little/Big Endian format of system variable $A \ DPX \ OUT[n,m]$

0: Little Endian format

1: Big Endian format

Bit 1: Write output data

0: Write only through system variable

1: Write only through CC binding

Bit 2: (reserved)

Bit 3: Slot sign-of-life alarm

0: Slot sign-of-life alarms are output

1: Slot sign-of-life alarms are suppressed

General machine data

10530	COMPAR_ASSIGN_ANA_INPUT_1			N10	A4
-	Hardware assign	are assignment of analog inputs for comparator byte			PowerOn
-					
-	1	0,0,0,0,0,0,0,0	-	-	0/0

Description:

This MD assigns analog inputs 1 to 8 to a bit number of comparator byte 1. This input bit of the comparator is set to "1" if the comparison between the applied analog value and the associated threshold value (SD41600 \$SN COMPAR THRESHOLD 1 fulfills the condition parameterized in (MD10540 \$MN_COMPAR_TYPE_1).

An analog input can be assigned to a plurality of comparator input bits.

```
The following generally applies to comparator byte 1:
  COMPAR_ASSIGN_ANA_INPUT_1 [b] = n
  with index: b = number of comparator input bit (0 to 7)
               n = number of analog input (1 to 8)
```

Example:

```
COMPAR ASSIGN ANA INPUT 1[0] = 1
COMPAR_ASSIGN_ANA_INPUT_1[1] = 2
COMPAR ASSIGN ANA INPUT 1[2] = 1
COMPAR ASSIGN ANA INPUT 1[3] = 3
COMPAR ASSIGN ANA INPUT 1[4] = 3
COMPAR ASSIGN ANA INPUT 1[5] = 1
COMPAR ASSIGN ANA INPUT 1[6] = 1
COMPAR ASSIGN ANA INPUT 1[7] = 1
```

Analog input 1 affects input bits 0, 2, 5, 6 and 7 of comparator byte 1

Analog input 2 affects input bit 1 of comparator byte 1 Analog input 3 affects input bits 3 and 4 of comparator byte 1 Related to:

MD10540 \$MN COMPAR TYPE 1 MD10541 \$MN COMPAR TYPE 2

10531	COMPAR_ASSIGN_ANA_INPUT_2			N10	A4
-	Hardware assig 2	Hardware assignment of analog inputs for comparator byte			PowerOn
-					
-	1	0,0,0,0,0,0,0	-	-	0/0

Description:

This MD assigns analog inputs 1 to 8 to a bit number of comparator $\ensuremath{\text{\text{This}}}$ byte 2. This input bit of the comparator is set to "1" if the comparison between the applied analog value and the associated threshold value (SD41601 \$SN_COMPAR_THRESHOLD_2 fulfills the condition parameterized in (MD10541 \$MN_COMPAR_TYPE_2).

An analog input can be assigned to a plurality of comparator input bits.

```
The following generally applies to comparator byte 2:
            COMPAR ASSIGN ANA INPUT 2 [b] = n
            with index:b = number of comparator input bit (0 to 7)
                       n = number of analog input (1 to 8)
```

```
Example:
    COMPAR_ASSIGN_ANA_INPUT_2[0] = 1
    COMPAR_ASSIGN_ANA_INPUT_2[1] = 2
    COMPAR_ASSIGN_ANA_INPUT_2[2] = 1
    COMPAR_ASSIGN_ANA_INPUT_2[3] = 3
    COMPAR_ASSIGN_ANA_INPUT_2[4] = 3
    COMPAR_ASSIGN_ANA_INPUT_2[5] = 1
    COMPAR_ASSIGN_ANA_INPUT_2[6] = 1
    COMPAR_ASSIGN_ANA_INPUT_2[7] = 1
Analog input 1 affects input bits 0, 2 , 5, 6 and 7 of comparator byte 2
Analog input 2 affects input bit 1 of comparator byte 2
Analog input 3 affects input bits 3 and 4 of comparator byte 2
Related to:
    MD10540 $MN_COMPAR_TYPE_1
    MD10541 $MN_COMPAR_TYPE_2
```

10540	COMPAR_TYPE_1		N10	A4				
-	Parameterization for comparator byte 1			DWORD	PowerOn			
-								
-	-	0	-	-	0/0			

Description:

This MD can be used to make the following settings for the individual output bits (0 to 7) of comparator byte 1:

• Bits 0 to 7: Comparison type mask (for comparator output bits 0 to 7)

Bit = 1: output bit = 1 if analog value >= threshold

value

Bit = 0: output bit = 1 if analog value < threshold value
(Threshold value defined by SD41600</pre>

\$SN COMPAR THRESHOLD 1)

- Bits 8 to 15: Not used (defined to be set to 0)
- Bits 16 to 23: Assignment of a HW output byte for outputting

the comparator states (statement of the byte address)

Byte = 0: No output via digital NCK outputs

Byte = 1: Output via digital onboard NCK outputs (1 to

4)

Byte = 2: Output via external digital NCK outputs 9 to

16

Byte = 3: Output via external digital NCK outputs 17 to

24

Byte = 4: Output via external digital NCK outputs 25 to

32

Byte = 5: Output via external digital NCK outputs 33 to

40

• Bits 24 to 31: Inversion mask for the output of the comparator states (bits 0 to 7)

Bit = 0: Output bit is not inverted
Bit = 1: Output bit is inverted

General machine data

```
Related to:

MD10530 $MN_COMPAR_ASSIGN_ANA_INPUT_1

MD10531 $MN_COMPAR_ASSIGN_ANA_INPUT_2

SD41600 $SN_COMPAR_THRESHOLD_1

SD41601 $SN_COMPAR_THRESHOLD_2

MD10360 $MN FASTIO DIG NUM OUTPUTS
```

10541	COMPAR_TYPE_2			N10	A4			
-	Parameterization of comparator byte 2			DWORD	PowerOn			
-								
-	-	0	-	-	0/0			

Description:

This MD can be used to make the following settings for the individual output bits (0 to 7) of comparator byte 2:

- Bits 0 to 7: Comparison type mask (for comparator output bits 0 to 7)
 - Bit = 1: output bit = 1 if analog value >= threshold value Bit = 0: output bit = 1 if analog value < threshold value (Threshold value defined by SD41601 \$SN COMPAR THRESHOLD 2)
- Bits 8 to 15: not used (defined to be set to 0)
- Bits 16 to 23: Assignment of a HW output byte for outputting the comparator states (statement of the byte address)
- Byte = 0: no output via digital NCK outputs
 - Byte = 1: output via digital onboard NCK outputs (1 to 4)
 - Byte = 2: output via external digital NCK outputs 9 to 16
 - Byte = 3: output via external digital NCK outputs 17 to 24
 - Byte = 4: output via external digital NCK outputs 25 to 32
 - Byte = 5: output via external digital NCK outputs 33 to 40
- Bits 24 to 31: Inversion mask for the output of the comparator states (bits 0 to 7)
 - Bit = 0: Output bit is not inverted
 - Bit = 1: Output bit is inverted

Related to:

- MD10530 \$MN COMPAR ASSIGN ANA INPUT 1
- MD10531 \$MN COMPAR ASSIGN ANA INPUT 2
- SD41600 \$SN COMPAR THRESHOLD 1
- SD41601 \$SN COMPAR THRESHOLD 2
- MD10360 \$MN FASTIO DIG NUM OUTPUTS

10600	FRAME_ANGLE_INPUT_MODE			EXP, N01, N09	K2		
-	Sequence of rotation in FRAME			BYTE	PowerOn		
-							
-	-	1	1	2	0/0		

Description:

FRAME_ANGLE_INPUT_MODE sets how the rotations (ROT and AROT) around the three geometry axes are defined if more than one rotation is programmed in a block. The order in which these rotations are programmed within the block is irrelevant.

The rotations can be set to be calculated according to:

- Euler angle with FRAME ANGLE INPUT MODE = 2
 - The rotations are calculated according to the Euler angle in the following order:
 - 1. Rotation around Z
 - 2. Rotation around X
 - 3. Rotation around Y
- RPY with FRAME ANGLE INPUT MODE = 1

The rotations are calculated according to the Euler angle in the following order:

- 1. Rotation around Z
- 2. Rotation around Y
- 3. Rotation around X

10602	FRAME_GEOAX_CHANGE_MODE			EXP, N01, N09	K2		
-	Frames when changing geometry axes			BYTE	PowerOn		
-							
-	-	0	0	5	0/0		

Description:

Geometry axes can be switched over in the following states:

- \bullet $\,\,$ Selection and deselection of transformations
- Switchable geometry axes GEOAX()

The current total frame is then defined as follows:

- 0: The current total frame is canceled.
- 1: The current total frame is recalculated when geometry axes are switched over. Translations, scaling and mirroring for the new geometry axes become active. The rotations of the old geometry axes still apply.
- 2: The current total frame is recalculated when geometry axes are switched over. Translations, scaling and mirroring for the new geometry axes become active. If rotations were active before switching over to the current base frames, current settable frame or programmable frame, switchover is aborted with an alarm.
- 3: The current total frame is deleted when selecting and deselecting transformations. When the GEOAX() command is entered, the frame is recalculated and transaction, scaling and mirroring for the new geometry axes become active. The rotations of the old geometry axes still apply.

10604	WALIM_GEOAX_CHANGE_MODE			EXP, N01, N09	A3
-	Working area limitation by changing geometry axes			BYTE	PowerOn
-					
-	-	0	0	1	0/0

Description:

This machine data specifies whether a potentially active working area limitation will remain active after geo axis replacement, or whether it will be deactivated.

Meaning of the MD values:

- = 0 Working area limitation will be deactivated when replacing $\ensuremath{\mathsf{geo}}$ axis.
- = 1 Working area limitation will remain activated when replacing $geo\ axis.$

10610	MIRROR_REF_AX			EXP, N01, N09	K2
-	Reference axis	rence axis for mirroring			PowerOn
-					
-	-	0	0	3	0/0

Description:

0: Mirroring always takes place in the stated axis, without scaling.

The mirroring of a geometry axis can always be related to a defined

reference axis.

1: x is the reference axis

Mirroring of the x axis is unique.

Mirroring of the y axis is mapped on:

- a mirroring of the x axis and
- a rotation of the z axis through 180 degrees.

Mirroring of the \boldsymbol{z} axis is mapped on:

- a mirroring of the \boldsymbol{x} axis and
- a rotation of the ${\bf x}$ axis through 180 degrees and
- a rotation of the z axis through 180 degrees $\,$
- 2: y is the reference axis

Mirroring of the ${\bf x}$ axis is mapped on:

- a mirroring of the y axis and
- a rotation of the z axis through 180 degrees.

Mirroring of the y axis is unique.

Mirroring of the z axis is mapped on:

- a mirroring of the y axis and
- a rotation of the x axis through 180 degrees
- 3: z is the reference axis

Mirroring of the x axis is mapped on:

- a mirroring of the z axis and
- a rotation of the z axis through 180 degrees and
- a rotation of the x axis through 180 degrees

Mirroring of the y axis is mapped on:

- a mirroring of the \boldsymbol{z} axis and
- a rotation of the x axis through 180 degrees.

Mirroring of the z axis is unique.

06/2009 Machine Data

General machine data

10612	MIRROR_TOGGLE			EXP, N01, N09	K2		
-	Mirror toggle			BYTE	PowerOn		
-							
-	-	1	0	1	0/0		

Description:

Mirror toggle function.

- 1: Programmed axis values are not evaluated. Toggle switching behavior.
- 0: Programmed axis values are evaluated.

The axes are mirrored in the case of values not equal to 0 if they are not already mirrored. Mirroring is disabled if the value is 0.

10613	NCBFRAME_RESET_MASK			EXP	K2		
-	Active NCU glo	ctive NCU global base frames after reset			Reset		
-		<u> </u>					
-	-	0xFFFF	0	0xFFFF	0/0		

Description:

Bit mask for the reset setting of the NCU global base frames which are included in the channel.

The following applies:

When MD20110 \$MC RESET MODE MASK bit0 = 1 and bit14 = 1

The entire base frame is derived on reset from the linking of the NCU global base frame field elements whose bit in the bit mask is 1.

When MD20110 \$MC_RESET_MODE_MASK bit0 = 1 and bit14 = 0 The entire base frame is deselected on reset.

10615	NCBFRAME_POWERON_MASK			EXP, N12	K2		
-	Reset global ba	Reset global base frames after power on			PowerOn		
-							
-	-	0	0	0xFFFF	0/0		

Description:

This machine data defines whether global base frames are reset in the data management on Power On.

That is

- Offsets are set to 0,
- Scalings are set to 1.
- · Mirroring is disabled.

The individual base frames can be selected separately.

Bit 0 means base frame 0, bit 1 base frame 1 etc.

Value=0: Base frame is retained on Power On

Value=1: Base frame is reset in the data management on Power On. Related to:

MD24004 \$MC CHBFRAME POWERON MASK

General machine data

10617	FRAME_SAVE_MASK			EXP	K2		
-	Behavior of frames in SAVE subroutines			DWORD	PowerOn		
-							
-	-	0	0	0x3	0/0		

Description:

This machine data is used to define which frames are restored with SAVE attribute at return from a subprogram.

Bit 0: Settable frames G54 through G599

Value = 0:

If the same G code is active at subprogram return and subprogram call, the active settable frame is maintained. If not, the settable frame is reactivated when the subprogram is called.

Value = 1:

At subprogram return, the settable frame is reactivated when the subprogram is called.

Bit 1: Basic frame

Value = 0:

The active basic frame is not changed at subprogram return. This is also the case, if a basic frame change is carried out in the subprogram by an operation or by an implicit frame deselection (possibly through TRAFOOF).

Value = 1:

At subprogram return, the basic frame is reactivated when the subprogram is called.

10618	PROTAF	PROTAREA_GEOAX_CHANGE_MODE			A3
-	Protection	on range on change o	of geometry axes	BYTE	PowerOn
-				<u>.</u>	
802d-cu3	-	0	0	3	1/1
802d-ng2	-	0	0	3	1/1
802d-ng3	-	0	0	3	1/1
802d-tm1	-	0	0	3	-1/2
802d-tm2	-	0	0		-1/2
802d-tm3	-	0	0	3	-1/2

Description:

This machine data is used to define whether any active protection zones will remain active after a transformation change or geo axis replacement, or whether they will be deactivated.

The machine data is bit-coded with the following meanings:

Bit 0 = 0

Protection zones deactivated on transformation change.

Bit 0 = 1

Active protection zones remain active after transformation change.

Bit 1 = 0

Protection zones deactivated on geo axis replacement.

Bit 1 = 1

Active protection zones remain active after geo axis replacement. $\ensuremath{\mathsf{E}}$

10650	IPO_PARAM_NAME_TAB			EXP, N01	K2		
-	Name of interpolation parameters			STRING	PowerOn		
-							
-	3	I,J,K	-	-	0/0		

Description:

List of identifiers for the interpolation parameters The rules for axis identifiers described in MD20080

\$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers. The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

Related to:

MD10660 \$MN INTERMEDIATE POINT NAME TAB

References:

/PA/, Programming Guide: Fundamentals

10652	CONTOUR_DEF_ANGLE_NAME			EXP, N01, N12	FBFA			
-	Name of angle	ne of angle for contour definitions			PowerOn			
-								
-	-	ANG	-	-	0/0			

Description:

Identifier for contour angle

The identifier must be selected so that no conflict arises with other identifiers (e.g. axes, Euler angles, normal vectors, direction vectors, interpolation point coordinates).

10654	RADIUS_NAME			EXP, N01, N12	FBFA		
-	Name of radius for contour definitions			STRING	PowerOn		
-							
-	-	RND	-	-	0/0		

Description:

Identifier for contour radius

The identifier must be selected so that no conflict arises with other identifiers (e.g. axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

10656	CHAMFER_NAME			EXP, N01, N12	FBFA			
-	Name of chamfer for contour definitions			STRING	PowerOn			
-		·						
-	-	CHR	-	-	0/0			

Description:

Identifier for contour chamfer

The identifier must be selected so that no conflict arises with other identifiers (e.g. axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

10660	INTERMEDIATE_POINT_NAME_TAB			EXP, N01	K2
-	Name of interpolation point coordinates for G2/G3			STRING	PowerOn
-					
-	3	I1,J1,K1	-	-	0/0

Description:

List of identifiers for the intermediate point coordinates

The rules for axis identifiers described in MD20080

\$MC_AXCONF_CHANAX_NAME_TAB apply to the selection of identifiers.

The identifiers must be selected so that they do not cause any conflicts with other identifiers (axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

Related to:

MD10650 \$MN IPO PARAM NAME TAB

References:

/PG/, Programming Guide: Fundamentals

10670	STAT_NAME			N01, N09	F2
-	Name of state information			STRING	PowerOn
-					
-	-	STAT			0/0

Description:

Identifier for position information for solving ambiguities in Cartesian PTP travel.

An identifier must be chosen that does not conflict with other identifiers (e.g. axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

10672	TU_NAME			N01, N09	F2			
-	Name of state information of axes			STRING	PowerOn			
-		·						
-	-	TU			0/0			

Description:

Identifier for position information of axes for solving ambiguities in

Cartesian PTP travel.

An identifier must be chosen that does not conflict with other identifiers (e.g. axes, Euler angles, normal vectors, direction vectors, intermediate point coordinates).

10680	MIN_CONTOUR_SAMPLING_TIME			N01, EXP	-			
s	Minimum contour sampling time			DOUBLE	Reset			
-								
-	-	0.008			0/0			

Description:

Min. possible contour sampling time in seconds. This MD is used to limit the value that can be entered with MD10682 \$MN_CONTOUR_SAMPLING_FACTOR, independently of the current interpolation cycle of the control.

10682	CONTOUR_SAMPLING_FACTOR			N01, EXP	-			
-	Contour sampling factor			DOUBLE	Reset			
-		<u> </u>						
-	-	1.0 -			1/1			

Description:

This factor defines the maximum time interval at which a curved contour is sampled in the interpolator.

The maximum sampling time results from the set interpolation cycle (see MD10071 \$MN_IPO_CYCLE_TIME) and the factor set with this data and the tolerance set for the geometry axes in MD33100 $MA_COMPRESS_POS_TOL[]$.

The minimum sampling time cannot be shorter than the time set in MD10680 $MN_MIN_CONTOUR_SAMPLING_TIME.$

10700	PREPROCESSING_LEVEL			N01, N02	V2,K1			
-	Program preprocessing level			BYTE	PowerOn			
-								
-	-	0x01			1/1			

Description:

Bit 0= 0:

No preprocessing

Bit 0= 1:

The call description of the cycles is formed during control power on. All the programs in the directories N_{CUS} DIR, N_{CMA} DIR and N_{CST} DIR can be called in the part program without EXTERNAL declaration. If the parameter interface of a cycle is changed in the control, then this change does not become active until after Power On.

Bit 1=1:

During control power on, all cycles in the directories $_N_CUS_DIR$, $_N_CMA_DIR$ and $_N_CST_DIR$ are preprocessed to form a process-optimizing compilation. These cycles are then processed more quickly. Changes to the cycle programs do not become active until after the next Power On.

Bit 2=1:

During control power on, the Siemens cycles in the directory $_N_CST_DIR$ are preprocessed to form a process-optimizing compilation (from SW 3.5).

Bit 3=1:

During control power on, the user cycles in the directory $_N_CUS_DIR$ are preprocessed to form a process-optimizing compilation (from SW 3.5).

Bit 4=1:

Preprocessing the user cycles in the directory N_CMA_DIR Bit 5=1:

All files marked with PREPRO in the PROG statement line are preprocessed (from SW 6.4)

Bit 5=0:

During control power on, all cycles in the directories activated by bits 1 to 4 are preprocessed. This also applies to programs that are not marked with PREPRO.

General machine data

Bit 6=1:

The compilation is stored in SRAM if there is inadequate space in DRAM (from SW 7.1).

Memory space is required for preprocessing cycles. Better utilization of memory can be achieved by selective setting of the preprocessing:

The runtime-critical cycles are brought together in one directory. The remaining cycles are in the other directory.

References:

/PG/, "Programming Guide Fundamentals" (EXTERNAL declaration)

10702	IGNORE_SINGLEBLOCK_MASK			N01	K1,Z1
-	Prevents stopping at specific blocks in single block mode			DWORD	PowerOn
-					
-	-	0	0	0xFFFF	1/1

Description:

This machine data prevents stopping at certain blocks with single block.

Single block stop can be prevented with the following bits of the mask:

Bit0 = 1

Means that there is no stop in any internal ASUB block. Exception: the single block stop has been explicitly activated by the SBLON command.

There are three different internal ASUBs that are triggered by different events.

- Repos: In the case of the events: change of operating mode to a manual mode (JOG, JOGREF,...) unless MODESWITCH_MASK is not set, switch skip block on and off, activate machine data, switch-on overstore, axis replacement, subroutine level abort, switch-on single block, switch dry run feedrate on and off, alarm with compensation block.
- Return: Delete distance-to-go, switchover after TEACH-IN, or deselection of MDI with corresponding MODESWITCH_MASK.
- _N_PROG_EVENT_SPF: Parameterizing MD 20108
 \$MC_PROG_EVENT_MASK parameterizes the events whereby
 _N_PROG_EVENT_SPF is executed.

Bit1 = 1

Means that there is no stop in any user ASUB block. Exception: The single block stop has been explicitly activated via the SBLON command.

User ASUBs are linked to an interrupt channel by the part program command SETINT or via the PI- $N_ASUP_$. The interrupt channel is then activated via PLC or the high-speed inputs, and the user ASUBs are retracted.

Bit2 = 1

Means that there is no stop in any intermediate block. Intermediate blocks are generated at, among other events, tool change, ADIS and complicated geometry.

Bit3 = 1

Means that there is no stop in the block search pickup block. The block search pickup block is the 1st block that is loaded into the main run at the start after the search target has been found in the program.

Bit4 = 1

Means that there is no stop in the INIT blocks. INIT blocks are generated from reset immediately after a part program start.

Bit.5 = 1

Means that there is no stop in any subprogram block with the parameter DISPLOF.

Bit6 = 1

Means that there is no stop in any block in which the NCK cannot reorganize.

Reorganize is an internal procedure that is needed for mode change after JOG/JOGREF..., switch skip block on and off, activate machine data, axis replacement, switch on overstore, switch on single block, switch dry run feedrate on and off, subroutine level abort, user ASUBs delete distance-to-go, switchover after TEACH-IN. Reorganize is never needed in Reset state. Example blocks in which reorganize is impossible:

- Tool change
- 1st block after the Repos procedure
- Block after an ASUB from JOG/aborted

Bit7 = 1

Means that there cannot be a stop in any block in which repositioning is impossible.

Reposition is an internal procedure that is needed for mode change after JOG/JOGREF..., switch skip block on and off, activate machine data, axis replacement, switch on overstore, switch on single block, switch dry run feedrate on and off, subroutine level abort, and possibly user ASUBs. Reposition is never needed in Reset state.

Example blocks in which reposition is impossible:

- G33 + blocks in which reorganize is impossible.

Bit8 = 1

Means that there is no stop in a residual block that does not contain traversing information.

Bit9 = 1

Means that there is no stop in a run in/main run synchronization block (e.g.STOPRE, \$Variable) that is repeated because of an interruption with Reorg (e.g. mode change).

Bit10= 1

Means that there is no stop in a "tool selection block". "Tool selection block" only occurs with tool management (magazine management or TMMG) active. This block gives the corresponding tool change command to the PLC.

This block is generally generated by T programming from the part program.

Example block "N1010 T="Drill" M6 D1"

Depending on machine data, the "tool selection block" can be held in the interpolator until the PLC has acknowledged the corresponding tool change (see MD20310 MC TOOL MANAGEMENT MASK).

General machine data

However the program status remains in "run".

Bit11= 1

The control has to automatically generate implicit GET blocks for the axis replacement function (axis replacement: 2 or more channels control one axis alternately) if no explicit GET(D) has been programmed and the following block wants to traverse the axis. (The other channel had previously used this axis). An explicitly programmed GET may appear as follows "getd(x1,y1,z1) or get(x1,y1,z1)".

There is no stop at explicit or implicit GET blocks in the single block with this bit 11.

Bit12= 1

There is no stop in the single block type 2 in the SBLON block. Bit13= $1\,$

If an axis is pulled out in the middle of a block and possibly assigned to another channel, then there is no stop at the PRE-MATURE end of this block. This block follows a REPOSA in order to traverse it to the end, there is no stop until this end has been reached.

Bit14=1

In a part program line, in which a substitution subroutine is called due to NC language replacement, only one stop is performed under the condition that the subroutine includes PROC attribute SBLOF. It is irrelevant whether the subroutine is called at block start and/or end or whether it is exited with M17 or RET.

Bit15=1

Means that there is no stop in any user ASUB block. Exception: The single block stop has been explicitly activated via the SBLON command.

There are three different internal ASUBs that are triggered by different events.

- Repos: In the case of the events: change of operating mode to a manual mode (JOG, JOGREF,...) unless MODESWITCH_MASK is not set, switch skip block on and off, activate machine data, switch-on overstore, axis replacement, subroutine level abort, switch-on single block, switch dry run feedrate on and off, alarm with compensation block.
- Return: Delete distance-to-go, switchover after TEACH-IN, or deselection of MDI with corresponding MODESWITCH MASK.

Related to:

MD20117 \$MC_IGNORE_SINGLEBLOCK_ASUP

10704	DRYRUN_MASK			N01	V1			
-	Dry run feedrate activation			BYTE	PowerOn			
-								
-	-	0 0 2			1/1			

Description:

DRYRUN_MASK == 0

Dryrun can only be switched on or off at the end of the block. When DRYRUN_MASK = 1 is set, the dry run feedrate can also be activated during program execution (in the part program block). NOTICE!

After activating dry run feedrate, the axes are stopped for the duration of the reorganization process.

DRYRUN MASK == 2

Dryrun can be switched on or off in every phase and the axes are not stopped.

NOTICE:

However, the function does not become active until a "later" block in the program execution and this is with the next (implicit) StopRe block.

Related to:

SD42100 \$SC DRY RUN FEED

10706	SLASH_MASK			N01	PG,A2			
-	Activation of block skip			BYTE	PowerOn			
-								
-	-	0 0			1/1			

Description:

If ${\rm SLASH_MASK} = 0$, skip block can only be activated when stopped at the end of the block

If $SLASH_MASK = 1$, skip block can also be activated during program execution.

NOTICE!

After activating skip block, the axes are stopped for the duration of the reorganization process.

If $SLASH_MASK = 2$, skip block can be activated in every phase. Notice!

However, the function does not become active until a "later" block in the program execution, and this is with the next (implicit) StopRe block.

10707	PROG_TEST_MASK			N01	K1			
-	Program test mode			DWORD	PowerOn			
-								
-	-	1	0	1	1/1			

Description:

Bit-coded mask for program test

Bit 0 == 1 Program test cannot be deselected in 'Stopped' program status.

Bits 1..31 Still unused.

General machine data

10708	SERUPRO_MASK			N01	K1			
-	Seach run modes			DWORD	PowerOn			
-		·						
-	-	0 0			1/1			

Description:

Bit-coded mask for block search via program test (abbr. SERUPRO). SERUPRO block search is activated by the PI service $_{\rm N_FINDBL}$ mode paramter == 5.

SERUPRO means SEarchRUn by PROgram test, that is proceed under program test from start of program to search target. Note: Program test does not move any axis.

Bit 0 == 0

There is a stop at MO during the search phase

Bit 0 == 1

There is no stop at MO during the search phase

Bit 1 == 0

Alarm 16942 aborts the search phase upon the part programm command START.

Bit 1 == 1

Alarm 16942 is switched off.

NOTICE:

A start program command may really start the other channel!

Bit 2 == 0

Switches the function "Group Serupro" off

Bit 2 == 1

Switches the function "Group Serupro" on.

"Group-Serupro" enables a search routine in which the start part program command is changed into a search routine for the other channel.

Bit 3 == 0

Compels all channels that have started Serupro to end Serupro simultaneously unless they are aborted via Reset or the channel reaches M30 without finding the search taget. In other words, all channels that find the search target (including self-acting Serupro) terminate SERUPRO simultaneously.

Bit 3 == 1

Switches this function off

Bits 4 .. 31

Still unused.

10709	PROG_SD_POWERON_INIT_TAB			EXP, N01	K1
-	Setting data to	be initialized		DWORD	PowerOn
-					
802d-cu3	30	43200,43202	-	-	2/2
802d-ng2	30	43200,43202	-	-	2/2
802d-ng3	30	43200,43202	-	-	2/2
802d-tm1	30	43200,43202	-	-	1/1
802d-tm2	30	43200,43202	-	-	2/2
802d-tm3	30	43200,43202	-	-	2/2

Description:

Setting data to be initialized:

Programmable setting data are:

		(GCODE)
SD42000	\$SC_THREAD_START_ANGLE	SF
SD42010	\$SC_THREAD_RAMP_DISP	DITS/DITE
SD42400	\$SC_PUNCH_DWELLTIME	PDELAYON
SD42800	\$SC_SPIND_ASSIGN_TAB	SETMS
SD43200	\$SA_SPIND_S	S wih
G94,G95,	G97,G971,G972	
SD43202	\$SA_SPIND_CONSTCUT_S	with G96, G961, G962
SD43210	\$SA_SPIND_MIN_VELO_G25	G25 S
SD43220	\$SA_SPIND_MAX_VELO_G26	G26 S
SD43230	\$SA_SPIND_MAX_VELO_LIMS	LIMS
SD43300	\$SA_ASSIGN_FEED_PER_REV_SOURCE	FPRAON
SD43420	\$SA_WORKAREA_LIMIT_PLUS	G26
SD43430	\$SA_WORKAREA_LIMIT_MINUS	G25
SD43700	\$SA_OSCILL_REVERSE_POS1	OSP1
SD43710	\$SA_OSCILL_REVERSE_POS2	OSP2
SD43720	\$SA_OSCILL_DWELL_TIME1	OST1
SD43730	\$SA_OSCILL_DWELL_TIME2	OST2
SD43740	\$SA_OSCILL_VELO	FA
SD43750	\$SA_OSCILL_NUM_SPARK_CYCLES	OSNSC
SD43760	\$SA_OSCILL_END_POS	OSE
SD43770	\$SA_OSCILL_CTRL_MASK	OSCTRL
SD43780	\$SA OSCILL IS ACTIVE	OS

10710	PROG_S	D_RESET_SAVE_TAB	EXP, N01	A3, V1
-	Setting d	ata to be updated	DWORD	PowerOn
-				
802d-cu3	30	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-ng2	30	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-ng3	30	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-tm1	30	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	1/1
802d-tm2	30	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-tm3	30	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2

Description:

Setting data to be backed up

The values of the SDs listed in this table are stored in non-volatile memory, i.e. they remain valid after power ON. The setting data whose HMI numbers were entered in the backup list are written into the (buffered) active file system after the description of the part program on reset.

Programmable setting data are:

	_	•		
			(GC	ODE)
SD	42000	\$SC_THREAD_START_ANGLE		SF
SD	42010:	\$SC_THREAD_RAMP_DISP	1	DITS/DITE
SD	42400	\$SC_PUNCH_DWELLTIME		PDELAYON
SD	42800	\$SC_SPIND_ASSIGN_TAB		SETMS
SD	43200:	\$SA_SPIND_S		S with
G94	1,G95,G97	7,G971,G972		
SD	43202:	\$SA_SPIND_CONSTCUT_S	:	S with
G96	5,G961,G9	962		
SD	43210	\$SA_SPIND_MIN_VELO_G25	(G25S
SD	43220	\$SA_SPIND_MAX_VELO_G26	(G26 S
SD	43230	\$SA_SPIND_MAX_VELO_LIMS		LIMS
SD	43300	\$SA_ASSIGN_FEED_PER_REV_SOURCE		FPRAON
SD	43420	\$SA_WORKAREA_LIMIT_PLUS	(G26
SD	43430	\$SA_WORKAREA_LIMIT_MINUS	(G25
SD	43700	\$SA_OSCILL_REVERSE_POS1	(OSP1
SD	43710	\$SA_OSCILL_REVERSE_POS2	(OSP2
SD	43720	\$SA_OSCILL_DWELL_TIME1	(OST1
SD	43730	\$SA_OSCILL_DWELL_TIME2	(OST2
SD	43740	\$SA_OSCILL_VELO		FA
SD	43750	\$SA_OSCILL_NUM_SPARK_CYCLES	(OSNSC
SD	43760	\$SA_OSCILL_END_POS	(OSE
SD	43770	\$SA_OSCILL_CTRL_MASK	(OSCTRL
SD	43780	\$SA_OSCILL_IS_ACTIVE	(OS

The values of D43420 $SA_WORKAREA_LIMIT_PLUS$ (working area limitation plus) and SD43430 $SA_WORKAREA_LIMIT_MINUS$ (working area limitation plus)

itation minus) are to be stored in the buffered RAM after every RESET, M02, M30 or M17.

- --> PROG SD RESET SAVE TAB[0] = 43420
- --> PROG SD RESET SAVE TAB[1] = 43430

See also: 'REDEF: change attributes of NC language elements', setting data/PRLOC

10711	NC_LAN	NC_LANGUAGE_CONFIGURATION			K1
-	NC langu	uage commands of i	nactive options / functions	DWORD	PowerOn
-					
802d-cu3	-	0	0	4	0/0
802d-ng2	-	1	0	4	0/0
802d-ng3	-	1	0	4	0/0
802d-tm1	-	2	0	4	0/0
802d-tm2	-	1	0	4	0/0
802d-tm3	-	1	0	4	0/0

Description:

Manner of handling language commands whose associated option or function has not been activated.

All programmable commands in an NC program or cycle program are language commands. Detailed information is available in the description of the language command STRINGIS.

ValueMeaning

0: All language commands are known - especially those whose function has not been activated. That means that all language commands are programmable. Whether the required function is active is not detected until execution. If not, then a specific alarm is generated.

Option approved / not approved (for functions without options "Option approved" applies implicitly):

1: All language commands are known. Language commands with options that have not been approved, are recognized at the beginning of the program interpretation and rejected with alarm 12553

Example:

"Option/function inactive".

If the option data for cylinder transformation has not been set, programming of TRACYL will be rejected with alarm 12553.

2: Only those language commands are known that correspond to the current scope of approved NCK software options. This means that options that are not approved are rejected with 12550 "Name not defined or option/function not available". In this case it is not possible to decide whether the relevant command is not known in Siemens NC language in general or whether it is simply not available on this system.

General machine data

Example:

If the option data for cylinder transformation has not been set, programming of TRACYL will be rejected with alarm 12550.

Function active/inactive:

3: All language commands are known. Language commands with inactive functions are recognized at the beginning of the program interpretation and rejected with alarm 12553 "Option/function inactive".

Example:

If the option data for cylinder transformation has been set, but transformation has not been activated with MD24100 $MC_{TRAFO_{TYPE_1}$, programming of TRACYL will be rejected with alarm 12553.

4: Only those language commands are known that correspond to the current scope of active NCK software functions. This means that any command regarding inactive functions are rejected with alarm 12550 "Name not defined or option/function not available". In this case it cannot be decided whether the relevant command is not known in the Siemens NC language in general or whether it is simply not available on this system.

Example:

If the option data for cylinder transformation has been set, but transformation has not been activated with MD24100 $MC_{TRAFO_{TYPE_{1}}$, programming of TRACYL will be rejected with alarm 12550.

Example:

See description for the STRINGIS language command.

10712	NC_USER_CODE_CONF_NAME_TAB			EXP, N01, N12	TE1,B1		
-	List of reconfigu	List of reconfigured NC codes			PowerOn		
-		•					
-		G58,G59,G505,G58,G 506	-	-	0/0		

Description:

List of identifiers of the NC codes reconfigured by the user.

The list is to be structured as follows:

Even address: Identifier to be changed

Subsequent odd address: New identifier

The following three types of NC codes can reconfigured:
1. G codes e.g.: G02, G64, ASPLINE...

NC addresses
 e.g.: RND, CHF, ...
 Pre-defined subprograms e.g.: CONTPRON, ...

10713	M_NO_FCT_STOPRE			EXP, N12, N07	H2
-	M function with	M function with preprocessing stop			PowerOn
-					
-	15	-1,-1,-1,-1,-1,-1,-1,- 1,-1,-1,-1,-1	-	-	2/2

Description:

The M functions defined by MD10713 $MN_M_NO_FCT_STOPRE$ perform an implicit preprocessing stop.

(PLC acknowledgement, motion, etc.).

10714	M_NO_FCT_EOP			EXP, N07	K1,H2		
-	M function for spindle active after reset			DWORD	PowerOn		
-							
-	-	-1	-	-	2/2		

Description:

For spindles where a '2' is configured in MD35040 $MA_SPIND_ACTIVE_AFTER_RESET,$ no spindle reset is enabled with this M function when the part program is terminated. The spindle therefore remains active after the end of the part program.

Proposal: M32

Restrictions: see MD10715 \$MN_M_NO_FCT_CYCLE

Related to:

MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET

MD10714 \$MN M NO FCT EOP,

MD10715 \$MN M NO FCT CYCLE,

MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,

MD22254 \$MC_AUXFU_ASSOC_MO_VALUE

For external language mode:

MD10814 \$MN EXTERN M NO MAC CYCLE,

MD10804 \$MN_EXTERN_M_NO_SET_INT

MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,

MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,

MD10802 \$MN EXTERN CHAN SYNC M NO MAX

MD20095 \$MC_EXTERN_RIGID_TAPPING_M_NR

For nibbling:

MD26008 \$MC NIBBLE PUNCH CODE

10715	M_NO_FCT_CYCLE			EXP, N12, N07	H2,K1
-	M function to be replaced by a subroutine			DWORD	PowerOn
-					
-	10	-1,-1,-1,-1,-1,-1,-1,- 1,-1	-	-	2/2

Description:

M number with which a subprogram is called.

The name of the subprogram is stated in MD10716

 $MN_M_NO_FCT_CYCLE_NAME[n].$ If the M function defined with MD10715 $MN_M_NO_FCT_CYCLE[n]$ is programmed in a part program block, the subprogram defined in MD10716 $MNM_NO_FCT_CYCLE_NAME[n]$ is started at the end of the block. If the M function is programmed again in the subprogram, there is no longer substitution by a subprogram call. MD10715 $MN_M_NO_FCT_CYCLE[n]$ acts both in Siemens mode G290 and in external language mode G291.

The subprograms configured with MD10716 MN_MN_D FCT_CYCLE_NAME[n] and MD10717 MN_TN_D FCT_CYCLE_NAME must not be active simultaneously in one block (line of a part program). This means that no more than one M/T function replacement can be active in any one block. Neither an M98 nor a modal subprogram call can be programmed in a block with the M function replacement.

Subprogram return and end of part program are also not permitted. Alarm 14016 is output in the event of a conflict.

Restrictions:

M functions with a fixed meaning and configurable M functions are checked for conflicting settings. A conflict is reported with an alarm.

The following M functions are checked:

- M0 to M5,
- M17, M30,
- M19,
- M40 to M45,
- M function for spindle/axis mode switchover according to MD20094 \$MC SPIND RIGID TAPPING M NR (default: M70),
- M functions for nibbling/punching as configured in MD26008 \$MC_NIBBLE_PUNCH_CODE if activated by MD26012 \$MC_PUNCHNIB_ACTIVATION.
- M19, M96-M99 for applied external language (MD18800 \$MN MM EXTERN LANGUAGE).

Exception: The M function for the tool change defined by MD22560 $\mbox{\rm SMC}$ TOOL CHANGE M CODE.

Machine Data

10716	M_NO_FCT_CYCLE_NAME			EXP, N12, N07	K1		
-	Subroutine name for M function replacement			STRING	PowerOn		
-		·					
-	10		-	-	2/2		

Description:

The machine data contains the name of the cycle. This cycle is called if the M function has been programmed from MD10715 \$MN M NO FCT CYCLE.

If the M function is programmed in a motion block, the cycle is executed after the motion.

 ${\tt MD10715}~{\tt SMN}~{\tt M}~{\tt NO}~{\tt FCT}~{\tt CYCLE}$ is active in both Siemens mode G290 and in external language mode G291.

If a T number is programmed in the call block, then the programmed T number can be polled in the cycle under the variable \$P TOOL. M and T function replacements must not be programmed simulta-

neously in one block. This means that not more than one M or T function replacement may be active in any one block.

Neither an M98 nor a modal subprogram call may be programmed in a block with M function replacement.

Moreover, neither subprogram return nor part program end are allowed.

Alarm 14016 is issued if there is a conflict.

Related to:

MD10715 \$MN M NO FCT CYCLE, MD10717 \$MN_T_NO_FCT_CYCLE_NAME

10717	T_NO_FCT_CYCLE_NAME			EXP, N12, N07	K1
-	Name of tool-changing cycle for T function replacement			STRING	PowerOn
-					
-	-		-	-	2/2

Description:

Cycle name for tool change routine on call-up with a T function. If a T function is programmed in a part program block, the subprogram defined in $T_NO_FCT_CYCLE_NAME$ is called at the end of the block.

The T number programmed can be polled in the cycle via system variables CT / CTPROG as a decimal value and via CTS / CT C_TS_PROG as a string (only with tool management). MD10717 $\mbox{\it SMN}$ T NO FCT CYCLE NAME is active both in Siemens mode G290 and in external language mode G291.

MD10716 \$MN M NO_FCT_CYCLE_NAME and MD10717

\$MN T NO FCT CYCLE NAME must not be active in one block at the same time, i.e. no more than one M/T function replacement can be active per block. Neither an M98 nor a modal subprogram call can be programmed in a block with a T function replacement. Furthermore, neither subprogram return nor part program end are allowed.

Alarm 14016 is output in the event of a conflict.

Related to:

MD10715 \$MN M NO FCT CYCLE, MD10716 \$MN M NO FCT CYCLE NAME

10718	M_NO_FCT_CYCLE_PAR			EXP, N12, N07	K1		
-	M function replacement with parameters			DWORD	PowerOn		
-							
-	-	-1	-	-	2/2		

Description:

If an M function replacement was configured with MD10715 $MN_M NO_FCT_CYCLE[n] / MD10716 MN_M NO_FCT_CYCLE_NAME[n], a parameter transfer via system variable can be specified for one of these M functions using MD10718 <math>MN_M NO_FCT_CYCLE_PAR$, in the same way as T function replacement. The parameters stored in the system variables always refer to the part program line where the M function to be replaced was programmed.

The following system variables are available:

 C_ME : Address extension of the replaced M function

 C_T_PROG : TRUE if address T was programmed C_T : Value of address T (Integer) C_T : Address extension of address T C_T : TRUE if address TS was programmed

\$C TS : Value of address TS (string, only with tool management

)

\$C D PROG : TRUE if address D was programmed

\$C_D : Value of address D

\$C DL PROG : TRUE if address DL was programmed

\$C DL : Value of address DL

10719	T_NO_FCT_CYCLE_MODE			EXP, N12, N07	K1
-	Setting of T function substitution			DWORD	PowerOn
-					
-	-	0	0	7	2/2

Description:

This machine data parameterizes the execution of the replacement subprogram for the tool and tool offset selection.

Bit 0 = 0:

 $\ensuremath{\text{D}}$ or $\ensuremath{\text{DL}}$ number is transferred to the replacement subprogram (default value)

Bit 0 = 1:

The D or DL number is not transferred to the replacement subprogram if the following conditions are fulfilled: $MC_TOOL_CHANGE_MODE = 1$ Programming D/DL with T or M function with which the tool change cycle is called, in a part program line.

Bit 1 = 0

Execution of the replacement subprogram at end of block (default value)

Bit 1 = 1

Execution of the replacement subprogram at block start

Bit 2 = 0:

Execution of the replacement subprogram according to the settin of bit $\boldsymbol{1}$

Bit 2 = 1:

Execution of the replacement subprogram at block start and at end of block.

10720	OPERATING_	MODE_DEFAULT	N01	H2	
-	Setting of mode	setting of mode after power ON			PowerOn
-					
-	1	7,7,7,7,7,7,7,7,7	0	12	1/1

Description:

Default modes of the mode groups after power ON.

If no mode is selected by the PLC, all the channels associated with mode group n are in the mode preset by OPERATING MODE DEFAULT[n -1] after power ON:

- 0 = Automatic mode
- 1 = Automatic mode, submode REPOS
- $2 = MDI \mod e$
- 3 = MDI mode, submode REPOS
- 4 = MDI mode, submode Teach In
- 5 = MDI mode, submode Reference point approach
- 6 = JOG mode
- 7 = JOG mode, submode Reference point approach
- 8 = AUTO mode, submode Teach In
- 9 = AUTO mode, submode Teach In, submode Reference point approach
- 10 = AUTO mode, submode Teach In, submode Repos
- 11 = MDI mode, submode Teach In, submode Reference point approach
- 12 = MDI mode, submode Teach In, submode Repos

10722	AXCHANGE_MASK			EXP, N01	K5
-	Paramameters	Paramameters for axis replacement behavior			PowerOn
-					
-	-	0x08	0	0xFFFF	0/0

Description:

The axis replacement behavior can be changed with this machine data.

Bit0 = 1

Means that there is an automatic axis replacement via channels even if the axis has been brought into a neutral state by Waitp.

Bit1 = 1

Means that an AXCTSWE fetches all the axis container axes that can be assigned to the channel by means of implicit GET or GETD, and an axis replacement is not permitted again until after the axis container rotation.

Bit2 = 1

Means that, in the case of a GET, an intermediate block without preprocessing stop is generated, and whether a reorganization is needed is not checked until main run.

 $\mbox{\sc Bit3}$ = 1 means, that the NC carries out an axis replacement request for the VDI interface only for:

- an axis exclusively controlled by the PLC (\$MA_BASE_FUNCTION_MASK Bit 4 == 1)

General machine data

- a permanently assigned PLC axis (\$MA_BASE_FUNCTION_MASK
Bit 5 == 1)

For such axes, the VDI interface signal 'Axis replacement possible' is always 1.

For all other axes, the VDI interface signal 'Axis replacement possible' is always 0.

For permanently assigned PLC axes, an axis replacement is possible only from neutral axis to PLC axis

or from PLC axis to neutral axis.

 ${\tt Bit3} = 0$ means that an axis replacement can be requested by the PLC for each axis.

For permanently assigned PLC axes, an axis replacement is only possible from neutral axis to PLC axis ${\ }^{\circ}$

or from PLC axis to neutral axis.

10731	JOG_MODE_KEYS_EDGETRIGGRD			EXP, N01	IAF
-	Functioning of the JOG keys E			BOOLEAN	PowerOn
-					
-	-	TRUE	-	-	0/0

Description:

This data determines whether the signals of the VDI interface, which set the JOG mode (progressive INC10000, ... INC1), work as switches (level triggered) or as push buttons (edge triggered). In the latter case, a setting is made in the NCK to retain the function of the key last pressed.

10735	JOG_MODE_MASK			EXP, N01	K1
-	Settings for JOG mode			DWORD	PowerOn
-					
-	-	0	0	0xff	2/2

Description:

Bit 0:

Enables JOG in automatic.

JOG is enabled in automatic when all channels in the mode group are in the RESET state and no channel of the DRF mode group has been selected. The mode group changes internally to JOG with the +/- key and the handwheel, and the axis moves. After the JOG motion has ended, a change back to AUTO is also made internally.

Bit 1:

Position with AxFrame.

The function 'JOG to position' considers all axial frames and, in the case of an axis configured as geometry axis, the tool length offset.

Bit 2:

Travel in opposite direction.

The functions 'JOG to position' and 'Approach machine fixed point manually' allow travel in opposite direction, i.e. away from the specified position.

Bit 3:

Tool radius offset.

 ${\tt MD21020~\$MC_WORKAREA_WITH_TOOL_RADIUS}$ is active with JOG motions of the geometry axes.

06/2009 Machine Data

General machine data

Bit 4:

Alarm suppression operating range limit in the basic coordinate system in JOG.

Alarms that would be output in JOG when an operating range limit is reached in the basic coordinate system, are suppressed.

Bit. 5:

Alarm suppression operating range limit in the workpiece coordinate system in JOG.

Alarms that would be output in JOG when an operating range limit is reached in the workpiece coordinate system, are suppressed.

Bit 6, 7:

JOG of circles:

Bit 7 and bit 6 = 0: traversing the 2nd geometry axis of the active plane to PLUS for radius increase, traversing to MINUS for radius decrease independently of inner or outer machining being active.

Bit 7 = 1 and bit 6 = 0: traversing the 2nd geometry axis of the active plane to PLUS always travels in the direction of the limiting circle. This means that the radius is increased on inner machining and decreased on outer machining.

Bit 7 = 1 and bit 6 = 1: traversing the 2nd geometry axis of the active plane to MINUS always travels in the direction of the limiting circle. This means that the radius is increased on inner machining and decreased on outer machining.

Bits 8-31:

Currently unassigned.

10760	G53_TOOLCORR			N12	FBFA
-	Method of oper	ation of G53, G153 and	DWORD	NEW CONF	
-					
-	-	0	0	3	2/2

Description:

With this MD you define whether tool length offset and tool radius offset are also to be suppressed with language commands ${\tt G53}$, ${\tt G153}$ and ${\tt SUPA}$

The machine data is bit-coded.

Bit 0 = 0: G53, G153 and SUPA cause block-by-block suppression of work offsets. The active tool length offset and tool radius offset remain active.

Bit 0 = 1: G53, G153 and SUPA cause block-by-block suppression of work offsets, active tool length offset and tool radius offset.

The tool length behavior can be modified with bit 1.

Bit 1 is only evaluated, if the value of bit 0 is 1.

Bit1 = 0: with bit 0 set, the tool length is always suppressed with G53, G153 and SUPA.

Bit1 = 1: with bit 0 set the tool length is only suppressed with G53, G153 and SUPA, if a cutting edge is not selected in the same block (this can also be the cutting edge that is already active).

10780	UNLOCK_EDIT_MODESWITCH			EXP, N01	-
-	Cancel start disable when editing a part program			BOOLEAN	PowerOn
-					
-	-	TRUE	-	-	0/0

Description:

To avoid inconsistent states, a start disable is forced in Teach In mode when a part program is edited.

This start disable during editing can be canceled together with the operating algorithms of the individual MMCs by an NC reset or a mode group change.

- 0: Start disable when editing is also canceled with NC Reset
- 1: Start disable when editing is also canceled on a mode group change.

10800	EXTERN_CHAN_SYNC_M_NO_MIN			EXP, N12	H2
-	1st M function for channel synchronization			DWORD	PowerOn
-					
-	-	-1 -			0/0

Description:

 ${\tt M}$ number of the first ${\tt M}$ function which can be used to perform a channel (program) synchronization in ISO2/3 mode.

To avoid conflicts with standard ${\tt M}$ functions the lowest permissible value is 100. If you enter a value between 0 and 99, alarm 4170 will be issued.

10802	EXTERN_CHAN_SYNC_M_NO_MAX			EXP, N12	H2
-	Last M function for channel synchronization			DWORD	PowerOn
-					
-	-	-1	-	-	0/0

Description:

M number of the last M function which can be used to perform a channel (program) synchronization in ISO2/3 mode.

In combination with MD10800 \$MN EXTERN CHAN SYNC M NO MIN, the machine data defines an M number range reserved for channel synchronization. This range may be a maximum of 10 times the number of channels as only 10 WAIT marks may be set for each channel. Alarm 4170 is output if a value is entered between 0 and 99 or less than MD10800 \$MN EXTERN CHAN SYNC M NO MIN.

06/2009 Machine Data

General machine data

10804	EXTERN_M_N	EXTERN_M_NO_SET_INT			H2,K1
-	M function to a	ctivate ASUB	DWORD	PowerOn	
-					
802d-cu3	-	96	-	-	1/1
802d-ng2	-	96	-	-	-1/2
802d-ng3	-	96	-	-	-1/2
802d-tm1	-	96	-	-	1/1
802d-tm2	-	96	6		1/1
802d-tm3	-	96	-	-	1/1

Description:

M function number used to activate an interrupt program (ASUB) in ISO2/3 mode. The interrupt program is always started by the 1st high-speed input of the numerical control.

The M number defined in the machine data replaces M96 in external language mode.

Restrictions: Refer to MD10715 $MN_M_NO_FCT_CYCLE$ Related to:

MD10714 \$MN_M_NO_FCT_EOP,

MD10715 \$MN M NO FCT CYCLE,

MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,

MD22254 \$MC AUXFU ASSOC MO VALUE

For external language mode:

MD10814 \$MN EXTERN M NO MAC CYCLE,

MD10804 \$MN EXTERN M NO SET INT

MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,

MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,

MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX

MD20095 \$MC EXTERN RIGID TAPPING M NR

For nibbling:

\$MC_NIBBLE_PUNCH_CODE

General machine data

10806	EXTERN_M_N	EXTERN_M_NO_DISABLE_INT			H2,K1
-	M function to de	eactivate ASUB		DWORD	PowerOn
-					
802d-cu3	-	97	-	-	1/1
802d-ng2	-	97	-	-	-1/2
802d-ng3	-	97	-	-	-1/2
802d-tm1	-	97	-	-	1/1
802d-tm2	-	97	7		1/1
802d-tm3	-	97	-	-	1/1

Description:

M function number used to deactivate an interrupt program (ASUB) in ISO2/3 mode.

The M number defined in the machine data replaces M97 in external language mode.

Restrictions: refer to MD10715 \$MN_M_NO_FCT_CYCLE MD10714 \$MN M NO FCT EOP,

MDIU/14 \$MN_M_NO_FCI_EOP,

MD10715 \$MN_M_NO_FCT_CYCLE,

MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,

MD22254 \$MC_AUXFU_ASSOC_MO_VALUE

For external language mode:

MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE,

MD10804 \$MN EXTERN M NO SET INT

MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,

MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,

MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX

MD20095 \$MC_EXTERN_RIGID_TAPPING_M_NR

For nibbling:

MD26008 \$MC_NIBBLE_PUNCH_CODE

06/2009 Machine Data

General machine data

10808	EXTERN_INTE	XTERN_INTERRUPT_BITS_M96			FBFA
-	Activate interru	ot program (ASUB)		DWORD	PowerOn
-					
802d-cu3	-	0	-	-	1/1
802d-ng2	-	0	-	-	-1/2
802d-ng3	-	0	-	-	-1/2
802d-tm1	-	0	-	-	1/1
802d-tm2	-	0			1/1
802d-tm3	-	0	-	-	1/1

Description:

Setting the various bits can influence the processing of the interrupt routine activated by M96 P...

Bit 0 = 0,

No interrupt program possible, M96/M97 are normal M functions Bit 0 = 1,

Using M96/M97 to activate an interrupt program is allowed Bit 1 = 0,

Continue processing part program at the final position of the next block after the interrupt block

Bit 1 = 1,

Continue processing part program from interrupt position Bit 2 = 0,

The interrupt signal immediately interrupts the current block and starts the interrupt routine

Bit 2 = 1,

The interrupt routine will not be started until the end of the block

Bit 3 = 0,

Interrupt machining cycle at an interupt signal

Bit 3 = 1,

Do not start interrupt program until the end of a machining cycle.

10810	EXTERN_MEAS_G31_P_SIGNAL			EXP, N12	FBFA
-	Config. of measuring inputs for G31 P			BYTE	PowerOn
-					
802d-cu3	4	1,1,1,1	0	3	2/2
802d-ng2	4	1,1,1,1	0	3	-1/2
802d-ng3	4	1,1,1,1	0	3	-1/2
802d-tm1	4	1,1,1,1	0	3	2/2
802d-tm2	4	1,1,1,1	0	3	2/2
802d-tm3	4	1,1,1,1	0	3	2/2

Description:

This machine data defines the assignment of measurement inputs 1 and 2 to the P numbers programmed with G31 P1 (- P4). The machine data is bit-coded. Only bits 0 and 1 are evaluated. For example, if bit 0 = 1 in MD10810 \$MN_EXTERN_MEAS_G31_P_SIGNAL[1], the 1st measurement input is activated with G31 P2. If MD10810 \$MN_EXTERN_MEAS_G31_P_SIGNAL[3]=2, the 2nd measurement input is activated with G31 P4.

Bit 0: = 0, Do not evaluate measurement input 1 with G31 P1 (-P4)

Bit 0: = 1, Activate measurement input 1 with G31 P1 (- P4)

Bit 1: = 0, Do not evaluate measurement input 2 with G31 P1 (- P4)

Bit 1: = 1, Activate measurement input 2 with G31 P1 (- P4)

10812	EXTER	EXTERN_DOUBLE_TURRET_ON			FBFA	
-	Double t	Double turret with G68			PowerOn	
-						
802d-cu3	-	FALSE	-	-	2/2	
802d-ng2	-	FALSE	-	-	-1/2	
802d-ng3	-	FALSE	-	-	-1/2	
802d-tm1	-	FALSE	-	-	2/2	
802d-tm2	-	FALSE	-	-	2/2	
802d-tm3	-	FALSE	-	-	2/2	

Description:

This machine data is used to determine whether double-slide machining (channel synchronization for 1st and 2nd channel) is to be started using G68 or whether the second tool of a double turret (= two closely-linked tools at a distance defined in the MD42162 SC_EXTERN_DOUBLE_TURRET_DIST) is to be activated. FALSE:

Channel synchronization for double-slide machining

Load 2nd tool of a double turret (that is, activate \$SC_EXTERN_DOUBLE_TURRET_DISTANCE as additive zero offset and mirroring around Z axis)

10814	EXTERN	_M_NO_MAC_CYCLE	EXP, N12	H2,K1		
-	Macro ca	II via M function	DWORD	PowerOn		
-						
802d-cu3	10	-1,-1,-1,-1,-1,-1, 1,-1	-	2/2		
802d-ng2	10	-1,-1,-1,-1,-1,-1, 1,-1	-	-1/2		
802d-ng3	10	-1,-1,-1,-1,-1,-1, 1,-1	-	-1/2		
802d-tm1	10	-1,-1,-1,-1,-1,-1, 1,-1	-	2/2		
802d-tm2	10	-1,-1,-1,-1,-1,-1, 1,-1	-	2/2		
802d-tm3	10	-1,-1,-1,-1,-1,-1, 1,-1	-	2/2		

Description:

A macro is called with this M number.

The name of the subprogram is stated in MD10815

\$MN EXTERN M NO MAC CYCLE NAME[n].

If the M function specified with MD10814

 $MN_EXTERN_M_NO_MAC_CYCLE[n]$ is programmed in a part program block, the subprogram defined in MD10815

\$MN_EXTERN_M_NO_MAC_CYCLE_NAME[n] is started. All addresses programmed in the block are written into the corresponding variables. If the M function is programmed again in the subprogram, there is

no longer a replacement by a subprogram call. MD10814 $MD_{MN}_{EXTERN_MNO_MAC_CYCLE[n]}$ is only active in the external language mode G291.

The subprograms configured with MD10815

 $MN_EXTERN_M_NO_MAC_CYCLE_NAME[n]$ must not be active simultaneously in a block (part program line), i.e. only one M function replacement can become active in any one block. Neither an M98 nor a modal subprogram call may be programmed in the block with the M function replacement.

Subprogram return and the part program end are also not permitted. Alarm 14016 is issued in case of a conflict. Restrictions: see MD10715 MN_NOFCT_CYCLE

Related to:

MD10714 \$MN_M_NO_FCT_EOP,

MD10715 \$MN_M_NO_FCT_CYCLE,

MD20094 \$MC SPIND RIGID TAPPING M NR,

MD22254 \$MC_AUXFU_ASSOC_MO_VALUE

For external language mode:

MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE,

MD10804 \$MN_EXTERN_M_NO_SET_INT

MD10806 \$MN EXTERN M NO DISABLE INT,

MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,

MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX

MD20095 \$MC_EXTERN_RIGID_TAPPING_M_NR

For nibbling:

MD26008 \$MC NIBBLE PUNCH CODE

10815	EXTERN_M	EXTERN_M_NO_MAC_CYCLE_NAME			H2
-	Name of sub	Name of subroutine for M function macro call		STRING	PowerOn
-					
802d-cu3	10		-	-	2/2
802d-ng2	10		-	-	-1/2
802d-ng3	10		-	-	-1/2
802d-tm1	10		-	-	2/2
802d-tm2	10		-	-	2/2
802d-tm3	10		-	-	2/2

Description:

Name of the subprogram started by a call via the M function defined by MD10814 MNOMACCYCLE[n].

10816	EXTERN	EXTERN_G_NO_MAC_CYCLE			FBFA
-	Macro ca	Macro call via G function			PowerOn
-					
802d-cu3	50	-1.,-1.,-1.,-1.,-1.,- 1.,-1.,-1	-	-	2/2
802d-ng2	50	-1.,-1.,-1.,-1.,-1.,- 1.,-1.,-1	-	-	-1/2
802d-ng3	50	-1.,-1.,-1.,-1.,-1.,- 1.,-1.,-1	-	-	-1/2
802d-tm1	50	-1.,-1.,-1.,-1.,-1.,- 1.,-1.,-1	-	-	2/2
802d-tm2	50	-1.,-1.,-1.,-1.,-1.,- 1.,-1.,-1	-	-	2/2
802d-tm3	50	-1.,-1.,-1.,-1.,-1.,- 1.,-1.,-1	-	-	2/2

Description:

G number for calling a macro.

The name of the subprogram is stated in MD10817 $MN_EXTERN_G_NO_MAC_CYCLE_NAME[n].$

If the G function specified with MD10816

ti the G function specified with MD10016

 $MN_EXTERN_G_NO_MAC_CYCLE[n]$ is programmed in a part program block, the subprogram defined in MD10817

 $MN_EXTERN_M_NO_MAC_CYCLE_NAME[n]$ is started. All addresses programmed in the block are written in the corresponding C_xx variables.

No subprogram call is executed if a subprogram call is already active via an M/G macro or an M replacement. If a standard G function is programmed in this case, this code is executed. Otherwise, alarm 12470 is issued.

MD10816 $MN_EXTERN_G_NO_MAC_CYCLE[n]$ is only active in the external language mode G291.

Only a single subprogram call may be included in any one block. This means that only a single M/G function replacement may be programmed in a block, and no additional subprogram (M98) or cycle call may be included in the block.

Furthermore, a subprogram return and a part program end are not permitted in the same block.

Alarm 14016 is issued in case of a conflict.

10817	EXTERN_G_N	EXTERN_G_NO_MAC_CYCLE_NAME			FBFA			
-	Name of subrou	itine for G function macr	o call	STRING	PowerOn			
-								
802d-cu3	50		-	-	2/2			
802d-ng2	50		-	-	-1/2			
802d-ng3	50		-	-	-1/2			
802d-tm1	50		-	-	2/2			
802d-tm2	50		-	-	2/2			
802d-tm3	50		-	-	2/2			

Description:

Name of the subprogram started by call via the G function defined by MD10816 $MD_{CYCLE[n]}$.

10818	EXTERN	N_INTERRUPT_NUM	/_ASUP	EXP, N12	FBFA
-	Interrupt	number for ASUB st	tart (M96)	BYTE	PowerOn
-				•	
802d-cu3	-	1	1	8	1/1
802d-ng2	-	1	1	8	-1/2
802d-ng3	-	1	1	8	-1/2
802d-tm1	-	1	1	8	1/1
802d-tm2	-	1	1	8	1/1
802d-tm3	-	1	1	8	1/1

Description:

10820	EXTERN	_INTERRUPT_NUN	/_RETRAC	EXP, N12	FBFA
-	Interrupt	number for rapid ret	raction (G10.6)	BYTE	PowerOn
-				<u>'</u>	•
802d-cu3	-	2	1	8	2/2
802d-ng2	-	2	1	8	-1/2
802d-ng3	-	2	1	8	-1/2
802d-tm1	-	2	1	8	2/2
802d-tm2	-	2	1	8	2/2
802d-tm3	-	2	1	8	2/2

Description:

Number of the interrupt input triggering rapid retraction to the position programmed with ${\sf G10.6}$ in ISO mode.

General machine data

10880	MM_EXTERN_	CNC_SYSTEM		N01, N12	FBFA		
-	Definition of the	control system to be ac	lapted	DWORD	PowerOn		
-							
802d-cu3	-	1	1	5	2/2		
802d-ng2	-	1	1	5	-1/2		
802d-ng3	-	1	1	5	-1/2		
802d-tm1	-	1	1	5	2/2		
802d-tm2	-	1	1	5	2/2		
802d-tm3	-	1	1	5	2/2		

Description:

Definition of the external CNC system whose part programs are to be executed on the SINUMERIK control in addition to SINUMERIK code (ISO $_1$):

1: ISO_21: System FanucO milling (5.1 and higher)
2: ISO 31: System FanucO turning (P5.2 and higher)

3: External language via OEM application (P6.2 and higher)

4: ISO_22: System FanucO Milling (P7 and higher) 5: ISO 32: System FanucO Turning (P7 and higher)

10881	MM_EXT	MM_EXTERN_GCODE_SYSTEM		N01, N12	FBFA
-	ISO_3 M	ode: GCodeSystem		DWORD	PowerOn
-					
802d-cu3	-	0	0	2	2/2
802d-ng2	-	0	0	2	-1/2
802d-ng3	-	0	0	2	-1/2
802d-tm1	-	0	0	2	2/2
802d-tm2	-	0	0	2	2/2
802d-tm3	-	0	0	2	2/2

Description:

Definition of the GCodeSystem to be actively executed in ISO_3 Mod (turning):

Value = 0 : ISO_3: Code system B
Value = 1 : ISO_3: Code system A
Value = 2 : ISO 3: Code system C

10882	NC_USER_	NC_USER_EXTERN_GCODES_TAB			FBFA		
-	List of user- language			STRING	PowerOn		
-		<u> </u>					
802d-cu3	60		-	-	2/2		
802d-ng2	60		-	-	-1/2		
802d-ng3	60		-	-	-1/2		
802d-tm1	60		-	-	2/2		
802d-tm2	60			-	2/2		
802d-tm3	60		-	-	2/2		

Description:

The implemented G commands are to be taken from the current Siemens documentation for this programming language.

The list is structured as follows:

Even address: G command to be changed

Subsequent odd address: New G command

Only G codes can be reconfigured, e.g.: G20, G71.

06/2009 Machine Data

General machine data

10884	EXTERN_FLOATINGPOINT_PROG			N12	FBFA		
-	Evaluation of pr	ogrammed values withou	out decimal point	BOOLEAN	PowerOn		
-							
802d-cu3	-	TRUE	-	-	2/2		
802d-ng2	-	TRUE	-	-	-1/2		
802d-ng3	-	TRUE	-	-	-1/2		
802d-tm1	-	TRUE	-	-	2/2		
802d-tm2	-	TRUE	-	-	2/2		
802d-tm3	-	TRUE	-	-	2/2		

Description:

This MD defines how programmed values without a decimal point are evaluated:

0: Values without a decimal point are interpreted in internal units. For example, X1000 = 1 mm (for 0.001 mm input resolution) X1000.0 = 1000 mm

1: Values without decimal point are interpreted as mm, inch or degrees. For example, $X1000 = 1000 \text{ mm} \ X1000.0 = 1000 \text{ mm}$ Related to:

MD10886 \$MN EXTERN INCREMENT SYSTEM

10886	EXTERN_INC	EXTERN_INCREMENT_SYSTEM			FBFA		
-	Incremental sy	stem in external languag	je mode	BOOLEAN	PowerOn		
-							
802d-cu3	-	FALSE	-	-	2/2		
802d-ng2	-	FALSE	-	-	-1/2		
802d-ng3	-	FALSE	-	-	-1/2		
802d-tm1	-	FALSE	-	-	2/2		
802d-tm2	-	FALSE	-	-	2/2		
802d-tm3	-	FALSE	-	-	2/2		

Description:

This machine data is active for external programming languages, that is if MD18800 $MN_MEXTERN_LANGUAGE = 1$.

This machine data specifies which incremental system is active:

0: Incremental system IS-B = 0.001 mm/degree

= 0.0001 inch

1: Incremental system IS-C = 0.0001 mm/degree

= 0.00001 inch

Related to:

MD10884 \$MN_EXTERN_FLOATINGPOINT_PROG

General machine data

10888	EXTER	N_DIGITS_TOOL_NO)	N12	FBFA		
-	Digits fo	r T number in ISO mo	ode	BYTE	PowerOn		
-							
802d-cu3	-	2	0	8	2/2		
802d-ng2	-	2	0	8	-1/2		
802d-ng3	-	2	0	8	-1/2		
802d-tm1	-	2	0	8	2/2		
802d-tm2	-	2	0	8	2/2		
802d-tm3	-	2	0	8	2/2		

Description:

This machine data is only active when $\mbox{MD10880}$

\$MN_MM_EXTERN_CNC_SYSTEM == 2.

Number of digits of the tool number in the programmed T word. From the programmed T word, the number of leading digits specified in MD10888 \$MN_EXTERN_DIGITS_TOOL_NO are interpreted as the tool number.

The following digits address the offset memory.

10890	EXTERN	N_TOOLPROG_MOD	E	N12	FBFA
-	Tool cha	inge programming for	external language	DWORD	PowerOn
-					
802d-cu3	-	0x0	-	-	2/2
802d-ng2	-	0x0	-	-	-1/2
802d-ng3	-	0x0	-	-	-1/2
802d-tm1	-	0x0	-	-	2/2
802d-tm2	-	0x0	-	-	2/2
802d-tm3	-	0x0	-	-	2/2

Description:

Configuration for programming the tool change in an external programming language:

Bit0=0:

Only active if MD10880 $MN_M_EXTERN_CNC_SYSTEM = 2$: The tool number and offset number are programmed in the T word. MN_DIGITS_TOOLNO defines the number of leading digits that form the tool number.

Example:

\$MN DIGITS TOOLNO = 2

T=1234; Tool number 12,

; Offset number 34

Bit0=1:

Only active if MD10880 $MN_M_EXTERN_CNC_SYSTEM = 2$: Only the tool number is programmed in the T word. Offset number = Tool number. MN DIGITS TOOLNO is irrelevant.

Example:

T=12 ; Tool number 12

; Offset number 12

Bit1=0:

Only active if MD10880 $MN_M_EXTERN_CNC_SYSTEM = 2$: A leading 0 is added if the number of digits programmed in the T word is the same as that in MD10888 MN EXTERN DIGITS TOOL NO.

Bit1=1:

Only active if MD10880 \$MN_MM_EXTERN_CNC_SYSTEM =2: If the number of digits programmed in the T word is equal to the number of digits defined in MD10888 \$MN_EXTERN_DIGITS_TOOL_NO, the programmed number is both the offset number and the tool number

Only active if $MN_M_EXTERN_CNC_LANGUAGE = 2$: ISO T offset selection only with D (Siemens cutting edge number)

Bit2=1:

Only active if $MN_M_EXTERN_CNC_LANGUAGE = 2$: ISO T offset selection only with H ($TC_DPH[t,d]$)

Bit6=0:

The offset memories for the tool length and tool radius are linked so that tool length and tool radius are always selected when either H or D is programmed.

Bit6=1:

The offset memories for the tool length and tool radius are not linked, so that the number of the tool length value is selected when H is programmed, and the number of the tool radius value is selected when D is programmed.

10900	INDEX_/	INDEX_AX_LENGTH_POS_TAB_1			T1		
-	Number	of positions for index	ring axis table 1	DWORD	Reset		
-							
802d-cu3	-	0	0	60	2/2		
802d-ng2	-	0	0	60	2/2		
802d-ng3	-	0	0	60	2/2		
802d-tm1	-	0	0	60	0/0		
802d-tm2	-	0	0	60	2/2		
802d-tm3	-	0	0	60	2/2		

Description:

The indexing position table is used to assign the axis positions in the valid unit of measurement (mm, inches or degrees) to the indexing positions [n] on the indexing axis. The number of indexing positions used in table 1 is defined by MD10900 \$MN INDEX AX LENGTH POS TAB 1.

These indexing positions must be assigned valid values in table 1. Any indexing positions in the table above the number specified in the machine data are ignored. Up to 60 indexing positions (0 to 59) can be entered in the table.

Table length = 0 means that the table is not evaluated. If the length is not equal to 0, then the table must be assigned to an axis with MD30500 $MA_NDEX_AX_ASSIGN_POS_TAB$.

If the indexing axis is defined as a rotary axis (MD30300 $\$MA_IS_ROT_AX = "1"$) with modulo 360° (MD30310 $\$MA_ROT_IS_MODULO = "1"$), the machine data defines the last indexing position after which, with a further traversing movement in the positive direction, the indexing positions begin again at 1.

Special cases:

Alarm 17090 "Value violates upper limit" if values over 60 are entered in MD10900 \$MN INDEX AX LENGTH POS TAB 1.

Related to:

MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB (axis is an indexing axis) MD10910 \$MN_INDEX_AX_POS_TAB_1 (indexing position table 1) MD30300 \$MA_IS_ROT_AX(rotary axis)

MD30310 \$MA ROT IS MODULO (modulo conversion for rotary axis)

10910	INDEX_A	X_POS_TAB_1	N09	T1
mm/inch, degrees	Indexing	position table 1	DOUBLE	Reset
-				
802d-cu3	60	0.,0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	2/2
802d-ng2	60	0.,0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	2/2
802d-ng3	60	0.,0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	2/2
802d-tm1	1	0.,0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	0/0
802d-tm2	60	0.,0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	2/2
802d-tm3	60	0.,0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	2/2

Description:

The indexing position table is used to assign the axis positions in the valid unit of measurement (mm, inches or degrees) to the indexing positions [n] on the indexing axis.

[n] = indexing for the entry of the indexing positions in the indexing position table.

Range: 0 y n x 59, where 0 corresponds to the 1st indexing position and 59 to the 60th indexing position.

Note.

Programming with the absolute indexing position (e.g. CAC) starts with indexing position 1. This corresponds to the indexing position with indexing n=0 in the indexing position table.

The following should be noted when entering the indexing positions:

- Up to 60 different indexing positions can be stored in the table.
- The 1st entry in the table corresponds to indexing position 1; the nth entry corresponds to indexing position n.
- The indexing positions must be entered in the table in ascending order (starting with the negative and going to the positive traversing range) with no gaps between the entries. Consecutive position values must not be identical.
- If the indexing axis is defined as a rotary axis (MD30300 \$MA_IS_ROT_AX = "1") with modulo 360° (MD30310 \$MA_ROT_IS_MODULO = "1"), then the position values are limited to a range of 0° x pos. < 360°.

The number of indexing positions used in the table is defined by MD10900 \$MN INDEX AX LENGTH POS TAB 1.

Entering the value 1 in axial MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB
assigns indexing position table 1 to the current axis.
Special cases:

Alarm 17020 "Illegal array index" if over 60 positions are entered in the table.

Related to:

MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB (axis is an indexing axis) MD10900 \$MN_INDEX_AX_LENGTH_POS_TAB_1 (number of indexing positions used in table 1)

MD30300 \$MA_IS_ROT_AX(rotary axis)

MD30310 \$MA ROT IS MODULO (modulo conversion for rotary axis)

10920	INDEX_	INDEX_AX_LENGTH_POS_TAB_2			T1
-	Number	of positions for index	ing axis table 2	DWORD	Reset
-					
802d-cu3	-	0	0	60	2/2
802d-ng2	-	0	0	60	2/2
802d-ng3	-	0	0	60	2/2
802d-tm1	-	0	0	60	0/0
802d-tm2	-	0	0	60	2/2
802d-tm3	-	0	0	60	2/2

Description:

The indexing position table is used to assign the axis positions in the valid unit of measurement (mm, inches or degrees) to the indexing positions [n] on the indexing axis. The number of indexing positions used in table 2 is defined by MD10920 \$MN_INDEX_AX_LENGTH_POS_TAB_2.

These indexing positions in table 2 must be assigned valid values. Any indexing positions in the table above the number specified in the machine data are ignored.

Up to 60 indexing positions (0 to 59) can be entered in the table. Table length = 0 means that the table is not evaluated. If the length is not equal to 0, the table must be assigned to an axis with MD30500 MA INDEX AX ASSIGN POS TAB.

If the indexing axis is defined as a rotary axis (MD30300 $MA_1S_ROT_AX = "1"$) with modulo 360° (MD30310 $MA_ROT_1S_MODULO = "1"$), the machine data defines the last indexing position after which, with a further traversing movement in the positive direction, the indexing positions begin again at 1.

Not relevant for tool magazines (revolvers, chain magazines) Special cases:

Alarm 17090 "Value violates upper limit" if a value over 60 is entered in MD10920 MN INDEX AX LENGTH POS TAB 2.

Related to:

MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB (axis is an indexing axis)

 ${\tt MD10930~\$MN_INDEX_AX_POS_TAB_2~(indexing~position~table~2)}$

MD30300 \$MA IS ROT AX(rotary axis)

MD30310 \$MA ROT IS MODULO (modulo conversion for rotary axis)

10930	INDEX_AX_F	POS_TAB_2		N09	T1
mm/inch, degrees	Indexing posi	tion table 2		DOUBLE	Reset
-				•	
802d-cu3	60	0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	2/2
802d-ng2	60	0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	2/2
802d-ng3	60	0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	2/2
802d-tm1	1	0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0
802d-tm2	60	0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	2/2
802d-tm3	60	0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	2/2

Description:

The indexing position table is used to assign the axis positions in the valid unit of measurement (mm, inches or degrees) to the indexing positions [n] on the indexing axis.

[n] = indexing for the entry of the indexing positions in the indexing position table.

Range: 0 y n x 59, where 0 corresponds to the 1st indexing position and 59 to the 60th indexing position.

Note:

Programming with the absolute indexing position (e.g. CAC) starts with indexing position 1. This corresponds to the indexing position with indexing n=0 in the table.

The following should be noted when entering the indexing positions:

- Up to 60 different indexing positions can be stored in the table.
- The 1st entry in the table corresponds to indexing position 1; the nth entry corresponds to indexing position n.
- The indexing positions should be entered in the table in ascending order (starting with the negative and going to the positive traversing range) with no gaps between the entries. Consecutive position values must not be identical.
- If the indexing axis is defined as a rotary axis (MD30300 \$MA_IS_ROT_AX = "1") with modulo 360° (MD30310 \$MA_ROT_IS_MODULO = "1"), then the position values are limited to a range of 0° x pos. < 360°.

The number of indexing positions used in the table is defined by MD10920 \mbox{MN} INDEX AX LENGTH POS TAB 2.

Entering the value 1 in axial MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB
assigns indexing position table 1 to the current axis.
Special cases:

Alarm 17020 "Illegal array index" if over 60 positions are entered in the table.

Related to:

MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB (axis is an indexing axis) MD10920 \$MN_INDEX_AX_LENGTH_POS_TAB_2 (num ber of indexing positions used in table 2)

MD30300 \$MA IS ROT AX(rotary axis)

 $\verb|MD30310 $MA_ROT_IS_MODULO| (modulo conversion for rotary axis)|$

06/2009 Machine Data

General machine data

10940	INDEX_AX_MODE			EXP	T1
-	Settings for inde	ngs for indexing position			PowerOn
-					
802d-cu3	-	1	0	1	1/1
802d-ng2	-	1	0	1	1/1
802d-ng3	-	1	0	1	1/1
802d-tm1	-	1	0	1	0/0
802d-tm2	-	1	0 1		1/1
802d-tm3	-	1	0	1	1/1

Description:

Affects the display of indexing positions (AA_ACT_INDEX_AX_POS_NO and aaActIndexAxPosNo).

Bit 0 = 0:

Indexing position display changes on reaching/passing the indexing position (indexing range lies between the indexing positions, compatible behavior).

Bit 0 = 1:

Indexing position display changes on passing the half indexing axis position (indexing range lies quasi symmetrically round the indexing position)

11100	AUXFU_MAXN	UM_GROUP_ASSIGN	N01, N07, N02	H2				
-	Number of auxiliary functions distr. amongst aux. fct. groups			DWORD	PowerOn			
-								
-	-	1	1	255	2/2			

Description:

The maximum number of auxiliary functions that can be assigned to a group by

AUXFU ASSIGN TYPE,

AUXFU_ASSIGN_EXTENTION,

AUXFU ASSIGN VALUE and

AUXFU ASSIGN GROUP.

This number includes only the user-defined auxiliary functions, not the predefined auxiliary functions.

Related to:

MD22010 \$MC_AUXFU_ASSIGN_TYPE[n].

General machine data

11110	AUXFU_GROUP_SPEC			N07	H2				
-	Auxiliary function	uxiliary function group specification			PowerOn				
-									
-		0x81,0x21,0x41,0x41, 0x41,0x41,0x41	-	-	1/1				

Description:

Defines the output options for the auxiliary functions belonging to a group.

However, the output option of an auxiliary function configured by MD22080 MC = MUXFU PREDEF SPEC[preIndex] or MD22035

\$MC AUXFU ASSIGN SPEC[auxIndex] has a higher priority.

Bit 0=1"Normal" acknowledgement after an OB1 cycle

Bit 1=1"Quick" acknowledgement with OB40

Bit 2=1No predefined auxiliary function

Bit 3=1No output to PLC

Bit 4=1Spindle response after acknowledgement by the PLC

Bit 5=10utput prior to motion

Bit 6=1Output during motion

Bit 7=10utput at end of block

Bit 8=1No output after block search types 1, 2, 4

Bit 9=1Collection during block search type 5 (SERUPRO)

Bit 10 = 1 No output during block search type 5 (SERUPRO)

Bit 11 = 1Cross-channel auxiliary function (SERUPRO)

Bit 12 = 10utput via synchronized action

Bit 13 = 1 Implicit auxiliary function

Bit 14 = 1 Active M01

Bit 15 = 1 No output during running-in test

Bit 16 = 1 Nibbling off

Bit 17 = 1 Nibbling on

Bit 18 = 1 Nibbling

The MD must be defined for each existing auxiliary function group.

The index [n] corresponds to the auxiliary function group: 0...63

The assignment of individual auxiliary functions to specific

groups is defined in channel-specific machine data (

AUXFU_PREDEF_TYPE, AUXFU_PREDEF_EXTENTION, AUXFU_PREDEF_VALUE, AUXFU_PREDEF_GROUP, AUXFU_ASSIGN_TYPE, AUXFU_ASSIGN_EXTENTION, AUXFU ASSIGN VALUE, AUXFU ASSIGN GROUP).

MO, M1, M2, M17 and M30 are assigned to group 1 by default.

The specification of this group (0x81: output duration 1 OB1 pass, output at end of block) must not be changed.

All spindle-specific auxiliary functions (M3, M4, M5, M19, M70) are assigned to group 2 by default.

If several auxiliary functions with different output types (before / during / at end of motion) are programmed in one motion block, then the output of the individual auxiliary functions occurs in accordance with their output types.

All auxiliary functions are output simultaneously in a block without motion.

Default setting:

AUXFU_GROUP_SPEC[0]=81H

AUXFU_GROUP_SPEC[1]=21H

AUXFU_GROUP_SPEC[2]=41H

. . .

AUXFU GROUP SPEC[n]=41H

11120	LUD_EXTENDED_SCOPE			N01	PG
-	Function "program global user data (PUD)" is active			BOOLEAN	PowerOn
-					
-	-	FALSE	-	-	0/0

Description:

Activate function "Program-global user data (PUD)":

MD = 0: User data of the main program level are only active on this level.

 $\ensuremath{\mathsf{MD}} = 1 \colon \ensuremath{\mathsf{User}}$ data of the main program level are also visible in the subprogram levels.

11140	GUD_AREA_SAVE_TAB			N01	-
-	Additional saving for GUD modules			DWORD	Immediately
-					
-	9	0,0,0,0,0,0,0,0	-	-	0/0

Description:

This data indicates in which area the contents of the GUD module are also saved. $\,$

MD11140 \$MN_GUD_AREA_SAVE_TAB[0] : SGUD_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[1] : MGUD_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[2] : UGUD_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[3] : GUD4_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[3] : GUD5_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[4] : GUD5_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[5] : GUD6_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[6] : GUD7_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[7] : GUD8_DEF
MD11140 \$MN_GUD_AREA_SAVE_TAB[8] : GUD9_DEF
BitNo. Hexadec. Meaning when bit is set
Value

0 (LSB) 0x00000001 TOA area

11160	ACCESS_EXE	C_CST	N01	-				
-	Execution right for /_N_CST_DIR			BYTE	PowerOn			
-								
-	-	7	-	-	2/2			

Description:

Execution right assigned to the program stored in directory $/_{\rm N_CST_DIR}$:

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2

Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

Machine data can only be written with values 0 and 1, and with the corresponding password also active.

11161	ACCESS_EXEC_CMA			N01	-		
-	Execution right for /_N_CMA_DIR			BYTE	PowerOn		
-		·					
-	-	7	-	-	2/2		

Description:

Execution right assigned to the programs stored in directory $/_{\tt N_CMA_DIR}$:

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2

Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

Machine data can only be written with values 0 and 1, and with the corresponding password also active.

11162	ACCESS_EXEC_CUS			N01	-		
-	Execution right	for /_N_CUS_DIR	BYTE	PowerOn			
-							
-	-	7			3/3		

Description:

Execution right assigned to the programs stored in directory $\slash\,$ N CUS DIR :

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2

Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

Machine data can only be written with values 0, 1 and 2, and with the corresponding password also active.

11165	ACCESS_WRITE_CST			N01	-			
-	Write protection for directory /_N_CST_DIR			DWORD	PowerOn			
-		·						
-	-	-1	-	-	2/2			

Description:

Set write protection for cycle directory / N CST DIR:

Assigned to the programs:

Value -1: Keep the value currently set

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2

Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

The machine data can only be written with values 0 and 1, and with the corresponding password also active.

11166	ACCESS_WRI	TE_CMA	N01	-				
-	Write protection for directory /_N_CMA_DIR			DWORD	PowerOn			
-		·						
-	-	-1	-	-	2/2			

Description:

Set write protection for cycle directory /_N_CMA_DIR:

Assigned to the programs:

Value -1: Keep the value currently set

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2 Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

The machine data can only be written with values ${\tt 0}$ and ${\tt 1}$, and with the corresponding password also active.

11167	ACCESS	ACCESS_WRITE_CUS			-
-	Write pro	tection for directory	/_N_CUS_DIR	DWORD	PowerOn
-			1		
802d-cu3	-	-1	-	-	2/2
802d-ng2	-	-1	-	-	2/2
802d-ng3	-	-1	-	-	2/2
802d-tm1	-	-1	-	-	3/3
802d-tm2	-	-1	-	-	3/3
802d-tm3	-	-1	-	-	3/3

Description:

Set write protection for cycle directory / N CUS DIR:

Assigned to the programs:

Value -1: Keep the value currently set

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2

Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

The machine data can only be written with values 0, 1 and 2, and with the corresponding password also active.

11170	ACCESS_WRITE_SACCESS			N01	-
-	Write protection for _N_SACCESS_DEF			BYTE	PowerOn
-					
-	-	7	-	-	2/2

Description:

Set write protection for definition file

/_N_DEF_DIR/_N_SACCESS_DEF:

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2

Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

The machine data can only be written with values 0 and 1, and with the corresponding password also active.

11171	ACCESS_WRITE_MACCESS			N01	-			
-	Write protection	Write protection for _N_MACCESS_DEF			PowerOn			
-								
-	-	7	-	-	2/2			

Description:

Set write protection for definition file

/_N_DEF_DIR/_N_SACCESS_DEF:

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2

Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

The machine data can only be written with values 0 and 1, and with the corresponding password also active.

11172	ACCESS_WRITE_UACCESS			N01	-			
-	Write protection for _N_UACCESS_DEF			BYTE	PowerOn			
-								
-	-	7 -			3/3			

Description:

Set write protection for definition file

/ N DEF DIR/ N UACCESS DEF:

Value 0: Siemens password

Value 1: Machine OEM password

Value 2: Password of startup engineer, service

Value 3: End user password

Value 4: Keyswitch position 3

Value 5: Keyswitch position 2

Value 6: Keyswitch position 1

Value 7: Keyswitch position 0

The machine data can only be written with values 0, 1 and 2, and with the corresponding password also active.

06/2009 Machine Data

General machine data

11200	INIT_MD			EXP, N01	IAF,IAD,IA
-	Standard machine data loaded at next Power On			BYTE	PowerOn
-					
-	-	0	-	-	0/0

Description:

A power on must be triggered after setting MD11200 MN_INIT_MD . The function is executed and the MD reset to "0" at power on. Meaning of the input:

Bit 0 set:

All machine data (with the exception of the memory-configuring data) will be overwritten with the compiled values at the next NCK power on. $\,$

Bit 1 set:

All memory-configuring machine data will be overwritten with the compiled values at the next NCK power on.

Bit 2 set:

The OEM machine data brought in by compile cycles will be deleted from the buffered memory at the next power on.

Bit 3 set:

All setting data will be overwritten with the compiled values at the next power on.

Bit 4 set: All option data will be overwritten with the compiled

values at the next power on.

INIT MD is automatically set to 0 at power on.

Memory configuring MDs are described in:

References: /IAD/, Installation and Startup Guide, Memory Configuration

- MD10010 \$MN_ASSIGN_CHAN_TO_MODE_GROUP
- All machine data starting with "MM_"

MD 18000 - 18999 (general MD)

MD 28000 - 28999 (channel-specific MD)

MD 38000 - 38999 (axis-specific MD)

11210	UPLOAD_MD_CHANGES_ONLY			N01, N05	IAD
-	Machine data backup of changed machine data only			BYTE	Immediately
-					
-	-	0x0F	-	-	2/2

Description:

Select differential MD upload:

BitO(LSB) Effectiveness of the differential upload with TEA files (machine files)

0: All data are output

1: Only those MDs which have changed in comparison to the compiled values are output

Bit1 efficiency of differential upload for INI files

0: all data are output

1: only MDs changed from the value compiled in are output

Bit2 Change to an array element

0: Complete array is output

 $1\colon \operatorname{Only}$ those elements of an array which have changed are output

Bit3 R parameters (only for INI files)

0: All R parameters are output

1: Only those R parameters not equal to '0' are output

Bit4 Frames (only for INI files)

0: All frames are output

1: Only those frames which are not zero frames are output.

Bit5 Tool data (cutting edge parameters) (only for INI files)

0: All tool data are output

1: Only those tool data not equal to '0' are output.

11220	INI_FILE_MODE			N01, N05	G2			
-	Error response to INI file errors			BYTE	Reset			
-								
-	-	1	0	2	0/0			

Description:

If, while reading machine data files (INI files) into controls, data are read in

- that are faulty or
- do not agree with the check sum

then alarms are generated and the reading in may be aborted. The following control behaviors can be selected via machine data settings:

- 0: Output of an alarm, abort on detection of 1st error. (As SW versions 1 and 2).
- 1: Output of an alarm, continuation of execution. An alarm with the number of errors is output at the end of execution.
- 2: Execution continues despite possible errors. An alarm with the number of errors is output at the end of execution.

11230	MD_FILE_STY	MD_FILE_STYLE			IAD			
-	Structure of ma	Structure of machine data backup files			Immediately			
-								
-	-	3	-	-	0/0			

Description:

Appearance of a machine data file at 'upload'

Bit 0 (LSB): Line check sum is generated

Bit 1:

MD numbers are generated

Bit 2:

Channel axis name as field index with axis-MD in the TEA file Bit $3\colon$

With an NCU-link, the MDs of the LINK axes are also output.

Bit 4:

All local axes are output (even when they are not activated by MD20070 $MC_AXCONF_MACHAX_USED$)

Active:

The change in the data becomes active on the start of the upload for the next area.

Default setting:

The line check sums and MD numbers are generated, but not channel names as field index with axis-MD.

11240	PROFIBUS_SDB_NUMBER			N01, N05	K4,FBU			
-	SDB number			DWORD	PowerOn			
-		<u> </u>						
-	4	0,-1,0	-1	7	2/2			

Description:

Only for PROFIBUS/PROFINET with selection option of autonomous SDB data management (802d, 828d):

Number of the system data block (SDB) used for configuring the I/Os.

11241	PROFIBUS_SDB_SELECT			N01, N05	-
-	SDB source selection			DWORD	PowerOn
-					
-	-	0	0	3	2/2

Description:

Only for PROFIBUS/PROFINET with selection option of autonomous SDB data management (802d, 828d):

If MD11240 $MN_PROFIBUS_SDB_NUMBER > 0$, SDBs are loaded directly from the directory:

MD11241 \$MN_PROFIBUS_SDB_SELECT = 0: /siemens/sinumerik/sdb/...

MD11241 \$MN_PROFIBUS_SDB_SELECT = 1: /addon/sinumerik/sdb/...

MD11241 \$MN_PROFIBUS_SDB_SELECT = 2: /oem/sinumerik/sdb/...

MD11241 \$MN_PROFIBUS_SDB_SELECT = 3: /user/sinumerik/sdb/...

General machine data

11250	PROFIBUS_SHUTDOWN_TYPE			EXP, N01	G3,FBU
-	PROFIBUS/PROFINET shutdown handling			BYTE	PowerOn
-					
-	-	0	0	2	2/2

Description:

For PROFIBUS/PROFINET only:

Handling of PROFIBUS/PROFINET when shutting down NCK (NCK reset) Value $0 \cdot$

The bus is shut down directly from cyclic operation, without 'prewarning'

Value 1:

When shutting down NCK, the bus is changed to the CLEAR state for at least 20 cycles. Then, it is shut down. If this is not possible on the hardware side, the procedure described for value 2 is used instead.

Value 2:

When shutting down NCK, the bus is changed to a state where all drives are sent a zero word as control word1 and control word2 (pseudoclear) for at least 20 cycles. The bus itself remains in the Operate status.

11270	DEFAULT_VALUES_MEM_MASK			N01	A2			
-	Activation of de	ctivation of default values for NC language elements			PowerOn			
-		·						
-	-	1	-	-	7/2			

Description:

Activation of the function 'Memory for initialization values of NC language elements' $\,$

Bit Hex. Meaning value

0x1 default values GUD

Meaning of the individual bits:

Bit 0 = 0:

0: (LSB)

The default values stated for the definition are not stored Bit 0 = 1:

The default values stated for the definition are stored persistently. The memory reserved via MD18150 $MM_GUD_VALUES_MEM$ is used for this purpose.

The memory reserved via MD18150 $MN_MM_GUD_VALUES_MEM$ should be increased by the size required for default values.

If this size cannot be determined, the memory should be doubled and adaptations should be made later if required.

The stored default values can be restored, provided that the corresponding programming (REDEF) has been performed.

06/2009 Machine Data

General machine data

11280	WPD_INI_MODE			N01	IAD		
-	Handling of INI files in workpiece directory			BYTE	PowerOn		
-							
-	-	0	0	1	0/0		

Description:

Processing mode of INI files in the workpiece directory:

Value = 0:

An INI file, $_{\rm N_werkst\"{u}ck_INI}$, stored in the workpiece directory is executed on the first NC start after workpiece selection.

Value = 1:

INI files with the names of the selected part program and extensions are executed on the first NC start after workpiece selection

SEA,

GUD,

RPA,

UFR,

PRO,

TOA,

TMA and

CEC

.

11290	DRAM_FILESYSTEM_MASK			N01	S7		
-	Select directories in DRAM			DWORD	PowerOn		
-							
-	-	0x3f	-	-	0/0		

Description:

Bit0-n = 0:

The files of the corresponding directory should be stored in $\ensuremath{\mathsf{SRAM}}$

1:

The files of the corresponding directory should be stored in $\ensuremath{\mathsf{DRAM}}\xspace.$

```
Bit0 CST directory (Siemens cycles)
Bit1 CMA directory (machine manufacturer's cycles)
Bit2 CUS directory (user cycles)
Bit3 MPF directory (main programs)
Bit4 SPF directory (subprograms)
Bit5 WPD directory (workpieces)
```

11291	DRAM_FILESYST_SAVE_MASK			N01	S7
-	Back up of directories in DRAM			DWORD	PowerOn
-					
-	-	0x3f	-	-	0/0

Description:

Bit0-n = 0:

No backup is performed. The files stored on NCK are lost if the control is switched off. $\,$

1:

Backup in the FFS of the NC card takes place if the files are located in DRAM.

Bit0	CST	directory	(Siemens cycles)
Bit1	CMA	directory	(machine manufacturer cycles)
Bit2	CUS	directory	(user cycles)
Bit3	MPF	directory	(main programs)
Bit4	SPF	directory	(subprograms)
Bit.5	WPD	directory	(workpieces)

11292	DRAM_FILESYST_CONFIG			EXP	-		
-	Configuration of the DRAM file system			BYTE	PowerOn		
-							
-	-	0x22			0/0		

Description:

Configuration of the DRAM file system.

It is not permitted to change the default value!

Bit0/1:

Background memory for the DRAM file system $\mathrm{Bit4/5:}$

Memory for a fast backup during editing of DRAM files.

11294	SIEM_TRACEFILES_CONFIG			EXP	-		
-	Configuration of the SIEM* trace file			DWORD	PowerOn		
-		·					
-	-	0 -			1/1		

Description:

Configuration of the tracefiles SIEM*

Bit0:

Additional information about the PDUs sent is to be entered in N SIEMDOMAINSEQ MPF for download

Bit1:

Additional information about the PDUs received is to be entered in N SIEMDOMAINSEQ MPF for download

11297	PROTOC_IPOCYCLE_CONTROL			N01	-
-	Prevent overrur	Prevent overrun of IPO time level			PowerOn
-					
-	10	10 1,1,1,1,1,1,1,1 0 1			1/1

Description:

Setting whether an overflow of the time level is to be prevented during the recording of data in the time level of the IPO.

If applicable, data sets are discarded when the function is active, and are not entered in the log file in order to prevent an impending overflow of the IPO time level.

This may mean that data sets are also then lost if a level overflow would not yet have occurred with the function inactive.

11298	PROTOC_PREPTIME_CONTROL			N01	-		
-	Interruption time prep time level in seconds.			DOUBLE	PowerOn		
-		·					
-		1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0	-	-	0/0		

Description:

Time in seconds, for which the prep time level may be blocked. If the PREP does not manage to pass through within the set time, the cyclic events are not logged. It is thus ensured that operation cannot be completely blocked by data recording.

11300	JOG_INC_MODE_LEVELTRIGGRD	N01	H1,R1	
-	INC and REF in jog mode	BOOLEAN	PowerOn	
-				
-	- TRUE	TRUE -		

Description:

1: Jog mode for JOG-INC and reference point approach
 JOG-INC:

When the traversing key is pressed in the required direction (e.g. +), the axis begins to traverse the set increment. If the key is released before the increment has been completely the traversed, the movement is interrupted and the axis stops. If the same key is pressed again, the axis completes the remaining distance-to-go until this is 0.

O: Continuous operation for JOG-INC and reference point approach JOG-INC:

When the traversing key is pressed (first rising edge) the axis travels the whole set increment. If the same key is pressed again (second rising edge) before the axis has completed traversing the increment, the movement is aborted, i.e. not completed.

The differences in axis travel behavior between the jog mode and continuous operation in incremental traversing are described in detail in the relevant chapters.

For travel behavior in reference point approach see
References: /FB/, R1, "Reference Point Approach"
MD irrelevant for:

Continuous traversing (JOG continuous)

11310	HANDWH_REVERSE			N09	H1
-	Threshold for direction change handwheel			BYTE	PowerOn
-					
-	-	2	-	-	2/2

Description:

Handwheel travel:

Value = 0: no immediate traversing in the opposite direction Value > 0: immediate traversing in the opposite direction if the handwheel is turned in the opposite direction by at least the indicated number of pulses

General machine data

11320	HANDWH_IMP_PER_LATCH			N09	H1		
-	Handwheel pulses per detent position			DOUBLE	PowerOn		
-							
-	6	1.,1.,1.,1.,1.			2/2		

Description:

The connected handwheels are adapted to the control in MD11320 $\mbox{\sc MN_HANDWH_IMP_PER_LATCH.}$

The number of pulses generated by the handwheel for each handwheel detent position has to be entered. The handwheel pulse weighting must be defined separately for each connected handwheel (1 to 3). With this adaptation, each handwheel detent position has the same effect as one press of the traversing key in incremental traversal.

Entering a negative value reverses the direction of rotation of the handwheel.

11322	CONTO	CONTOURHANDWH_IMP_PER_LATCH			H1		
-	Contour	handwheel pulses per dete	ent position	DOUBLE	PowerOn		
-							
802d-cu3	6	1.,1.,1.,1.,1.	-	-	2/2		
802d-ng2	6	1.,1.,1.,1.,1.	-	-	0/0		
802d-ng3	6	1.,1.,1.,1.,1.	-	-	0/0		
802d-tm1	6	1.,1.,1.,1.,1.	-	-	0/0		
802d-tm2	6	1.,1.,1.,1.,1.	-	-	0/0		
802d-tm3	6	1.,1.,1.,1.,1.	-	-	0/0		

Description:

Adaptation factor to the hardware of the contour handwheel: Enter the number of pulses issued per detent position by the contour

handwheel.

Because of this normalization, a detent position of the contour $\mbox{\sc handwheel}$

corresponds to one press of a key with incremental jog processes. Sign reversal reverses the direction of evaluation.

11324	HANDWH_VDI_REPRESENTATION N			N01	OEM		
-	Display of hand	wheel number in VDI Int	terface	DWORD	PowerOn		
-							
-	-	0	0	1	0/0		

Description:

The number of the handwheel is displayed in the channel/axis-specific signals of the $\,$

VDI interface:

Value = 0 :

Bit coded (1 of 3, only 3 handwheels can be displayed)

Value = 1 :

Binary coded (6 handwheels can be displayed)

11330	JOG_INCR_SIZE_TAB			EXP, N09	H1
-	Increment size	ncrement size for INC/handwheel			PowerOn
-					
-	5	1.,10.,100.,1000.,1000 0.	-	-	1/1

Description:

In incremental traversal or handwheel travel, the number of increments to be traversed by the axis can be defined by the user, e.g. via the machine control panel.

In addition to the variable increment size (INCvar), 5 fixed increment sizes (INC...) can also be set.

The increment size for each of these 5 fixed increments is defined collectively for all axes by entering values in JOG_INCR_SIZE_TAB [n]. The default setting is INC1, INC10, INC100, INC1000 and INC10000.

The entered increment sizes are also active for DRF. The size of the variable increment is defined in SD41010 \$SN JOG VAR INCR SIZE.

Related to:

 $\mbox{MD31090}$ $\mbox{MA_JOG_INCR_WEIGHT}$ (weighting of an increment for $\mbox{INC/manual})$

NC/PLC interface signal V3300 1001.0-4,1005.0-4,1009.0-4 (geometry axis 1-3 active machine function: INC1; ...; INC10000)

NC/PLC interface signal V390x 0005.0 - .5
 (active machine function: INC1; ...; INC10000).

11346	HANDWH_TRUE_DISTANCE			N01	H1,P1,W1	
-	Handwheel defa	andwheel default path or velocity			PowerOn	
-						
-	-	0	0	7	2/2	

Description:

- 1: The default settings of the handwheel are path defaults. No pulses are lost. Due to limiting to a maximum permitted speed, axes may be trailing.
- 2: Effects as with value=0, but with longer deceleration path during handwheel standstill.
- 3: Effects as with value=1, but with longer deceleration path during handwheel standstill.

11350	HANDW	HANDWHEEL_SEGMENT			H1
-	Handwh	eel segment		BYTE	PowerOn
-				·	
802d-cu3	3	2,2,0,0,0,0	-	-	1/1
802d-ng2	2	2,2,0,0,0,0	-	-	1/1
802d-ng3	2	2,2,0,0,0,0	-	-	1/1
802d-tm1	2	2,2,0,0,0,0	-	-	1/1
802d-tm2	2	2,2,0,0,0,0	-	-	1/1
802d-tm3	2	2,2,0,0,0,0	-	-	1/1

General machine data

Description: Machine data defines which

hardware segment the handwheel is connected to:

0 = SEGMENT EMPTY ;no handwheel

1 = SEGMENT_840D_HW ; handwheel at 840D HW
2 = SEGMENT_802DSL_HW ; handwheel at 802DSL HW
5 = SEGMENT_PROFIBUS ; handwheel at PROFIBUS
7 = SEGMENT_ETHERNET ; handwheel at Ethernet

11351	HANDW	HANDWHEEL_MODULE			H1
-	Handwh	eel module		BYTE	PowerOn
-					
802d-cu3	3	1,1,0,0,0,0	0	6	1/1
802d-ng2	2	1,1,0,0,0,0	0	6	1/1
802d-ng3	2	1,1,0,0,0,0	0	6	1/1
802d-tm1	2	1,1,0,0,0,0	0	6	1/1
802d-tm2	2	1,1,0,0,0,0	,0,0,0,0 0 6		1/1
802d-tm3	2	1,1,0,0,0,0	0	6	1/1

Description:

Machine data specifies the hardware module to which

the handwheel is connected.

(Content dependent on MD11350 \$MN HANDWHEEL SEGMENT):

0 = no handwheel configured

\$MN_HANDWHEEL_MODUL =

;SEGMENT_840D_HW

1 ;SEGMENT 802DSL HW

1..6 ;SEGMENT_PROFIBUS/PROFINET ;index for MD11353

\$MN_HANDWHEEL_LOGIC_ADDRESS[(x-1)]

1 ;SEGMENT ETHERNET

11352	HANDW	HEEL_INPUT		N09	H1
-	Handwh	eel connection		BYTE	PowerOn
-					
802d-cu3	3	1,2,0,0,0,0	0	6	1/1
802d-ng2	2	1,2,0,0,0,0	0	6	1/1
802d-ng3	2	1,2,0,0,0,0	0	6	1/1
802d-tm1	2	1,2,0,0,0,0	0	6	1/1
802d-tm2	2	1,2,0,0,0,0	0	6	1/1
802d-tm3	2	1,2,0,0,0,0	0	6	1/1

Description:

Machine data which is intended to select

the handwheels connected to

a hardware module:

0 = No handwheel configured

1..6 = Handwheel connection to HW module/Ethernet interface

11353	HANDWHEEL_LOGIC_ADDRESS			N04, N10	H1			
-	Logical handwh	eel slot addresses	DWORD	PowerOn				
-		<u> </u>						
-	6	0,0,0,0,0,0	0	8191	1/1			

Description:

For PROFIBUS/PROFINET only:

Logical start address of the hand wheel slots if handwheels are connected by PROFIBUS/PROFINET ($\Mbox{SMN}_{HANDWHEEL}_SEGMENT = 5$)

11380	MONITOR_ADDRESS			EXP, N06	STZ			
-	Test MD for cha Integrated	Test MD for changing the NCK code or data for Safety Integrated			Immediately			
NBUP, NDLD		· · · · · · · · · · · · · · · · · · ·						
-	-	0	-	-	0/0			

Description:

Address of an NCU memory location whose content is displayed in the MD11382 \$MN_MONITOR_DISPLAY_INT and 11384 \$MN MONITOR DISPLAY REAL.

There are no protective measures incorporated to prevent unauthorized access. That is the input address points to a memory area protected by the system or unoccupied, so refreshing the MD values MONITOR_DISPLAY_INT and MONITOR_DISPLAY_REAL causes a time-out and the NCU remains at a standstill (watchdog LED lights up)! There is a list of permisible addresses for the test, which depends on the software version.

A restart resets the address to its starting value.

It then points to any writable and readable memory location that is not used by any other system function.

11382	MONITOR_DISPLAY_INT I			EXP, N06	STZ			
-	INTEGER displ	EGER display of the addressed location			Immediately			
NBUP, NDLD								
-	-	0	-	-	0/0			

Description:

INTEGER display of the addressed location SW3.2

This MD displays the content of the NCU memory location that is defined in MD11380 \$MN_MONITOR_ADDRESS. The displayed values contains the four consecutive bytes from the stated address, whereby the first byte is on the extreme right and the fourth on the extreme left.

This MD is a display MD whose content is read anew on every display refresh. Writing to this MD is ignored (without alarm).

11384	MONITOR_DISPLAY_REAL			EXP, N06	STZ			
-	REAL display o	REAL display of the addressed location			Immediately			
NBUP, NDLD								
-	-	0.0	-	-	0/0			

Description:

REAL display of the addressed location SW3.2

This MD displays the content of the NCU memory location that is defined in MDMD11380 \$MN_MONITOR_ADDRESS. The displayed value interprets the eight consecutive memory locations from the stated address as a floating point number with double accuracy (64 bit IEEE format). 0.0 is displayed if this value does not correspond to a valid floating point number.

This MD is a display MD whose content is read anew on every display refresh. Writing to this MD is ignored (without alarm).

11386	MONITOR_INPUT_INT			EXP, N06	STZ			
-	INTEGER input for the addressed location			DWORD	Immediately			
NBUP, NDLD								
-	-	0	-	-	0/0			

Description:

INTEGER input for addressed location, SW3.2

The value is written with the aid of MD11390

 $MN_MONITOR_INPUT_STROBE$ into the address selected with MD11380 $MN_MONITOR_ADDRESS.$ The 4 bytes from the stated address are taken over by writing the value 1 in the MD11390

\$MN_MONITOR_INPUT_STROBE.

In so doing, the byte moves to the extreme right of the memory location MONITOR_ADDRESS, the byte to its left into the memory location MONITOR_ADDRESS+1, etc.

11388	MONITOR_INPUT_REAL			EXP, N06	STZ
-	REAL input for	addressed location		DOUBLE	Immediately
NBUP, NDLD					
-	-	0.0	-	-	0/0

Description:

REAL input for addressed location, SW3.2

The value is written with the aid of MD11390 $\,$

 $MN_MONITOR_INPUT_STROBE$ into the address selected with MD11380 $MN_MONITOR_ADDRESS.$ The 8 bytes from the stated address are taken over by writing the value 2 in the MD11390

\$MN MONITOR INPUT STROBE.

In so doing, the input floating point number is converted into $64\ \mathrm{bit}$ IEEE format.

11390	MONITO	MONITOR_INPUT_STROBE			STZ
-		Overwrite the addressed location with MONITOR_INT/REAL			Immediately
NBUP, NDLD				<u>.</u>	<u>.</u>
-	-	0	0	2	0/0

Description:

Overwriting the addressed location with MD11386 \$MN_MONITOR_INPUT_INT/REAL or MD11388\$MN_MONITOR_INPUT_REAL SW3.2

An input into this MD takes over the content of the MD11386 $MN_MONITOR_INPUT_INT$ or the MD11388 $MN_MONITOR_INPUT_REAL$. The input value decides which data is taken over:

0: No action

1: Content of MD11386 \$MN_MONITOR_INPUT_INT is written in four NCU bytes from MD11380 \$MN MONITOR ADDRESS.

2: Content of MD11388 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$ is written in eight NCU bytes from MD11380 $MN_MONITOR_INPUT_REAL$

The content of MONITOR_INPUT_STROBE is reset to 0 after the takeover (no action). A new input can therefore be made immediately. In order to familiarize oneself with this function, one should first leave MD11380 \$MN_MONITOR_ADDRESS at its default value. One can then write data without causing damage.

Examples:

MONITOR_INPUT_INT = 55AA

MONITOR_INPUT_STROBE = 1

=> in MONITOR_DISPLAY_INT appears 55AA

MONITOR_INPUT_REAL = 1.234

MONITOR_INPUT_STROBE = 2

=> in MONITOR_DISPLAY_REAL appears 1.234

Caution!!!

Writing data to unknown addresses can even destroy the NCK system program! That may have unforeseen consequences (danger to machine and people!). If the machine and those present survive such an action undamaged, the system program can usually be restored by power off/on.

11398	AXIS_VAR_SERVER_SENSITIVE			EXP	В3
-	Axis-Var server response			BYTE	PowerOn
-					
-	-	0	-	-	0/0

Description:

The axis-variable server supplies the data for the OPI blocks ${\rm SMA/SEMA}$, ${\rm SGA/SEGA}$ and ${\rm SSP}$.

If no value can be supplied for an axis (e.g. because the axis is a link axis) then a default value (usually 0) is returned.

For debugging purposes, this machine data can be used to set the axis-var-server to sensitive so that an error message is returned instead of a default value.

0: default value
1: error message

11400	TRACE_SELECT			EXP	-			
-	Activation of internal trace functions			DWORD	PowerOn			
-		·						
-	-	0	-	-	0/0			

Description:

Bit string for activating internal trace functions for NCK time measurements, analog output of variables etc.

11405	TCI_TRACE_ACTIVE			EXP	-				
-	Activation of internal task trace function			BOOLEAN	PowerOn				
-									
-	-	FALSE	-	-	0/0				

Description:

Control the activation of the TCI interface for the NRKpro. It will activate the tci and kernel task traces modules.

General machine data

11410	SUPPRESS_A	UPPRESS_ALARM_MASK			D1,M3,K3,S1,V1, W1
-	Mask for support of special alarm outputs			DWORD	PowerOn
-					
-	-	0x108003	0	0xFFFFFFF	0/0

Description:

Mask for suppressing special alarm outputs

Bit set: The corresponding alarm (warning) is NOT generated.

Bit 0:

Alarm 15110 "Channel %1 block %2 REORG not possible"

Bit 1:

Alarm 10763 "Channel \$1 block \$2. The path component of the block in the contour plane is zero"

Bit 2:

Alarm 16924 "Channel %1 Caution: program testing can modify tool/magazine data"

--> Note: The alarm is only a message alarm

Bit 3:

Alarm 22010 "Channel \$1 spindle \$2 block \$3. Actual gear stage does not correspond to the set gear stage"

Bit 4:

Alarm 17188 "Channel %1 D number %2 with tool T nos. %3 and %4 defined" $\,$

Alarm 17189 "Channel %1 D number %2 of the tools at magazine/magazine locations %3 and %4 defined". The two alarms are of equal status and only message alarms.

Bit 5:

Alarm 22071 "TO unit %1 tool %2 duplo no. %3 is active but not in the active wear grouping." The alarm is only a message alarm.

Bit 6:

Alarm 4027 "NOTICE! MD %1 was also changed for the other axes of the axis container %2 " $\,$

Alarm 4028 "NOTICE! The axial MDs in the axis container will be aligned on the next runup " $\,$

Bit 7:

Alarm 22070 "TO unit %1 please change tool T= %2 into magazine. Repeat data backup". The alarm is only a message alarm.

Bit 8:

Alarm 6411 "Channel %1 tool %2 with duplo no. %3 has reached tool prewarning limit"

Alarm 6413 "Channel %1 tool %2 with duplo no. %3 has reached tool monitoring limit."

The two alarms are only message alarms. They occur during the program execution.

Bit 9:

Alarm 6410 "TO unit %1 tool %2 with duplo no. %3 has reached tool prewarning limit ."

Alarm 6412 "TO unit %1 tool %2 with duplo no. %3 has reached tool monitoring limit ".

The two alarms are only message alarms. They occur as a result of an operator action.

06/2009 Machine Data

General machine data

```
Bit10:
  Alarm 10604 "channel %1 block %2 "Thread lead increase too high"
  Alarm 10605 "channel %1 block %2 "Thread lead decrease too high"
  Alarm 14088 "Channel 51 block %2 axis %3 doubtful position".
  Alarm 10607 "Channel %1 block %2 tapping cannot be executed with
  frame."
Bi+13.
  Alarm 10704 " channel %1 block %2 Protection area monitoring is
  not quaranteed."
Bit14:
  Alarm 21701 "Measuring reactivated too soon (<2 IPO cycles)"
  Alarm 5000 "Communication order cannot be executed"
Bit16:
  Alarm 21600 "Monitoring active for ESR"
Bit17:
  Alarm 16945 "Channel %1 action %2<ALNX> is delayed until block
  Note: The alarm is only a message alarm.
Bi+18:
  Alarm 10750 "Channel %1 block %2 Activation of the tool radius
  compensation without tool number"
Bit19: Alarm 17193 "Channel %1 block %2 The active tool ist no
longer at tool holder no./spindle no. \$3, program \$4"
Bit20:
  Alarm 2900 "Reboot is delayed"
  Alarm 22012 "Channel %1 block %2. Leading axis %3 is in simula-
  tion mode"
  Alarm 22013 "Channel %1 block %2. Following axis %3 is in simu-
  lation mode"
  Alarm 22014 "Channel %1 block %2. The dynamics of leading axis
  %3 and following axis %4 are very different"
  Alarm 22040 "Channel%1 Block %3 Spindle %2 not referenced with
  zero mark" is no longer checked (cyclically) with
     Bit21 set after power ON of the closed loop position control.
Bit22:
  Alarm 26080 "Channel %1 retraction position of axis %2 not pro-
  grammed or invalid"
  Alarm 26081 "Channel %1 single axis trigger axis %2 is trig-
  gered, but axis is not PLC controlled"
Bit23:
  Alarm 16949 "Correspondence between marks of channel %1 and
  channel %2 is invalid"
```

Alarm 16950 "Channel %1 search run with holding block" Bit25:

Alarm 22016 "Channel %1 block %2 following spindle %3 in range of reduced acceleration capacity" $\,$

General machine data

Bit26:

Alarm 22015 "Channel %1 block %2 following spindle %3 no dynamic for additional motion" $\,$

Bit27:

Alarms 16112 and 22030 "Channel %1 block %2 following spindle %3 impermissible programming"

Bit28:

Alarm 26083 "Channel %1 ESR for PLC controlled axis %2 was triggered"

Bit29:

Alarm 16772 "Channel %1 block %2 axis %3 is following axis, coupling is opened"

Bit.30:

Alarm 16600 "Channel %1 block %2 spindle %3 gear stage change not possible"

Bit31:

Alarm 16774 "Channel %1 axis %2 synchronizsation aborted"

11411	ENABLE_ALARM_MASK			EXP	D1,K1			
-	Activation of warnings			DWORD	Reset			
-								
-	-	0	-	-	0/0			

Description:

Mask for generating alarms that are normally suppressed.

Bit set:Alarms of this alarm group are output.

Bit not set:Alarms of this alarm group are not output.

Bit Hex.Meaning

value

=======

- 0: $0 \times 1 \text{Alarms}$ that have SHOWALARMAUTO as the alarm response are output.
- 1: 0x2Alarms that have SHOWWARNING as the alarm response are output.
- 2: 0x4Alarm 22280 "Thread power up path too short" is output.
- 3: 0x8Alarms that are triggered by the NCU LINK MODULE are switched on.
- 4: $0 \times 10 \text{Alarm } 10883$ "Chamfer or rounding must be shortened" allowed.
- 5: 0x20Alarm 20096 "Brake test aborted" is output.
- 6: 0x40Alarm 16956 "Program cannot be started because of global start disable" is output.

Alarm14005 "Program cannot be started because of program-specific start disable" is output. Alarm can only be switched on in channel status RESET, in all other channel states it is output without conditions.

- 7: 0x80Alarm 16957 "Stop delay range is suppressed" is output.
- 8: 0x100Alarm 1011 fine coding150019 or 150020 "Incorrect axis number in the LINK".
- 9: 0x200Alarm 22033 Diagnostics 1 to 6 for "Track synchronism" (linkages).
- 10: 0x400Alarm 15122 "PowerOn after Powerfail: %1 data were restored, thereof %2 machine data, %3 errors" is output.
- 11: $0 \times 800 \text{Alarms} 10722$, 10723, 10732 or 10733 are output instead of alarms 10720, 10721, 10730 or 10731.
- 12: $0 \times 1000 \text{Alarm} 22033 \text{ diagnostics greater}$ than or equal to 7 for "Track synchronism" (linkages)

11412	ALARM_REACTION_CHAN_NOREADY			EXP, N01	D1
-	Alarm response CHAN_NOREADY permitted			BOOLEAN	PowerOn
-					
-	- F	FALSE	-	-	0/0

Description:

This MD is used for compatibility with the PLC systems older than ${\rm SW4.1.}$

If this MD is not set, the behavior implemented before SW4.1 (configured alarm reaction) is set

With SW 4.1 and higher, it is possible to set signal CHANNEL NOREADY on the PLC in response to alarms.

If this MD is not set, then the alarm handler internally re-configures BAG NOREADY into CHAN NOREADY.

11413	ALARM_PAR_DISPLAY_TEXT			EXP, N01	D1
-	Alarm parameter as text output			BOOLEAN	PowerOn
-					
-	-	FALSE	-	-	0/0

Description:

If the MD is set, texts can be output as alarm parameters instead of numbers.

11414	ALARM_CLR_N	NCSTART_W_CANCEL	EXP, N01	D1	
-	Clear NCSTART alarms with CANCEL			BOOLEAN	PowerOn
-					
-	-	FALSE	-	-	0/0

Description:

If this MD is set, then alarms that have ClearInfo=NCSTART are cleared by the Alarm Cancel button as well as by NC-Start.

If this MD is not set, then NCSTART alarms are not cleared by Cancel.

The purpose of this MD is to provide compatibility with system behavior.

11415	SUPPRESS_ALARM_MASK_2			EXP, N06	-
-	Masking of alarm outputs			DWORD	PowerOn
-					
-	-	0xE	-	-	0/0

Description:

Mask for suppressing special alarm outputs
Bit set:Corresponding alarm (warning) is NOT triggered.
Bit Hex. Meaning

value

0: 0x116773 "Channel %1 axis %3 is following axis. The axis/spindle disables of the leading axes are different."

1: 0x22100 "NCK battery warning level reached"

2101 "NCK battery alarm" 2102 "NCK battery alarm"

2: 0x42120 "NCK fan alarm" (no effect on modules with a design requiring a fan)

3: 0x815120 "PowerFail: Display buffer overflow"

4: 0x1015187 "Error during execution of PROGEVENT file"

5: 0x2015188 "Error during execution of ASUB file"

6: 0x4026120 "\$AA_ESR_ENABLE = 1 and axis is to become neutral"
26121 "Axis is neutral and \$AA_ESR_ENABLE =1 is to be set"
26123 "\$AA_ESR_ENABLE = 1 is to be set, but \$MA_ESR_REACTION is not set"

26124 "\$AC_TRIGGER triggered, but axis is neutral, ESR ignores this axis"

7: 0x80:10724 "Software limit violated at block start"
10734 "Operating range limit violated at block start"
10737 "WCS operating range limit violated at block start"

8: 0x10014008 "WRITE command in /_N_EXT_DIR"

10734 "Operating range limit violated at block start"

10737 "WCS operating range limit violated at block start"

9: 0x20014006 "Invalid program name"

10: 0x4004006 "Maximum number of activatable axes exceeded"

11: 0×80016017 "LIFTFAST ignores this axis, as it is not applicable to this type of axis."

11450	SEARCH_RUN_MODE			EXP, N01	K1,TE3,N4,H2,Z1
-	Parameterization for search run			DWORD	PowerOn
-					
-	-	0	0	0x3F	1/1

Description:

The behavior during the action blocks after search run can be affected by the following bits:

Bit 0 = 0:

Machining is stopped after loading of the last action block after search run, the NC/PLC interface signal V3300 0000.6 (last action block active) and alarm 10208 is output.

Bit 0 = 1:

Machining is stopped with the loading of the last action block after search run, and the NC/PLC interface signal V3300 0000.6 (last action block active) is set. Alarm 10208 is not output until the PLC requests it by setting the NC/PLC interface signal V3200 0001.6 (PLC action finished).

Usage:

Starting an ASUB from the PLC after search run.

The message to the operator that another NC start is required in order to continue with the program is not to be displayed until after the end of the ASUB.

Bit.1 = 1

Automatic ASUB start after output of the action blocks (see also MD11620 $MN_PROG_EVENT_NAME$). Alarm 10208 is not output until the ASUB has finished.

Bit2 = 0:

Spindle: The auxiliary functions are output in the action blocks

Bit2 = 1:

The output of the auxiliary functions in the action blocks is suppressed. The spindle programming collected by search run can be output at a later point in time (e.g. in an ASUB).

The program data for this are stored in the following system variables:

\$P_SEARCH_S,

\$P_SEARCH_SDIR,

\$P SEARCH SGEAR,

\$P_SEARCH_SPOS,

\$P_SEARCH_SPOSMODE.

Bit 3 = 1:

The cascaded search run is disabled (default setting: release). Cascaded search run means that the search run is restarted immediately after finding a search target.

Bit 4:Reserved

Bit 5 = 0:

During block search on a nibbling block the 1st nibbling stroke is not executed. $\,$

Bit 5 = 1:

During block search on a nibbling block a punching stroke is triggered at block start (1st nibbling stroke).

General machine data

11460	OSCILL_MODE_MASK			N09	P5			
-	Mode mask for asynchronous oscillation			DWORD	PowerOn			
-								
-	-	0x0	0	0xFFFF	0/0			

Description:

Bit 0

Value 1

In the case of block search, the oscillation movement is started immediately after NC start, i.e. during approach to approach position, provided it has been activated in the program section being processed.

Value 0

(default value)

The oscillation movement is not started until the approach position is reached.

11470	REPOS_MODE_MASK			EXP, N01	K1
-	Repositioning properties			DWORD	PowerOn
-					
-	-	0x8	0	0xFFFF	1/1

Description:

This bit mask can be used to set the behavior of the control during repositioning.

Bit no. Meaning when bit set

0 (LSB)

The dwell time is continued in the residual block from where it was interrupted. (If the bit is not set, the dwell time is repeated completely).

- 1 Reserved
- When the bit is set, the repositioning of individual axes can be prevented or delayed via the VDI interface.
- 3 When the bit is set, positioning axes are repositioned in the approach block during search run via program test.
- 4 As 3, but after every Repos, not only during search run.
- 5 When the bit is set, changed feeds and spindle speeds already become valid in the residual block, otherwise not until the following block.
- 6 When the bit is set, neutral axes and positioning spindles are repositioned after SERUPRO as command axes in the approach block.
- 7 The bit changes the behavior of the VDI-AXIN interface signal "Repos Delay". The level of "Repos Delay" is read if REPOSA is interpreted. Axes that are neither geo nor orientation axes are then excluded from the REPOS, that is REPOS does NOT move these axes.

11480	PLC_OB1_TRACE_DEPTH			EXP, N03, N09	-	
-	Buffer depth of PLC trace data at OB1			DWORD	PowerOn	
-						
-	-	2	2	8	0/0	

Description:

Buffer depth of PLC trace data at OB1.

Multiple values of PLC data are buffered, between the time of collection in the PLC and the time of inspection in NCK. Variables traced at "OB1" are collected once per complete PLC scan, but can only be inspected once per IPO cycle.

The buffer size must accommodate at least one more value than the total number of buffered values to be inspected. This is to prevent NCK from inspecting a value that the PLC is in the process of collecting.

A good value to start with is one more than MD10074 $\mbox{\sc MN}$ PLC IPO TIME RATIO.

The larger the buffer depth, the fewer PLC variables that can be traced, because there is a single, small, fixed pool of data slots for sending data samples from the PLC to NCK (64 data slots). Every PLC variable being traced is allocated as many data slots from the pool as the value of the buffer depth.

This single pool of data slots is shared by data collected at OB1, OB35, and OB40 (even though the buffer depths of OB1, OB35, and OB40 can be configured to be different from one another). It is also shared by all concurrent users of trace, even though the users might have no knowledge of one another.

11481	PLC_OB35_TRACE_DEPTH			EXP, N03, N09	-	
-	Buffer depth of PLC trace data at OB35			DWORD	PowerOn	
-						
-	-	2	2	8	0/0	

Description:

Buffer depth of PLC trace data at OB35.

Multiple values of PLC data are buffered, between the time of collection in the PLC and the time of inspection in NCK. Variables traced at "OB35" are collected every time the PLC timer interrupts, but can only be inspected once per IPO cycle.

The buffer size must accomodate at least one more value than the number of buffered values to be inspected. This is to prevent NCK from inspecting a value that the PLC is in the process of collecting.

A good value to start with is one more than the number of PLC timer interrupts expected to occur every IPO cycle.

The larger the buffer depth, the fewer PLC variables that can be traced, because there is a single, small, fixed pool of data slots for sending data samples from the PLC to NCK (64 data slots). Every PLC variable being traced is allocated as many data slots from the pool as the value of the buffer depth.

The single pool of data slots is shared by data collected at OB1, OB35, and OB40 (even though the buffer depths of OB1, OB35, and OB40 can be configured to be different from each other). It is also shared by all concurrent users of trace, even though the users might have no knowledge of one another.

General machine data

11482	PLC_OB40_TRACE_DEPTH			EXP, N03, N09	-	
-	Buffer depth of PLC trace data at OB40			DWORD	PowerOn	
-						
-	-	2	2	8	0/0	

Description:

Buffer depth of PLC trace data at OB40.

Multiple values of PLC data are buffered, between the time of collection in the PLC and the time of inspection in NCK. Variables traced at "OB40" are collected just when the PLC receives the special, programmably initiated OB40 interrupt from NCK, but can only be inspected once per IPO cycle.

The buffer size must accommodate at least one more value than the number of buffered values to be inspected. This is to prevent NCK from inspecting a value that the PLC is in the process of collecting.

If the OB40 interrupt is issued less frequently than once per IPO cycle, then the OB40 buffer depth should be 2. Otherwise it should be one more than the largest number of interrupts expected during any one IPO cycle.

The larger the buffer depth, the fewer PLC variables that can be traced, because there is a single, small, fixed pool of data slots for sending data samples from the PLC to NCK (64 data slots). Every PLC variable being traced is allocated as many data slots from the pool as the value of the buffer depth.

The single pool of data slots is shared by data collected at OB1, OB35, and OB40 (even though the buffer depths of OB1, OB35, and OB40 can be configured to be different from each other). It is also shared by all concurrent users of trace, even though the users might have no knowledge of one another.

11550	STOP_MODE_MASK			N01	V1
-	Defines the stop behavior.			DWORD	PowerOn
-					
-	-	0	0	0x1	0/0

Description:

This MD describes the stop behavior of the NCK under certain conditions:

Bit no. Meaning

Bit 0 == 0 :=

No stop if G codes G331/G332 are active and a path motion or G4 has also been programmed.

Bit 0 == 1 :=

Same behavior as until SW version 6.4, i.e. a stop is possible during G331/G332.

Bits 1.....15

Not assigned

06/2009 Machine Data

General machine data

11600	BAG_MASK			N01	K1,Z1		
-	Defines the mode group behavior			DWORD	PowerOn		
-		·					
-	-	0	0	0x3	0/0		

Description:

This MD describes the effect of the VDI signals on the channels of a mode group in respect of ASUBs and interrupt routines.

Bit no. Hexadec. Meaning when bit set

value

Bit0: 0×0 Normal response to mode group signals in all channels of the mode group (as SW 3)

All channels switch into a program operating

mode on interrupt.

Bit0: 0×1 No response to other mode group VDI signale in the channel in which an

interrupt handling (ASUB) is running. (BAGRESET, BAG-STOP. individual types

A and B, mode selection)

Bitl: 0x1 There is an operating mode changeover only in those channels

which have received an interrupt request. (Only when bit 0 is set!)

11602	ASUP_START_MASK			N01, -	K1,M3,TE3,TE7
-	Ignore stop con	ditions for ASUB	DWORD	PowerOn	
-					
-	-	0	0	0xf	2/2

Description:

Bit 0 :

STOP reason: STOP key , M0 or M01

An ASUB is started immediately if NCK is in RESET state (or JOG mode) (no ASUB can be started in RESET/JOG without this bit). NOTICE:

- This bit is set implicitly if MD20108 \$MC_PROG_EVENT_MASK deviates from zero in a channel!
- This bit is set implicitly if BIT 1 is set in MD11450 \$MN SEARCH RUN MODE!

Bit 1 :

Start allowed even if not all axes have yet been referenced.

Bit 2:

Start allowed even if a read-in disable is active, that is the blocks of the ASUB program are loaded and executed immediately. This disables machine data IGNORE_INHIBIT_ASUP. The NCK behavior corresponds to the machine data contents of IGNORE INHIBIT ASUP== FFFFFFFF.

General machine data

If the bit is not set:

then the ASUB is internally selected, but not processed until the read-in disable is canceled.

The assignment of the machine data IGNORE_INHIBIT_ASUP is evaluated.

If IGNORE_INHIBIT_ASUP = 0 also applies, then an ASUB is triggered immediately internally, but the blocks of the ASUB program are not loaded until the read-in disable is canceled.

The path is immediately decelerated when the ASUB is triggered (except with option ${\tt BLSYNC})\:.$

The read-in disable is set once more in the ASUB program.

Bit 3:

Notice:

The following function can always be activated in single-channel systems. Multi-channel system require bit1 in MD11600 MN_BAG_MASK in addition. The function is active o_n_l_y for those ASUBs that were activated from program status Abort (channel status Reset). The function is not active in multi-channel systems without MD11600 $MN_BAG_MASK_BILL$

If an ASUB is started automatically from JOG, the user may stop in the middle of the ASUB program. The JOG mode is continuously displayed for the user. With bit 3 set, the user may jog in this situation. This is not possible without bit 3. In this case mode change is locked with alarm 16927. By pressing the Start key, the user can continue the ASUB program. As long as the ASUB program is running, the user is naturally not able to jog. After ASUB program end the user may jog again.

Bits 4 to 15:Reserved

Related to:

MD11604 \$MN ASUP START PRIO LEVEL

11604	ASUP_START_PRIO_LEVEL			N01, -	K1,TE3,TE7
-	Priorities from which 'ASUP_START_MASK' is effective			DWORD	PowerOn
-					
-	-	0	0	128	2/2

Description:

This machine data defines the ASUB priority from which MD11602 \$MN_ASUP_START_MASK is to be applied. MD11602 \$MN_ASUP_START_MASK is applied from the level specified here up to the highest ASUB priority level 1.

Related to:

MD11602 \$MN ASUP START MASK

06/2009 Machine Data

General machine data

11610	ASUP_EDITABLE I			N01	K1		
-	Activation of a user-specific ASUB program			DWORD	PowerOn		
-							
-	-	0	0	0x7	2/2		

Description:

This MD determines whether user-specific routine: N_ASUP_SPF stored in directory $N_CUS_DIR/_N_CMA_DIR$ is to be used to process RET and REPOS. The user ASUB is searched for first in N CUS DIR.

Value: Meaning:

Routine N_ASUP_SPF is not activated for either RET or REPOS. Bit0 = 1User-specific routine N_ASUP_SPF is executed for RET, the routine supplied by the system is executed for REPOS.

Bit1 = 1User-specific routine N_ASUP_SPF is executed for REPOS, the routine supplied by the system is executed for RET

 $Bit0 = + bit1 = 3User-specific routine <math>N_ASUP_SPF$ is executed for both RET and REPOS

Bit2 = 1User ASUB _N_ASUP_SPF is searched for first in _N_CMA_DIR Related to:

MD11612 \$MN ASUP EDIT PROTECTION LEVEL

References:

/IAD/ "Installation and Start-Up Guide"

11612	ASUP_EDIT_PROTECTION_LEVEL I			N01	K1
-	Protection level	rotection level of the user-specific ASUB program			PowerOn
-					
-	-	2	0	7	2/2

Description:

Protection level of the user-specific ASUB program for RET and/or $\ensuremath{\mathsf{REPOS}}$

The data is active only if MD11610 $MN_ASUP_EDITABLE$ is set to a value other than 0.

This machine data defines the protection level of the program $_{\rm N_ASU_CUS}$.

MD irrelevant for:

MD11610 \$MN_ASUP_EDITABLE set to 0

Related to:

MD11610 \$MN ASUP EDITABLE

General machine data

11620	PROG_EVENT_NAME			EXP, N12	K1			
-	Program name for PROG_EVENT			STRING	PowerOn			
-								
-	-		-	-	2/2			

Description:

Name of the user program called by the functions "Event-controlled program calls" and "Automatic ASUB start after block search" (MD11450 \$MN_SEARCH_RUN_MODE Bit1). _N_PROG_EVENT_SPF is preset. The presetting becomes active if MD11620 \$MN_PROG_EVENT_NAME includes a blank string.

If the machine data does not contain a blank string, then the syntax of the string is checked as in the case of a subprogram identifier. This means that the first two characters must be letters or underscores (not numbers). If this is not the case, alarm 4010 is output during power on.

The program must be located in a cycle directory. The following search path is run through when it is called:

- 1. /_N_CUS_DIR/_N_PROG_EVENT_SPF
- 2. / N CMA DIR/ N PROG EVENT SPF
- 3. /_N_CST_DIR/_N_PROG_EVENT_SPF

The prefix (N_{-}) and the suffix (SPF) of the program name are added automatically if they have not been declared.

11640	ENABLE_CHAN_AX_GAP			N01, N11	K2
-	Allow channel	llow channel axis gaps in AXCONF_MACHAX_USED			PowerOn
-					
-	-	0x0	0	0x1	0/0

Description:

Bit0 = 1

Machine data allows configuration of channel axis gaps in the MD20070 \$MC AXCONF MACHAX USED. Permits following MD assignment: AXCONF MACHAX USED[0] = 1; 1st MA is 1st axis in channel AXCONF MACHAX USED[1] = 2; 2nd MA is 2nd axis in channel ; Channel axis gap AXCONF MACHAX USED[2] = 0AXCONF MACHAX USED[3] = 3; 3rd MA is 3rd axis in channel AXCONF MACHAX USED[4] = 0C A U T I O N: (BITO set with MD20070 \$MC AXCONF MACHAX USED): If a geo axis is placed in a channel axis gap with MD20050 \$MC AXCONF GEOAX ASSIGN TAB[1] = 3, the control responds as with $\mathtt{MD20050}\ \mathtt{MC_AXCONF_GEOAX_ASSIGN_TAB[1]=0.}$ This eliminates the

Transformation machine data must not be assigned a channel axis number specified as a gap.

```
BIT1 - BIT31: not used.
```

Related to:

geo axis!

```
MD20080 $MC_AXCONF_CHANAX_NAME_TAB,
MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB,
MD20060 $MC_AXCONF_GEOAX_NAME_TAB
MD20070 $MC_AXCONF_MACHAX_USED
MD24... $MC_TRAFO_AXES_IN_...
MD24... $MC_TRAFO_GEOAX_ASSIGN_TAB ...
```

11700	PERMISSIVE_FLASH_TAB			EXP, N01	IAD
-	Codes for NC c	Codes for NC card			PowerOn
-					
-	6	0,0,0,0,0,0,0	-	-	1/1

Description:

Normally, the NCK knows the program algorithms for writing on the flash of the PCMCIA card, however, if "new" cards with another ManufactorCode and/or DeviceCode are used, then these values can be entered here. Whereby, the ManufactorCode must be entered in the first line, and the DeviceCode in the following line.

11717	D_NO_FCT_CYCLE_NAME			EXP, N12, N07	K1			
-	Subroutine nam	e for D function replace	ment	STRING	PowerOn			
-		·						
-	-		-	-	2/2			

Description:

Cycle name for replacement routine of the D function.

If a D function is programmed in a part program block, then, depending on machine data MD10717 \$MN_T_NO_FCT_CYCLE_NAME, MD10719 \$MN_T_NO_FCT_CYCLE_MODE and MD10718 \$MN_M_NO_FCT_CYCLE_PAR, the MD subprogram defined in MD11717 \$MN_D_NO_FCT_CYCLE_NAME is called. The programmed D number can be polled in the cycle via system variable \$C D / \$C D PROG.

MD11717 $MN_D_NO_FCT_CYCLE_NAME$ is only active in Siemens mode (G290).

No more than one $\mbox{\ensuremath{M/T/D}}$ function replacement can be active per part program line.

A modal subprogram call must not be programmed in the block with the D function replacement. Furthermore, neither subprogram return nor part program end are allowed.

In the event of a conflict alarm 14016 is output.

11750	NCK_LEAD_FUNCTION_MASK			N09	-
-	Functions for m	unctions for master value coupling			NEW CONF
-					
-	-	0x00			1/1

Description:

Special functions of the master value coupling are set with this $\ensuremath{\mathtt{MD}}$.

The MD is bit-coded, the following bits are assigned:

Bits 0-3:

reserved

Bit 4 == 0:

the following axis of a master value coupling decelerates independently on NC or mode group stop or channel-specific feed disable

Bit 4 == 1:

the following axis of a master value coupling does not decelerate independently on NC or mode group stop or channel-specific feed disable $\frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2}$

Bits 5-31:

reserved

General machine data

11752	NCK_TRAIL_FUNCTION_MASK			N09	-
-	Functions for co	functions for coupled motion			NEW CONF
-					
-	-	0x200	0	0x210	1/1

Description:

Special functions for coupled motions are set with this MD. The MD is bit-coded; the following bits are assigned: Bits 0-3:

reserved

Bit 4 = 0:

the following axis of a coupled axis grouping activated by a synchronized action decelerates independently on NC or mode group stop or channel-specific feed disable

Bit 4 = 1:

the following axis of a coupled axis grouping activated by a synchronized action does not decelerate independently on NC or mode group stop or channel-specific feed disable

Bit 5-31:

reserved

11754	COUPLE_CYCLE_MASK			EXP, N09	-			
-	Replacement o machining cycle	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		DWORD	PowerOn			
-								
-	-	0x0	0	0x3F	1/1			

Description:

This machine data defines which predefined procedures for axisspindle coupling are replaced by machining cycles.

This MD is bit-coded; the following bits have been assigned:

Bit 0 == 0:

The predefined procedures EGDEL, EGOFC, EGOFS, EGON, EGONSYN and EGONSYNE are executed

Bit 0 == 1:

The predefined procedures EGDEL, EGOFC, EGOFS, EGON, EGONSYN and EGONSYNE are replaced by calling machining cycles

Bit 1 == 0:

The predefined procedures LEADON and LEADOF are executed Bit 1 == 1:

The predefined procedures LEADON and LEADOF are replaced by calling machining cycles

Bit 2 == 0:

The predefined procedures TRAILON and TRAILOF are executed Bit 2 == 1:

The predefined procedures TRAILON and TRAILOF are replaced by calling machining cycles

Bit 3 == 0:

The predefined procedures COUPDEF, COUPDEL, COUPOF, COUPOFS, COUPON, COUPONC and COUPRES are executed

Bit 3 ==1:

The predefined procedures COUPDEF, COUPDEL, COUPOF, COUPOFS, COUPON, COUPONC and COUPRES are replaced by calling machining cycles

06/2009 Machine Data

General machine data

Bit 4 == 0:

The predefined procedures LEADON and LEADOF are executed in synchronized actions $% \left(1\right) =\left(1\right) +\left(1\right) +\left$

Bit 4 == 1:

The predefined procedures LEADON and LEADOF are replaced in synchronized actions by calling machining cycles as technology cycles

Bit 5 == 0:

The predefined procedures $\ensuremath{\mathsf{TRAILON}}$ and $\ensuremath{\mathsf{TRAILOF}}$ are executed in synchronized actions

Bit 5 == 1:

The predefined procedures TRAILON and TRAILOF are replaced in synchronized actions by calling machining cycles as technology cycles $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$

11756	NCK_EG_FUNCTION_MASK			N09	-			
-	Functions for Electronic Gear			DWORD	NEW CONF			
-								
-	-	0x0	0	0x2F	1/1			

Description:

Bit 0 - 4:

reserved

Bit 5 = 0:

Positions indicated in EGONSYN and EGONSYNE are evaluated according to setting G700 or G710 inch or metric that is valid in the currently machined part program block.

Bit 5 = 1

Positions indicated in EGONSYN and EGONSYNE are evaluated in the basic system involved.

Bit 6 - 31:

reserved

2.2.2 Override switch settings

12000	OVR_AX_IS_GRAY_CODE			EXP, N10	V1,Z1
-	Axis feedrate override switch Gray-coded			BOOLEAN	PowerOn
-					
-	-	TRUE -			1/1

Description:

1This machine data is used to adapt the axis feed override switch to the interface coding of the PLC interface.

- 1: The 5 low-order bits of the PLC interface signal V380x 0000 (Feed override A-H) are interpreted as a Gray code. The value which is read corresponds to a switch setting. It is used as an index for selecting the correct override factor from the table of MD12010 $MN_OVR_FACTOR_AX_SPEED$ [n].
- 0: The feed override byte of the PLC interface is interpreted as a binary representation of the override value in percent (limit $200 \ \text{percent}$).

Related to:

NC/PLC interface signal V380x 0000 (Feed override A-H), (axis-specific)

MD12010 \$MN OVR FACTOR AX SPEED [n]

(Evaluation of the axis feed override switch)

12010	OVR_FACTOR_AX_SPEED			EXP, N10	V1,Z1			
-	Evaluation of axis feedrate override switch			DOUBLE	PowerOn			
-		·						
-		0.00,0.01,0.02,0.04,0. 06,0.08,0.10	0.00	2.00	1/1			

Description:

Evaluation of the axis velocity override switch with gray-coded interface.

Not relevant with:

MD12000 \$MN_OVR_AX_IS_GRAY_CODE = 0

Related to:

NC/PLC interface signal V380x 0000 (Feed override A-H), (axis-specific)

06/2009 Machine Data

General machine data

12020	OVR_FEED_IS	_GRAY_CODE	EXP, N10	V1,Z1				
-	Path feedrate override switch Gray-coded			BOOLEAN	PowerOn			
-								
-	-	TRUE	-	1/1				

Description:

This machine data is used to adapt the path feed override switch to the interface coding of the PLC interface.

1: The 5 low-order bits of the NC/PLC interface signal V380x 0000 (Feed override A-H) are interpreted as a Gray code. The value which is read corresponds to a switch setting. It is used as an index for selecting the correct override factor from the table of MD12030 $MN_OVR_FACTOR_FEEDRATE$ [n].

0: The feed override byte of the PLC interface is interpreted as a binary representation of the override value in percent (limit 200 percent).

Related to:

NC/PLC interface signal V380x 0000 (Feed override A-H) MD12030 $MN_0VR_FACTOR_FEEDRATE [n]$

(Evaluation of the path feed override switch)

12030	OVR_FACTOR_FEEDRATE			EXP, N10	V1,B1,Z1			
-	Evaluation of pa	Evaluation of path feedrate override switch			PowerOn			
-								
-		0.00,0.01,0.02,0.04,0. 06,0.08,0.10	0.00	2.00	1/1			

Description:

Evaluation of the feedrate override switch with gray-coded interface.

Special function of the 31st value for the velocity control: The setting of the 31st override value defines the dynamic reserves which take the velocity control to be an excessive increase in the path feed. The setting should correspond to the highest override factor actually used.

The function of the 31st value is thus identical to the effect of MD12100 $MN_OVR_FACTOR_LIMIT_BIN$ when using the binary-coded interface.

Not relevant with:

MD12020 \$MN_OVR_FEED_IS_GRAY_CODE = 0

Related to:

NC/PLC interface signal V380x 0000 (Feed override A-H)

General machine data

12040	OVR_RAPID_IS_GRAY_CODE			EXP, N10	V1,Z1
-	Rapid traverse override switch Gray-coded			BOOLEAN	PowerOn
-					
-	-	TRUE	-	-	1/1

Description:

This machine data is used to adapt the rapid traverse override switch to the interface coding of the PLC interface.

1: The 5 low-order bits of the PLC interface signal V3200 0005 (Rapid traverse override A-H) are interpreted as a Gray code. The value which is read corresponds to a switch setting.

It is used as an index for selecting the correct override factor from the table of MD12050 \$MN OVR FACTOR RAPID TRA[n].

0: The rapid traverse override byte of the PLC interface is interpreted as a binary representation of the override value in percent (limit 200 percent).

Related to:

NC/PLC interface signal V3200 0005 (Rapid traverse override A- ${\rm H}$)

MD12050 \$MN OVR FACTOR RAPID TRA[n]

(Evaluation of the rapid traverse override switch)

12050	OVR_FACTOR_RAPID_TRA			EXP, N10	V1,Z1			
-	Evaluation of ra	Evaluation of rapid traverse override switch			PowerOn			
-		·						
-		0.00,0.01,0.02,0.04,0. 06,0.08,0.10	0.00	1.00	1/1			

Description:

Evaluation of the rapid traverse override switch with gray-coded interface.

Not relevant with:

MD12040 \$MN_OVR_RAPID_IS_GRAY_CODE = 0

Related to:

NC/PLC interface signal V3200 0005 (Rapid traverse override A- $\rm H)$

12060	OVR_SPIND_IS_GRAY_CODE			EXP, N10	V1,Z1			
-	Spindle override switch Gray-coded			BOOLEAN	PowerOn			
-								
-	-	TRUE -			1/1			

Description:

This machine data is used to adapt the spindle speed override switch to the interface coding of the PLC interface.

- 1: The 5 low-order bits of the "spindle speed override" PLC interface signal are interpreted as a Gray code. The value which is read corresponds to a switch setting. It is used as an index for selecting the correct override factor from the table of MD12070 $MN_0VR_FACTOR_SPIND_SPEED[n]$.
- 0: The spindle speed override byte of the PLC interface is interpreted as a binary representation of the override value in percent (limit 200 percent).

Related to:

NC/PLC interface signal V380x 2003 (Spindle speed override) MD12070 $MN_OVR_FACTOR_SPIND_SPEED[n]$

(Evaluation of the spindle speed override switch)

12070	OVR_FACTOR	_SPIND_SPEED	EXP, N10	V1,Z1				
-	Evaluation of spindle override switch			DOUBLE	PowerOn			
-								
-		0.5,0.55,0.60,0.65,0.7 0,0.75,0.80	0.00	2.00	1/1			

Description:

Evaluation of the spindle-specific override switch with Gray-coded interface.

Special function of the 31st value for the velocity control: The setting of the 31st override value defines the dynamic reserves which take the velocity control to be an excessive increase in the spindle feed. The setting should correspond to the highest override factor actually used.

The function of the 31st value is thus identical to the effect of MD12100 $MN_OVR_FACTOR_LIMIT_BIN$ when using the binary-coded interface.

Not relevant for:

MD12060 \$MN_OVR_SPIND_IS_GRAY_CODE = 0

Related to:

NC/PLC interface signal V380x 2003 (Spindle speed override)

12080	OVR_REFERENCE_IS_PROG_FEED			N10, N09	V1
-	Override reference speed			BOOLEAN	PowerOn
-					
-	TRUE -			-	0/0

Description:

The entry in this MD specifies whether the spindle override given by the IS refers to the speed limited by MD/SD or to the programmed speed.

- 1: Spindle override acts with reference to the programmed speed (programmed speed _ spindle override 100%)
- 0: Spindle override acts on the speed limited by MD or SD (speed limited by MD/SD _ spindle override 100%)

Related machine data:

A speed	limitation is effected by the	following MDs or SDs:
MD35100	\$MA_SPIND_VELO_LIMIT	Maximum spindle speed
MD35130	\$MA_GEAR_STEP_MAX_VELO_LIMIT	Maximum speed of gear
stage		
MD35160	\$MA_SPIND_EXTERN_VELO_LIMIT	Spindle speed limitation
by PLC		
SD43220	\$SA_SPIND_MAX_VELO_G26	Maximum spindle speed
SD43230	\$SA_SPIND_MAX_VELO_LIMS	Spindle speed limitation
with G96	5	

General machine data

12082	OVR_REFERENCE_IS_MIN_FEED			N10, N09	V1
-	Specification of the reference of the path override			BOOLEAN	PowerOn
-					
-	-	FALSE	-	0/0	

Description:

The reference speed for the path feed override specified via the machine control panel can be set differently from the standard.

0: Standard:

The override is relative to the programmed feed.

1: Special case:

The override is relative to the programmed feed or to the path feed limit, depending on which resulting value is lower. In this way, even for a great feed reduction (due to the permissible axis dynamics), the effect of the override value (in the range 0 to 100%) is always visible.

12090	OVR_FUNCTION_MASK 1			N01, N10, N09	-
-	Selection of override specifications			DWORD	Reset
-					
-	-	0	0	0x01	0/0

Description:

The functionality of the override switches can be affected by the bits.

Bit 0: = 0,

Standard: Spindle override active with G331/G332

= 1

Path override is active instead of spindle override with $\ensuremath{\text{G331}/\text{G332}}$

(Tapping without compensating chuck)

12100	OVR_FACTOR_LIMIT_BIN			EXP, N10	V1,B1,Z1			
-	Limitation for binary-coded override switch			DOUBLE	PowerOn			
-		·						
-	-	2.0	0.0	2.0	0/0			

Description:

This machine data can be used as an additional limit for the override factor when using the binary-coded interface for path, axis and spindle feeds.

In this case, the maximum values

- 200% for channel-specific feed override
- 100% for channel-specific rapid traverse override
- 200% for axis-specific feed override
- 200% for spindle override

are replaced with the limit value entered in MD: $\mbox{\scriptsize OVR}$ FACTOR LIMIT BIN when this value is lower.

Example: OVR_FACTOR_LIMIT_BIN = 1.20

--> maximum override factor for

channel-specific feed override =120%
 channel-specific rapid traverse override =100%
 axis-specific feed override =120%
 spindle override =120%

This value also defines the dynamic reserves maintained by the speed control for increasing the path and spindle feedrates. References:

/FB/, B1, "Continuous Path Mode, Exact Stop and Look Ahead"

06/2009 Machine Data

General machine data

12200	RUN_OVERRIDE_0			N01, N09	FBMA,V1,Z1
-	Traversing response with override 0			BOOLEAN	PowerOn
-					
-	-	FALSE	-	-	0/0

Description:

= 0

Override 0 is active and means deceleration (JOG mode, safety function).

Bits 0 and 1 in MD32084 \$MA_HANDWH_STOP_COND for hand wheels and in MD20624 \$MC_HANDWH_CHAN_STOP_COND for machine axes define whether the pulses are collected for geometry axes and contour handwheel.

= 1

Traversing with handwheels and in JOG mode with fixed feedrates is also possible with a 0 % override.

Related to:

MD32084 \$MA_HANDWH_STOP_COND
MD20624 \$MC HANDWH CHAN STOP COND

12202	PERMANENT_FEED I			N01, N09	Z1,V1
mm/min	Fixed feedrates	for linear axes	DOUBLE	Reset	
-					
-	4	0.,0.,0.,0.	-	-	0/0

Description:

In AUTOMATIC mode

After activating a fixed feedrate via an interface signal, traversing is done with a fixed feedrate instead of the programmed feedrate.

Note:

The fixed feedrate is also evaluated in continuous-path mode in order to optimize the overhead for the Look Ahead calculation. Unnecessarily high values should therefore be avoided. Enter zero if a fixed feedrate is not wanted

In JOG mode:

After activating a fixed feedrate via an interface signal, and traversing the linear axis with a traversing key, traversing proceeds in the selected direction with the fixed feedrate.

n=0, 1, 2, 3 mean fixed feedrates 1, 2, 3, 4. The values must be entered in ascending order.

Special cases, errors,

The maximum velocity defined by MD32000 $MA_MAX_AX_VELO$ is active. An override setting of 100 % is assumed. MD12200 $MN_RUN_OVERRIDE_0$ is active if the override is 0.

Related to:

MD12200 \$MN RUN OVERRIDE 0

General machine data

12204	PERMANENT_	ROT_AX_FEED	N01, N09	V1	
rev/min	Fixed feedrates	ixed feedrates for rotary axes			Reset
-					
-	4	0.,0.,0.,0.	-	-	0/0

Description:

Fixed feedrate values:

In AUTOMATIC mode:

After activating a fixed feedrate via an interface signal, traversing is done with a fixed feedrate instead of the programmed feedrate.

Note: PERMANENT_ROT_AX_FEED is used instead of PERMANENT_FEED for the path motion if all synchronously traversed axes in the current block are rotary axes. PERMANENT_FEED applies if linear and rotary axes are to be synchronously traversed together.

The fixed feedrate is also evaluated in continuous-path mode in order to optimize the overhead for the Look Ahead calculation. Unnecessarily high values should therefore be avoided. Enter zero if a fixed feedrate is not wanted

In JOG mode:

After activating a fixed feedrate via an interface signal, and traversing the rotary axis with a traversing key, traversing proceeds in the selected direction with the fixed feedrate.

n = 0, 1, 2, 3 mean fixed feedrates 1, 2, 3, 4.

Special cases, errors,

The maximum velocity defined by MD32000 $MA_MAX_AX_VELO$ is active. An override setting of 100 % is assumed. MD12200 $MN_RUN_OVERRIDE_0$ is active if the override is 0.

Related to:

MD12200 \$MN_RUN_OVERRIDE_0

12205	PERMANENT_SPINDLE_FEED			N01, N09	FBMA
rev/min	Fixed feedrates	Fixed feedrates for spindles			Reset
-					
-	4	0.,0.,0.,0.	-	-	0/0

Description:

Fixed feedrate values:

 ${\tt JOG:}$ A spindle is traversed with a fixed feedrate by activating the traversing keys and activating the appropriate signals in the PLC interface.

The override is not active.

Depending upon MD12200 $MN_RUN_OVERRIDE_0$, traversing also takes place with override 0.

The value defined by MD32000 \$MA_MAX_AX_VELO is taken as the upper limit. If the fixed feedrate has a larger value, the aforementioned limiting value applies.

12300	CENTRAL_LUBRICATION			N01, N09	-
-	Central lubrication active			BOOLEAN	PowerOn
-					
-	-	FALSE	-	-	0/0

Description:

When a settable axial path has been exceeded, the axial VDI signals request a lubrication pulse from the PLC (compare MD33050 $MA_LUBRICATION_DIST$). These axial pulses act (by default) independently of each other.

If the machine construction requires a central lubrication, i.e. the lubrication pulse of any axis is acting on all axes, the corresponding path monitoring of all axes must be restarted after lubrication pulse output. This start synchronization of the monitoring is executed via MD12300 \$MN_CENTRAL_LUBRICATION=TRUE.

12970	PLC_DIG_IN_LOGIC_ADDRESS			N10	-
-	Logical start ad	dress of the digital PLC	DWORD	PowerOn	
-					
-	-	0	0	1023	0/0

Description:

Logical start address of the digital input addresses of the PLC Related to:

MD12971 \$MN_PLC_DIG_IN_NUM

12971	PLC_DIG_IN_NUM			N10	-
-	Number of digital input addresses			DWORD	PowerOn
-					
-	-	256	1	256	0/0

Description:

Number of digital input addresses as from the start address

Related to:

MD12970 \$MN PLC DIG IN LOGIC ADDRESS

12974	PLC_DIG_OUT_LOGIC_ADDRESS			N10	-
-	Logical start ad	gical start address of the digital PLC output addresses			PowerOn
-					
-	-	0	0	1023	0/0

Description:

Logical start address of the digital output addresses of the PLC Related to:

MD12975 \$MN_PLC_DIG_OUT_NUM

12975	PLC_DIG_OUT_NUM			N10	-		
-	Number of digital output addresses			DWORD	PowerOn		
-							
-	-	256	1	256	0/0		

Description: Number of digital output addresses as from the start address

12978	PLC_ANA_IN_LOGIC_ADDRESS			N10	-
-	Logical start ad	ogical start address of the analog PLC input addresses			PowerOn
-					
-	-	0	0	1023	0/0

Description:

Logical start address of the analog input addresses of the PLC Related to:

MD12979 \$MN_PLC_ANA_IN_NUM

12979	PLC_ANA_IN_NUM			N10	-
-	Number of analog input addresses			DWORD	PowerOn
-					
-	-	0	0	1023	0/0

Description:

Number of analog input addresses as from the start address

Related to:

MD12978 \$MN PLC ANA IN LOGIC ADDRESS

12982	PLC_ANA_OUT_LOGIC_ADDRESS		N10	-	
-	Logical start ad	ogical start address of the analog PLC output addresses		DWORD	PowerOn
-					
-	-	0	0	1023	0/0

Description:

Logical start address of the analog output addresses of the PLC

Related to:

MD12983 \$MN_PLC_ANA_OUT_NUM

12983	PLC_ANA_OUT_NUM			N10	-
-	Number of anal	lumber of analog output addresses			PowerOn
-					
-	-	0	0	1023	0/0

Description:

Number of analog output addresses as from the start address

Related to:

MD12982 \$MN_PLC_ANA_OUT_LOGIC_ADDRESS

12986	PLC_DEACT_IMAGE_LADDR_IN			N10	-
-	Deactivation of	Deactivation of I/O connection to the PLC image			PowerOn
-					
-	8	0,9,18,27,36,96,112,- 1	-1	255	1/1

Description:

The PLC input/output image of the stations with these logical $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

addresses

is not connected to the real I/Os

12987	PLC_DEACT_IMAGE_LADDR_OUT			N10	-		
-	Deactivation of	tivation of I/O connection to the PLC image			PowerOn		
-							
-	8	-1,-1,-1,-1,-1,-1	-1	255	1/1		

Description:

The PLC input/output image of the stations with these logical

addresses

is not connected to the real I/Os

06/2009 Machine Data

General machine data

13050	DRIVE_LOGIC_ADDRESS			N04, N10	G2			
-	Logical drive addresses			DWORD	PowerOn			
-								
-		4100,4140,4180,4220, 4260,4300,450	258	8191	0/0			

Description:

For PROFIdrive only:

Logical I/O addresses of the PROFIdrive drives on the PROFI-BUS/PROFINET. An address is assigned to a drive.

This MD is the link to the description of the PROFIBUS/PROFINET configuration in SDB.

The MD value is the address index of the logical I/O drive address assigned with HW-Config (SIMATIC Manager S7).

Example:

 $DRIVE_LOGIC_ADDRESS[1] = 272$ (The start address 272 is assigned to drive 1.)

The SDB defines the logical I/O address of the drives on the PROFIBUS/PROFINET. An address is assigned to a drive or to a slave.

The address index is used for actual-value and setpoint-value assignment

(MD30220 \$MA_ENC_MODULE_NR[n], MD30110 \$MA_CTRLOUT_MODULE_NR[n]).

The same drive (I/O address) must be assigned to the MD30220 $MA_ENC_MODULE_NR[0]$ and MD30110 $MA_CTRLOUT_MODULE_NR[0]$ of a machine axis.

Each drive or slave must be assigned to a single logical address index.

The index [n] of the machine data has the following coding: [Drive index]:

Drive 1 -->n-=0Drive 2 -->n-=1,

13060	DRIVE_TELEGRAM_TYPE			N04, N10	G2			
-	Standard message frame type for PROFIdrive			DWORD	PowerOn			
-								
-		116,116,116,116,116, 116,102,102,102	-	-	2/2			

Description:

Telegram type has to be indicated for every drive:

102:

10: - spindle with direct measuring system

Machine date index [n] has the following coding: [drive index]:

n=0: drive number 1
n=1: drive number 2 etc.

13070	DRIVE_FUNCTION_MASK			N04, N10	G2
-	PROFIdrive expansion functions			DWORD	PowerOn
-					
-	31	2,2,2,2,2,0,0,0,0,0,0	-	-	2/2

Description:

For PROFIdrive only:

Bit-coded mask for skipping the scope of available functions for PROFIdrive axes expected by the NCK.

Meaning of set bits:

Bit 0:Deactivation of axial drive alarm display

Note: the effect of this bit may be hidden, depending on the value in MD13140 \$MN PROFIBUS ALARM ACCESS.

Bit 1:Deactivation of 611U description file intermediate storage in the NCK

Bit 2:Deactivation of axial encoder driver parameter accesses

Bit 3:Deactivation of axial output driver parameter accesses

Bit 4:Reserved, free (previously activation of DSC bits)

Bit 5:Deactivation of the 611U-specific drive parking (STW2.7/STA2.7)

Bit 6:Deactivation of the 611U-specific travel to fixed stop (STW2.8/STA2.8)

Bit 7:Deactivation of the 611U-specific motor switching int. (STW2.9 to 2.11)

Bit 8:Deactivation of the 611U-specific ramp block (STW1.11+13)

Bit 9:Deactivation of the 611U-specific function generator bits (STW1.8/STA1.13)

Bit 10:Deactivation of the control of the holding brake (STW1.12 / STA2.5)

Bit 11:Deactivation of the effect of OFF2/OFF3 on V390x 4001.5 (Drive Ready)

Bit 12:Deactivation of the error/warning class SINAMICS (STA1.11 to STA1.12)

Bit 13:Drive parking simulation (STA2.7 = STW2.7)

Bit 14:Selection of non-cyclical communication $0 = DPT \quad 1 = DPV1$ Bit 15: Deactivation of the consistency check of the PROFIdrive message frame configuration

Configuration of bits 5-10, which is new for SW 6.3 and higher, allows adaptation of certain control or status bits that are not standardized in the PROFIdrive profile. The bits may have a different significance and effect in the default setting of third-party drives.

13080	DRIVE_TYPE_DP			EXP	G2	
-	PROFIBUS/PROFINET drive type			BYTE	PowerOn	
-						
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	4	2/2	

Description:

For PROFIdrive only (for SIMODRIVE611D MD13040 \$MN_DRIVE_TYPE applies instead):

MD is relevant to PROFIdrive drives at the PROFIBUS/PROFINET: Drive type:

0: No drive or drive type unknown (default), software-internally treated as:

- 1: FDD drive (SRM: Synchronous rotary drive)
- 2: MSD drive (ARM: Asynchronous rotary drive)
- 3: Linear drive
- 4: Analog drive (no automatic entry)

Note:

In general, the drive type is entered automatically with Siemens drives as soon as the drives start operating.

With non-Siemens drives (at least with linear drives) the value must be entered manually if automatic drive recognition is not possible.

13110	PROFIBUS_TRACE_ADDRESS			EXP	-
-	PROFIBUS/PROFINET trace of I/O slots			DWORD	NEW CONF
-					
-	14	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	8191	1/1

Description:

For PROFIBUS/PROFINET only:

Logical I/O address that is to be recorded.

13111	PROFIBUS_TRACE_TYPE			EXP	-
-	PROFIBUS/PR	ROFIBUS/PROFINET trace settings			NEW CONF
-					
-	-	0	0	2	1/1

Description:

For PROFIBUS/PROFINET only:

- 0: Recording into the part program memory
- /_N_MPF_DIR/_N_SIEMDPTRC_MPF
- 1: Recording into the mass storage /user/sinumerik/data/temp/siem-dptrc.trc $\,$
- 2: Recording into the part program memory with runtime measurement

13112	PROFIBUS_TRACE_FILE_SIZE			EXP	-
-	Maximum trace	laximum trace file size in kbytes			NEW CONF
-					
-	-	40	-	-	1/1

Description:

For PROFIBUS/PROFINET only:

0: Trace without file size limitation
>0: Trace with file size limitation

General machine data

13113	PROFIBUS_TRACE_START			EXP	-
-	Activation of PROFIBUS/PROFINET trace			DWORD	Immediately
-					
-	- 0 0			1	1/1

Description:

For PROFIBUS/PROFINET only:

0: Trace off
1: Trace on

MD13112 $MN_PROFIBUS_TRACE_FILE_SIZE > 0$: Trace is automatically disabled when the file size is reached.

13114	PROFIBUS_TRACE_START_EVENT			EXP	-		
-	Trigger condition	Trigger conditions for PROFIBUS/PROFINET trace			NEW CONF		
-							
-	14	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0x00000000	0x111fffff	1/1		

Description:

For PROFIBUS/PROFINET only:

The trigger frequency is configured bit-by-bit

Bits 0-15: 0x0001-0xffff: bit mask

Bits 16-23: $0 \times 01-0 \times 14$: process data number (a maximum of 20 words

are permissible)

Bits 24-27:0x01: status change 0->1

0x00: status change 1->0

Bits 28-31:0x10: send slot

0x00: receive slot

When MD13113=1 and MD13114=0x0 Recording starts immediately When MD13113=1 and MD13114=0x1 Recording starts on control power

on

When MD13113=1 and MD13114=0x2 Recording starts on loss of the

sign of life

13120	CONTROL_UN	IT_LOGIC_ADDRESS	N04, N10	-				
-	Logical address of SINAMICS CU			DWORD	PowerOn			
-								
-	7 6500,0,0,0,0,0 0			8191	2/2			

Description:

For PROFIBUS/PROFINET, SINAMICS:

Logical I/O address of a SINAMICS-CU (Control Unit) on the PROFI-BUS/PROFINET.

The cyclic DP communication with SINAMICS-CU is activated by taking over the associated slot address from the STEP7 project. The onboard I/Os cannot be accessed until after configuration.

13140	PROFIBUS_ALARM_ACCESS			N04, N10	-
-	Alarm response of PROFIBUS/PROFINET drives on power up			DWORD	Immediately
-					
-	- 1 0			2	1/7

Description:

For PROFIBUS/PROFINET only:

Specifies the time of activation for evaluation/transmission of PROFIBUS/PROFINET node alarms or warnings

(fine diagnostics messages) on the NCK.

Affects drive alarms or warnings 380500, 380501

(or alarms 200000ff etc. created from these in the HMI)

as well as drive safety alarms 27900.

Meaning of the MD values:

0 = alarms/warnings are evaluated immediately

1 = alarms/warnings are not evaluated

2 = alarms are evaluated only after power up, i.e.
 as soon as HMI has set value 2 active again (NCK automatically
 resets the MD value to 1 at every power up; HMI must
 explicitely articulate its readiness for message processing
 by setting value 2)

Note: the MD restricts the range or effectiveness of MD13150 $\mbox{\ensuremath{\mathsf{MN}}}$ SINAMICS ALARM MASK

Default: the display default behavior of the mentioned drive alarms changes with the introduction of this MD.

Now the alarms are not transported and displayed by default.

The previous default behavior can be restored with MD13140 \$MN_PROFIBUS_ALARM_ACCESS=0.

General machine data

13150	SINAMICS_ALARM_MASK			N04, N05	-
-	Activate fault and warning buffer output for Sinamics			DWORD	Immediately
-					
-	-	- 0x0909 -			1/1

Description:

For PROFIBUS/PROFINET only, especially SINAMICS:

Relevant to SINAMICS diagnostics:

Note: the effect of this MD may be hidden independently of the value of \$MN_PROFIBUS_ALARM_ACCESS.

Mask for displaying the SINAMICS DOS fault and warning buffers

Bit set:Alarms in this DO group are output

Bit not set:Alarms in this DO group are not output

Bit Hex. Meaning

value

0: 0x1 Output faults of the Control Units

1: 0x2 Reserved

2: 0x4 Output faults of the Drive Controls

3: 0x8 Output faults of the Line Modules

4: 0x10 Output faults of the Terminal Boards

5: 0x20 Output faults of the Terminal Modules

8: 0x100 Output warnings of the Control Units

9: 0x200 Output warnings of the Communication Objects

10: 0x400 Output warnings of the Drive Controls

11: 0x800 Output warnings of the Line Modules

12: 0x1000 Ouptut warnings of the Terminal Boards

13: 0x2000 Output warnings of the Terminal Modules

13200	MEAS_PROBE_LOW_ACTIVE			N10, N09	M5	
-	Polarity reversa	Polarity reversal of sensor			BOOLEAN	PowerOn
-						
-	2	FALSE,FALSE -			-	3/3

Description:

13210	MEAS_TYPE			N10, N09	M5
-	Meas. type with decentralized drives			BYTE	PowerOn
-					
-	- 1 0			1	0/0

Description:

For PROFIdrive only:

This MD sets the measuring function of decentralized drives.

The MD currently only functions for PROFIdrive drives.

MEAS TYPE = 0 defines:

A probe is used that is connected centrally to the NC.

However, as the encoders only provide actual position values in cycles, the actual measuring position is found by interpolation.

MEAS TYPE = 1 defines:

The probe must be wired decentralized to ALL drives.

The measuring functionality of the drive is then used,

saving the actual encoder values in the hardware at the time of the measuring edge.

This method is more accurate than that with MEAS_TYPE = 0, but it requires a more complex wiring and drives that support this measuring functionality (e.g. 611U).

13211	MEAS_CENTF	MEAS_CENTRAL_SOURCE			N10, N09	-
-		Data source central measurement with PROFIBUS/PROFINET drives			BYTE	PowerOn
-						
-	-	3 1			3	0/0

Description:

For PROFIBUS/PROFINET only:

This MD is used to set the method used to obtain the time stamps for central $\ensuremath{\text{C}}$

measurement with PROFIdrive drives.

The following applies if MEAS CENTRAL SOURCE = 1:

NRK accesses are used to access the onboard measuring registers. For this purpose, the appropriate hardware which allows this must be

available, e.g. 840Di with MCI extension board.

The following applies if MEAS CENTRAL SOURCE = 2:

The SINAMICS DO1 telegram is used (telegram type 391),

variant "Cyclic measurement" without

handshake.

For this purpose, an integrated SINAMICS must be available, e.g. $\ensuremath{\text{NCU}}$ 710.

(Not available until supported by SINAMICS).

The following applies if MEAS CENTRAL SOURCE = 3:

The SINAMICS DO1 telegram is used (telegram type 391),

in the variant with handshake. This procedure is

fault-tolerant, however, allows a measuring edge only every 4 ${\tt PROFIBUS/PROFINET}$

cycles, i.e. it is considerably slower.

For this purpose, an integrated SINAMICS must be available, e.g. $\ensuremath{\text{NCU}}$ 710.

This MD is only relevant, if MD13210 \$MN MEAS TYPE == 0.

13220	MEAS_PROBE_DELAY_TIME			N10, N09	FBA/IAD
s	Delay time between probe deflection and recognition			DOUBLE	PowerOn
-					
-	2	2 0.0,0.0 0			3/3

Description:

For probes with e.g. radio transmission, the probe deflection can be detected in the NC only with delay.

With this MD, the transmission link delay between the probe deflection and its detection is set in the control.

The measured value is corrected internally by the control by the distance that corresponds to the traversing motion during this time before measuring (modeling).

It is practicable to set values only up to a maximum of 15 position controller cycles.

Anyhow, the modeling could not work with the expected accuracy with values greater than that. In this case, the input value is therefore limited internally by the software to 15 position controller cycles (without any further feedback).

13230	MEAS_PROBE_SOURCE			N10, N09	-
-	Probe simulation			BYTE	PowerOn
-					
-	-	0 0			7/2

Description:

Simulation of the probe only works when all axes are simulated. Value = 0: the probe is triggered on the programmed end position. Value > 0: the probe is triggered via digital output with the number=value.

13231	MEAS_PROBE_OFFSET			N10, N09	-
mm/inch, degrees	Probe offset	Probe offset			Immediately
-		_	_	_	
-	-	0.1			7/7

Description:

The switching position of the probe is offset by the value. The offset is only active with the simulated probes and MD 13230=0.

14504	MAXNUM_USER_DATA_INT			N03	P3
-	Number of user data (INT)			DWORD	PowerOn
-					
-	-	32 0 2			0/0

Description: Number of NC/PLC user data of type INT

14506	MAXNUM_USER_DATA_HEX			N03	P3		
-	Number of user	data (HEX)		DWORD	PowerOn		
-							
-	-	32	0	256	0/0		

Description: Number of NC/PLC user data (HEX)

14508	MAXNUM_USE	AXNUM_USER_DATA_FLOAT			P3		
-	Number of user	data (FLOAT)		DWORD	PowerOn		
-		·					
-	-	8	0	32	0/0		

Description: Number of NC/PLC user data of type FLOAT

14510	USER_DATA_INT			N03	P3	
-	User data (INT)	User data (INT)		DWORD	PowerOn	
-		·				
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		32767	7/3	

14512	USER_DATA_HEX			N03	P3	
-	User data (HE)	User data (HEX)		DWORD	PowerOn	
-						
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	~	0x0FF	7/3	

Description: Machine user data, evaluation in PLC (display in HEX format).

14514	USER_DATA_FLOAT 1			N03	P3			
-	User data (FLC	Jser data (FLOAT)			PowerOn			
-								
-		0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-3.40e38	3.40e38	7/3			

Description: Machine user data, evaluation in PLC (floating point format, in PLC restricted to 32-bit IEEE format).

14516	USER_DATA_PLC_ALARM		N03	A2,P3		
-	User data (HEX	User data (HEX)		BYTE	PowerOn	
-		·				
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	7/3	

Description: User data is stored in the NCK-PLC interface and can be evaluated by the PLC basic system (currently for software PLC 2xx).

15700	LANG_SUB_NAME			N01	K1			
-	Name for substitution subroutine			STRING	PowerOn			
-								
-	-		-	-	2/2			

Description:

Name of the user program called on the basis of a substitution configured by MD30465 $MA_AXIS_LANG_SUB_MASK$. The user program is called with the path configured by MD15702

The user program is called with the path configured by MD15702 \$MN_LANG_SUB_PATH.

15702	LANG_SUB_PATH 1			N01	K1		
-	Call path for su	l path for substitution subroutine			PowerOn		
-							
-	-	0	0	2	2/2		

Description:

Path with which the user program set by MD15700 \$MN_LANG_SUB_NAME is called on the basis of a substitution configured by MD30465 \$MA_AXIS_LANG_SUB_MASK:

0: / N CMA DIR (default)

1: /_N_CUS_DIR 2: /_N_CST_DIR

17200	GMMC_INFO_NO_UNIT			EXP	K1
-	Global HMI information (without physical unit)			DOUBLE	PowerOn
-					
-		3.,4.,3.,1.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0

Description:

The HMI stores the global display machine data

- \$MM DISPLAY RESOLTION
- \$MM DISPLAY RESOLTION INCH
- \$MM SPIND DISPLAY RESOLUTION
- \$MM MA COORDINATE SYSTEM

in the NCK machine data from MD17200 $MN_GMMC_INFO_NO_UNIT[0]$ to MD17200 $MN_GMMC_INFO_NO_UNIT[3]$. This enables these display machine data to be accessed from the NCK.

17201	GMMC_INFO_NO_UNIT_STATUS			EXP	K1
-	Global HMI sta	tus info (without physical	l unit)	BYTE	PowerOn
-					
-	16	1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	-	0/0

Description:

Value 0: input not assigned

Value 1: input assigned

17400	OEM_GLOBAL_INFO			A01, A11	-			
-	OEM version in	M version information			PowerOn			
-								
-	5		-	-	2/2			

Description:

A version information freely available to the user (is indicated in the version screen)

17500	MAXNUM_REPLACEMENT_TOOLS			N09	FBW		
-	Maximal number	number of replacement tools.			PowerOn		
-		·					
-	-	1	0	32	0/0		

Description:

Only relevant if the tool management function is active.

Only relevant if the tool management (TMMA) function or the tool monitoring function (TMMO) is active.

- 0: The number of replacement tools is not monitored.
- 1: Exactly one replacement tool may be assigned to an identifier. The data does not influence the memory requirement. It is solely for monitoring purposes.

Related to:

MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK,

MD20310 \$MC_TOOL_MANAGEMENT_MASK

17515	TOOL_RESETMON_MASK			N09	-
-	Tool data behavior with RESETMON			DWORD	PowerOn
-					
-	-	0x14	0	0x49F	0/0

Description:

The 5th parameter of the RESETMON command defines which tool status is to be reset. If the 5th parameter is omitted, it is replaced by the value in this MD. With the PI service "_N_TRESMON", work is always done with this value.

In that case, the bits are always assigned as the bits in the tool status $TC_{TP8}[x]$.

Bit no.: 0 Bit value: 0 hex value: -

Meaning: Tool status "active" remains unchanged

Bit no.: 0 Bit value: 1 hex value: 'H1'
Meaning: Tool status "active" is deleted
Bit no.: 1 Bit value: 0 hex value: -

Meaning: Tool status "released" remains unchanged

Bit no.: 1 Bit value: 1 hex value: 'H2' Meaning: Tool status "released" is set Bit no.: 2 Bit value: 0 hex value: -

Meaning: Tool status "locked" remains unchanged

Bit no.: 2 Bit value: 1 hex value: 'H4'

Meaning: Tool status "locked" is deleted, if this is permitted by the monitoring data and the 4th parameter is set correspondingly.

Bit no.: 3 Bit value: 0 hex value: -

Meaning: Tool status "measure" remains unchanged

Bit no.: 3 Bit value: 1 hex value: 'H8'
Meaning: Tool status "measure" is set.
Bit no.: 4 Bit value: 0 hex value: -

Meaning: Tool status "prewarning limit" remains unchanged

Bit no.: 4 Bit value: 1 hex value: 'H10'

Meaning: Tool status "prewarning limit" is deleted, if this is permitted by the monitoring data and the 4th parameter is set. Bit no.: 5 Not permitted (tool status "tool is being changed") Bit no.: 6 Not permitted (tool status "tool is fixed-location-

coded")

Bit no.: 7 Bit value: 0 hex value: -

Meaning: Tool status "was in use" remains unchanged

Bit no.: 7 Bit value: 1 hex value: 'H80' Meaning: Tool status "was in use" is deleted

Bit no.: 8 Bit value: 0 Not permitted (tool status "is in retract")

Bit no.: 9 Bit value: 0 hex value: -

Meaning: Tool status "locked is ignored" remains unchanged

Bit no.: 9 Bit value: 1 hex value: 'H200'

Meaning: Tool status "locked is ignored" is deleted

Bit no.: 10 Bit value: 0 hex value: -

Meaning: Tool status "to unload" remains unchanged

Bit no.: 10 Bit value: 1 hex value: 'H400' Meaning: Tool status "to unload" is deleted

Bit no.: 11 Not permitted (tool status "to load")

Bit no.: 12 Bit value: 0 Not permitted (tool status "master tool")

Bit no.: 13 Not permitted (reserved)

General machine data

The default setting corresponds to the previous behavior. Impermissible bits are filtered and not displayed in the limit mask.

Bits not defined here are ignored when writing the machine data.

17520	TOOL_DEFAULT_DATA_MASK			N09	FBW
-	Create new tool: default settings			DWORD	PowerOn
-					
-	-	0x5	0	0x1F	1/1

Description:

When defining a tool for the first time, certain data of the tool can be set to fixed default values. This can prevent simple applications from dealing with data which do not necessarily have to be assigned individual values.

Bit no.: 0 Bit value: 0 Hex value: -

Meaning: Default value of tool status (TC_TP8), bit1=0 = 'not released'

Bit no.: 0 Bit value: 1 Hex value: 'H1'

Meaning: Default value of tool status (\$TC_TP8), bit1=1 =
'released'

Bit no.: 1 Bit value: 0 Hex value: -

Meaning: Default value of tool status (TC_TP8), bit6=0 = 'not fixed-location-coded'

Bit no.: 1 Bit value: 1 Hex value: 'H2'

Meaning: Default value of tool status (\$TC_TP8), bit6=1 = 'fixed-location-coded'

Bit no.: 2 Bit value: 0 Hex value: -

Meaning: The tool is only accepted in the tool group when the explicit write command is used for the tool name. Only then can it be loaded via programming.

Bit no.: 2 Bit value: 1 Hex value: 'H4'

Meaning: The tool is automatically accepted in the tool group corresponding to the tool name when it is defined for the first time. The tool can then be changed using the default name ("t" = t-No.). The term 'tool name' (\$TC_TP2) can be hidden from the user. (This only makes sense if you do not use replacement tools or if the tool name is not written explicitly, as this may give rise to data consistency problems.)

Bit no.: 3 Bit value: 0 Only with TMMG: Default value of location type ($\$TC\ TP7$) = 9999 =not defined

Bit no.: 3 Bit value: 1 Hex value: 'H8'

Meaning: Only with TMMG: Default value of location type (TC_TP7) = 1 and consequently the default value of magazine location type (TC_MPP2) = 1. This means that all magazine locations can accept all tools.

Bit no.: 4 Bit value: 0 Hex value: -

Meaning: Only with TMMG + active consider adjacent location: With SET/RESET of the magazine location status 'disabled', the magazine location status 'Overlapping allowed' remains unchanged.

Bit no.: 4 Bit value: 1 Hex value: 'H10'

Meaning: Only with TMMG + active consider adjacent location: With SET/RESET of the magazine location status 'disabled' the magazine location status 'Overlapping allowed' occurs automatically with SET/RESET.

17530	TOOL_DATA_CHANGE_COUNTER			EXP, N01	FBW
-	Mark tool data change for HMI			DWORD	PowerOn
-					
-	-	0	0	0x1F	2/2

Description:

HMI display support. This data enables individual data to be explicitly taken into account or not taken into account in the OPI variables (block C/S) toolCounter, toolCounterC, toolCounterM.

Bit no.: 0 Bit value: 0 Hex value: -

Meaning: Changes to the values of the tool status (TC_TP8) are not taken into account in toolCounterC

Bit no.: 0 Bit value: 1 Hex value: 'H1'

Meaning: Changes to the values of the tool status (TC_TP8) are taken into account in toolCounterC

Bit no.: 1 Bit value: 0 Hex value: -

Meaning: Changes to the values of the remaining number of tools ($\$TC\ MOP4$) are not taken into account in toolCounterC

Bit no.: 1 Bit value: 1 Hex value: 'H2'

Meaning: Changes to the values of the remaining number of tools ($\$TC\ MOP4$) are taken into account in toolCounterC

Bit no.: 2 Bit value: 0 Hex value: -

Meaning: Changes to the values of the tool data are not taken into account in the tool data update service

Bit no.: 2 Bit value: 1 Hex value: 'H4'

Meaning: Changes to the values of the tool data are taken into

account in the tool data update service

Bit no.: 3 Bit value: 0 Hex value: -

Meaning: Changes to the values of the magazine data are not taken into account in the tool data update service

Bit no.: 3 Bit value: 1 Hex value: 'H8'

Meaning: Changes to the values of the magazine data are taken into account in the tool data update service.

Bit no.: 4 Bit value: 0 Hex value: -

Meaning: Changes to the values of the ISO tool offset data are not taken into account in the tool data update service

Bit no.: 4 Bit value: 1 Hex value: 'H10' Meaning: Changes to the values of the ISO tool offset data are taken into account in the tool data update service

The statements "Changes to the values of the tool status" and "Changes to the values of the remaining number of tools" refer not only to value changes effected by internal processes in the NC but also to value changes produced by writing the corresponding system variables.

General machine data

17540	TOOLTYPES_ALLOWED			N09	-
-	Permitted tool types			DWORD	PowerOn
-					
-	-	0x3FF	0	0x3FF	0/0

Description:

Definition of the tool types permitted in NCK (see \$TC_DP1) with the tool offset selection. That is, tools of any type may be loaded in the NCK; but only the tools types defined here may be defined in the offset defining tool. A bit value = 1 means that the named tool type range is permitted for the offset selection. A bit value = 0 means that the named tool type range is rejected with an offset-capable alarm in the case of an attempted offset selection of a cutting edge of this type. The special value = 0, 9999 for the tool type means "undefined". Tool offsets with this tool type value generally cannot be selected.

Bit no.: 0 value 0x1 means: Tool types 1 to 99 permitted
Bit no.: 1 value 0x2 means: Tool types 100 to 199 permitted (milling tools)

Bit no.: 2 value 0x4 means: Tool types 200 to 299 permitted (drilling tools)

Bit no.: 3 value 0x8 means: Tool types 300 to 399 permitted Bit no.: 4 value 0x10 means: Tool types 400 to 499 permitted (grinding tools)

Bit no.: 5 value 0x20 means: Tool types 500 to 599 permitted (turning tools)

Bit no.: 6 value 0x40 means: Tool types 600 to 699 permitted Bit no.: 7 value 0x80 means: Tool types 700 to 799 permitte Bit no.: 8 value 0x100 means: Tool types 800 to 899 permitted Bit no.: 9 value 0x200 means: Tool types 900 to 999 permitted Related to:

MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA

17600	DEPTH_OF_LOGFILE_OPT			EXP, N01	-
-	Depth of log memory optimization in REORG			DWORD	Reset
-					
-	-	5	0	300	0/0

Description:

The depth of memory optimization in the REORG log file (=search depth to determine if a parameter to be written is already included in the REORG log file).

The value of the machine data can be increased if alarm 15110 occurs during program execution and if this alarm is to be avoided.

(Alternatively, the size of the REORG log file can be increased with MD28000 \$MC_MM_REORG_LOG_FILE_MEM, provided that the operator has the access rights required. This procedure should generally be preferred.)

Value

0 = No optimization,

That is each write operation creates an input into the REORG log file. Writing a variable value is therefore very time-efficient, but requires more memory.

0< n <= Maximum value

When a new variable value is written, the n previously entered write operations (but maximally up to the previous indicatable block) are checked to determine if the parameter now to be written has already been written in the past. If this is the case, a new entry is not made in the REORG log file.

If this is not the case, an entry is made. A variable value can therefore be written in a very memory-efficient way, but requires more time.

Example:

MD17600 \$MN_DEPTH_OF_LOGFILE_OPT is assumed to be 5 and the following would be a typical program sequence:

- x10 ; Executable NC block
- r1=1 ; The first write command since x10
 - ; -> Save old value in log file. 1st entry
- r2=1 ; Determine that r2 is not yet included
 - ; -> Save old value in log file. 2nd entry
- r3=1 ; Determine that r3 is not yet included
 - ; -> Save old value in log file. 3rd entry
- r4=1 ; Determine that r4 is not yet included
 - ; -> Save old value in log file. 4th entry
- r5=1 ; Determine that r5 is not yet included
 - ; -> Save old value in log file. 5th entry
- r6=1 ; Determine that r6 is not yet included
 - ; -> Save old value in log file. 6th entry
- r2=1 ; Determine that r2 is already included
 - ; (5th oldest entry) -> no renewed saving
- r3=1 ; Determine that r3 is already included
 - ; (4th oldest entry) -> no renewed saving
- r1=2 ; As MD17600 $MN_DEPTH_OF_LOGFILE_OPT = 5$ it is not detected that
 - ; r1 is already included
 - ; (6th oldest entry) \rightarrow save old value in log file.
 - ; 7th entry

General machine data

x20 ; Executable NC block
r1=3 ; The first write command since x20
 ; -> Save old value in log file. 1st entry
r1=4 ; Determine that r1 is already included
 ; (Only one entry) -> no renewed saving

The setting of the MD is particularly useful if a small number of verious parameters are written frequently (e.g. in a loop) and if alarm 15110 occurs for this reason.

17610	DEPTH_OF_LOGFILE_OPT_PF			EXP, N01	-
-	Depth of the PowerFail log memory optimization			DWORD	Reset
-					
-	3	10,0,0	0	300	1/1

Description:

Depth of the memory optimization in the PowerFail log file (=search depth, to find out

whether a parameter to be written is already included in the PowerFail log file).

It is possible to increase the value of the machine data if alarm 15120 occurs during program processing and if you wish to avoid it.

(Alternatively, you can increase the size of the PowerFail log file itself

by means of MD18232 $MN_M_ACTFILESYS_LOG_FILE_MEM$, if you have the necessary access right

and if the required memory is available.

Value

0 = same effect as value 1.

Writing of a variable value is therefore very time-efficient at the cost of the required memory.

0 < n <= Maximum value

 $\,=\,$ Writing of a new variable value leads, prior to saving of the new variable value in the PowerFail log file, to the last n write operations which have been being checked to see whether the new parameter to be written has already been written once.

If yes, the new value is not entered again in the Power-Fail log file, but the old value is overwritten with the new one.

If no, the new value is entered.

At the cost of the required time, writing of a variable value can therefore be designed very memory-efficiently.

Changing of the data can shorten/increase the time requirement of the present application.

Changing of the data can fill the available log buffers faster/more slowly.

Frequent occuring of alarm 15120 -> Increase values for index=0,1,2.

The value indicating the index to be changed can be deducted from the parameter of alarm 15120:

if it is the value for MD18232 \$MN_MM_ACTFILESYS_LOG_FILE_MEM[0], then increase the value for index 0;

or increase MD18232 $MN_M_ACTFILESYS_LOG_FILE_MEM[0]$ itself.

06/2009 Machine Data

General machine data

Index Meaning

- 0 Search depth in preprocessing buffer
- 1 Search depth in buffer for data changes within the range of tool change
- Search depth in buffer for data changes of main processing (especially synchronized actions)

17900	VDI_FUNCTION_MASK			EXP, N09	H1
-	Setting to VDI signals			DWORD	PowerOn
-					
-	-	0x0	0	0x1	0/0

Description:

Settings for VDI signals:

Bit 0 == 0:

The VDI signals motion command + / motion command - are already issued if there is a travel request (default).

Bit 0 == 1:

The VDI signals motion command + / motion command - are issued only if the axis actually moves.

2.2.3 System specific memory settings

18000	VDI_UPDATE_IN_ONE_IPO_CYCLE			EXP, N01	P3
-	PLC interface update			BOOLEAN	PowerOn
-					
-	-	TRUE -			0/0

Description:

- 0: Complete reading/writing of the VDI interface in two IPO cycles $\,$

18030	HW_SERIAL_NUMBER			N05	-			
-	Hardware series number			STRING	PowerOn			
-								
-	1		-	-	2/RO			

Description:

During power on of the control, a unique hardware serial number is stored in this $\mbox{MD:}$

- For Powerline series modules this is the serial number of the NCU module
- For Solutionline series modules this is the serial number of the CF card, or the unique number of the MCI module in the case of PC-based systems

This data cannot be written.

18040	VERSION_INFO	N05	IAD
-	Version and possibly data of the PCMCIA card, not FM-NC	STRING	PowerOn
-			

Description:

Version identifiers of the system software

The identifiers of the PCMCIA card (assigned by the configuration management) and the 'system_date_time' from the NCK are stored in this MD during control power on. A unique assignment can always be made with this data from the MD block (startup file or INITIAL INI) to a software release.

18050	INFO_FREE_MEM_DYNAMIC	N01, N02, N05	S7	
-	Display data of free dynamic mem	DWORD	PowerOn	
-				
-	- 1572864	-	-	1/1

Description:

The data is used for

- a) the manufacturer's presetting of the memory size [bytes] available to the user for each channel after cold restart.
- b) Displaying the available dynamic memory [bytes] The data cannot be written.

The contents of the data state how much unbuffered memory is available per channel for increasing the unbuffered user data storage area via MD.

One should check whether the available memory is sufficient before increasing, for example, the number of LUDs, number of functional parameters, or the size of the IPO buffer.

If necessary, proceed step by step:

- increase by 1, note (old) value
- NCK startup (= 'warm start' or NCK reset), read off new value
- memory requirement = new value old value

On the first NCK startup or cold restart of the control (=deletion of user data), MD18210 \$MN_MM_USER_MEM_DYNAMIC is set by the NCK software so that at least the preset value results for MD18050 \$MN INFO FREE MEM DYNAMIC.

That is, the value is automatically increased if the initial value of MD18210 $\mbox{\$MN}$ MM USER MEM DYNAMIC is too low.

The following also applies to multichannel systems:

- The preset value applies to each possible channel. That is, if there are ten possible channels, MD18210
 \$MN_MM_USER_MEM_DYNAMIC is set by the NCK SW so that at least the 'preset value* ten' results for MD18050
 \$MN INFO FREE MEM DYNAMIC.
- On activation of a channel, MD18210 \$MN_MM_USER_MEM_DYNAMIC is increased if necessary so that the memory free at the time of activation continues to be free (provided that the memory structure permits this) after the channel has become active.

• The activation of the maximum possible number of axes is ensured by increasing the data MD18210 \$MN_MM_USER_MEM_DYNAMIC if necessary so that memory free at the time of activation continues to be free (provided that the memory structure permits this) after the axis has become active.

'If necessary' in the previous sentences means that the adjustment is automatic if the channel/axis could not be activated with the current values of MD18210 $\,$

\$MN MM USER MEM DYNAMIC/\$MN INFO FREE MEM DYNAMIC.

18060	INFO_FREE_MEM_STATIC			N01, N02, N05	S7
-	Display data of free static memory			DWORD	PowerOn
-					
-	-	524288	-	-	1/1

Description:

The following applies to powerline control models:

Output of the buffered memory available in the passive file system $[\ \ \ \ \ \ \]$.

The data cannot be written.

The preset value states the minimum number of bytes available to the user when the NCK starts up with a cold restart.

The contents of the data state how much battery-backed memory is available for the passive file system at the time of startup.

After a non-buffered startup, the maximum memory available in the file system can be read.

If MDs that affect the requirement for buffered memory (e.g. MM_NUM_GUD_VALUES_MEM, MD38000 \$MA_MM_ENC_COMP_MAX_POINTS) are changed then this changes the amount of memory available for the passive file system, as the amount of memory allocated to the passive file system consists of MD18230 \$MN_MM_USER_MEM_BUFFERED minus all other buffered user data.

(See also the document on MD18350 $MN_M_USER_FILE_MEM_MINIMUM$) At the first NCK startup or cold restart of the control (=deletion of user data) MD18230 $MN_M_USER_MEM_BUFFERED$ is set by the NCK software so that at least the default value results for MD18060 $MN_M_USER_MEM_BUFFERED$ is set by the NCK software so that at least the default value results for MD18060

That is MD18230 $MN_M_USER_MEM_BUFFERED$ is automatically increased if its initial value is too low.

The following applies to solution line control models:

The data reserves the available memory for the data that are not the passive file system.

(MD18350 $MN_M_USER_FILE_MEM_MINIMUM[0]$ dimensions the passive file system.)

Machine data for setting the active file system (tools, GUDs, ...) can be increased until this memory has all been allocated.

18070	INFO_FREE_M	IEM_DPR	EXP, N01, N02, N05	S7	
-	Display data of free memory in DUAL PORT RAM			DWORD	PowerOn
-					
-	-	0	-	-	-1/RO

Description:

Output of the available memory in the Dual Port RAM (Bytes). The data cannot be written.

18075	MM_NU	MM_NUM_TOOLHOLDERS			/FBW/, "Description of Functions, Tool Management"
-	Max. nu	Max. number of tool holders per TOA			PowerOn
-					
802d-cu3	-	3	1	5	-1/1
802d-ng2	-	3	1	5	-1/1
802d-ng3	-	3	1	5	-1/1
802d-tm1	-	1	1	4	-1/1
802d-tm2	-	2	1	5	-1/1
802d-tm3	-	2	1	5	-1/1

Description:

Max. number of definable tool holders per TO range.

The address extension e of commands Te=t, Me=6 (*) is the number of the tool holder.

 $t = T \ \text{number/tool}$ name - depending on the function activated in the NCK.

(*) if: MD22550 \$MC_TOOL_CHANGE_MODE=1 and MD22560

\$MC TOOL CHANGE M CODE=6 applies

Normally the tool holder of milling machines is a spindle.

Also see MD20090 \$MC_SPIND_DEF_MASTER_SPIND.

For turning machines the tool holder normally is not a spindle axis.

Also see MD20124 \$MC TOOL MANAGEMENT TOOLHOLDER.

In this case it should reasonably apply that MD18075

\$MN MM NUM TOOLHOLDERS is larger or equal to MD20090

\$MC SPIND DEF MASTER SPIND/MD20124

\$MC_TOOL_MANAGEMENT_TOOLHOLDER.

If bit 0 = 1 in MD18080 $MN_M_TOOL_MANAGEMENT_MASK$ and MD20310

\$MC_TOOL_MANAGEMENT_MASK is set (=magazine management (TOOLMAN))

it will apply for reasonable values that MD18075

 $MN_M_NUM_TOOLHOLDERS$ is smaller or equal to MD18076

\$MN_MM_NUM_LOCS_WITH_DISTANCE.

A maximum of MD18075 $MN_M_NUM_TOOLHOLDERS$ intermediate memory locations of the type spindle

 $(TC_MPP1[9998,x]=2)$ can then be defined.

Example: TOOLMAN inactive

MD20090 \$MC SPIND_DEF_MASTER_SPIND shall be =3, MD18075

\$MN_MM_NUM_TOOLHOLDERS shall be =3.

Then T1=t, T2=t, T3=t, T=t can be programmed.

Example: TOOLMAN active, milling machine with Me=6 as tool change command

 $\texttt{MD18075} \ \$\texttt{MN_MM_NUM_TOOLHOLDERS} \ \texttt{shall be} = 14, \ \texttt{MD18076}$

\$MN MM NUM LOCS WITH DISTANCE=20,

10 channels shall be active, all channels have TOOLMAN active and have the same tool and magazine data

(=one TO range for all channels). MD20090

 $MC_SPIND_DEF_MASTER_SPIND=1, \dots 10$ for the channels.

Then up to 14 locations of the kind 'tool holder'/'spindle' can be defined in the intermediate magazine memory.

Additional 6 grippers or others can be defined.

These 20 locations max. can be linked to magazines.

In the channels T1=t, T14=t and Tt, or M1=6,....M14=6 and M6

can be programmed.

The PLC version used can limit the maximum number of tool holders.

18080	MM_TO	MM_TOOL_MANAGEMENT_MASK			FBW
-	Reserve	Reserved memory for the tool management (SRAM)			POWER ON
802d-cu3	-	0x0	0	0xFFFF	2/2
802d-ng2	-	0x0	0	0xFFFF	2/2
802d-ng3	-	0x0	0	0xFFFF	2/2
802d-tm1	-	0x0	0	0xFFFF	0/0
802d-tm2	-	0x0	0	0xFFFF	2/2
802d-tm3	-	0x0	0	0xFFFF	2/2

Description:

Value = 0: no memory reserved, no tool monitoring possible

Value = 0x2: monitoring data / memory available

(only possible if option "Tool monitoring" is available)

Related to: MD20310 \$MC_TOOL_MANAGEMENT_MASK

18082	MM_NUI	M_TOOL		N02, N09	FBW,S7
-	Number	of tools the NCK can	manage (SRAM)	DWORD	PowerOn
-				•	
802d-cu3	-	128	0	200	0/0
802d-ng2	-	64	0	200	0/0
802d-ng3	-	128	0	200	0/0
802d-tm1	-	32	0	64	0/0
802d-tm2	-	64	0	200	0/0
802d-tm3	-	128	0	200	0/0

Description:

The NC cannot manage more tools than the number entered in the MD. A tool has at least one cutting edge.

Buffered user memory is used.

The maximum possible number of tools is equal to the number of cutting edges. The MD must also be set when TOOLMAN is not used. The buffered data are lost when the machine data is changed.

Related to:

MD18100 \$MN MM NUM CUTTING EDGES IN TOA

18088	MM_NUM_TOOL_CARRIER			N02, N09	W1
-	Maximum number of definable tool holders			DWORD	PowerOn
-					
-	-	0	0	600	0/0

Description:

Maximum number of definable toolholders for orientable tools in the TO area. The value is divided by the number of active TO units. The integer result states how many toolholders can be defined for each TO unit. The data for defining a toolholder are set with the system variables \$TC CARR1, ... \$TC CARR14.

The data are stored in battery-backed memory.

Application example(s):

_

18094	MM_NUM_CO	MM_NUM_CC_TDA_PARAM			H2
-	Number of OE	umber of OEM tool data (SRAM)			PowerOn
-					
802d-cu3	-	10	0	10	1/1
802d-ng2	-	10	0	10	1/1
802d-ng3	-	10	0	10	1/1
802d-tm1	-	0	0	10	0/0
802d-tm2	-	0	0	10	0/0
802d-tm3	-	0	0	10	0/0

Description:

Number of tool-specific data (of type Integer) which can be created per tool, and which are available to the user or the compile cycle.

This machine data increases the buffered memory requirement by sizeof(double)*max. number of tools.

Related to:

MD18080 \$MN MM TOOL MANAGEMENT MASK

MD18082 \$MN MM NUM TOOL

18095	MM_TYP	PE_CC_TDA_PARAM		N02, N09	-
-	Type of C	DEM tool data (SRAM)		DWORD	PowerOn
-					•
802d-cu3	10	4,4,4,4,4,4,4,4,4	1	6	1/1
802d-ng2	10	4,4,4,4,4,4,4,4,4	1	6	1/1
802d-ng3	10	4,4,4,4,4,4,4,4,4	1	6	1/1
802d-tm1	10	4,4,4,4,4,4,4,4,4	1	6	-1/2
802d-tm2	10	4,4,4,4,4,4,4,4,4	1	6	-1/2
802d-tm3	10	4,4,4,4,4,4,4,4,4	1	6	-1/2

Description:

Work may only be done with the default setting.

Individual types can be assigned to the parameters in this way. The array index n can accept values from 0 to the value of MD18094 $MN_M NUM_CC_TDA_PARAM$.

The possible values of the MD = 1, 2, 3, 4, 5 and 6 represent the NC language types $\,$

- 1 BOOL,
- 2 CHAR,
- 3 INT,
- 4 REAL,
- 5 STRING and
- 6 AXIS

The type FRAME cannot be defined here. The type STRING can be up to 31 characters long.

Example:

MD18094 \$MN_MM_NUM_CC_TDA_PARAM=1

MD18095 \$MN MM TYPE CC TDA PARAM=5

"UserCuttingEdge" can then be programmed for parameter \$TC_TPC1. Buffered working memory is used. A value change can - but need not - lead to reconfiguration of the buffered memory.

Related to:

MD18094 \$MN MM NUM CC TDA PARAM

MD18082 \$MN_MM_NUM_TOOL

18096	MM_NUM_CC_TOA_PARAM			N02, N09	G2		
-	Number of data per tool edge for compile cycles (SRAM)			DWORD	PowerOn		
-							
802d-cu3	-	10	0	10	1/1		
802d-ng2	-	10	0	10	1/1		
802d-ng3	-	10	0	10	1/1		
802d-tm1	-	0	0	10	0/0		
802d-tm2	-	0	0	10	0/0		
802d-tm3	-	0	0	10	0/0		

Description:

Number of TOA data (of type Real) which can be created per tool, and which are available to the user or the compile cycle.

This MD increases the buffered memory requirement by sizeof(double)* \max . number of cutting edges.

Related to:

MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD18100 \$MN MM NUM CUTTING EDGES IN TOA

18097	MM_TYP	MM_TYPE_CC_TOA_PARAM			-			
-	Type of C	Type of OEM data per cutting edge (SRAM)			PowerOn			
-								
802d-cu3	10	4,4,4,4,4,4,4,4,4	1	6	1/1			
802d-ng2	10	4,4,4,4,4,4,4,4,4	1	6	1/1			
802d-ng3	10	4,4,4,4,4,4,4,4,4	1	6	1/1			
802d-tm1	10	4,4,4,4,4,4,4,4,4	1	6	-1/2			
802d-tm2	10	4,4,4,4,4,4,4,4,4	1	6	-1/2			
802d-tm3	10	4,4,4,4,4,4,4,4,4	1	6	-1/2			

Description:

Work may only be done with the default setting.

Individual types can be assigned to the parameters in this way. The array index n can accept values from 0 to the value of MD18096 $MN_MM_NUM_CC_TOA_PARAM$.

The possible values of the MD = 1, 2, 3, 4 and 6 represent the NC language types

- 1 BOOL,
- 2 CHAR,
- 3 INT,
- 4 REAL and
- 6 AXIS.

The type STRING is explicitly not possible here. The value 5 is treated like value 2).

The type FRAME cannot be defined here.

Example:

MD18096 \$MN MM NUM CC TOA PARAM=1

MD18097 \$MN_MM_TYPE_CC_TOA_PARAM=2

"A" can then be programmed for parameter TC_DPC1 .

Buffered working memory is used. A value change can - but need not - lead to reconfiguration of the buffered memory.

Related to:

MD18096 \$MN_MM_NUM_CC_TOA_PARAM

MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA

General machine data

18098	MM_NUM_CC_MON_PARAM			N02, N09	FBW
-	Number of monitoring data per tool for compile cycles			DWORD	PowerOn
-					
-	-	0	0	10	0/0

Description:

Number of monitoring data (of type Integer) which can be created per tool, and which are available to the user or the compile cycle.

This MD increases the buffered memory requirement by sizeof(int)*max. number of cutting edges.

Related to:

MD18080 \$MN_MM_TOOL_MANAGEMENT_MASK
MD18100 \$MN MM NUM CUTTING EDGES IN TOA

18099	MM_TYPE_CC	_MON_PARAM	N02, N09	FBW					
-	Type of OEM monitor data (SRAM)			DWORD	PowerOn				
-									
-	10	3,3,3,3,3,3,3,3,3	1	6	-1/2				

Description:

Work may only be done with the default setting.

Individual types can be assigned to the parameters in this way. The array index n can accept values from 0 to the value of MD18098 \pm MN MM NUM CC MON PARAM.

Possible values of the MD = 1, 2, 3, 4 and 6 represent the NC language types $\frac{1}{2}$

- 1 BOOL,
- 2 CHAR,
- 3 INT,
- 4 REAL and
- 6 AXIS.

The FRAME type cannot be defined here.

(The type STRING is explicitly not possible here. The value 5 is treated like value 2.)

Example:

MD18098 \$MN_MM_NUM_CC_MON_PARAM=1

MD18099 \$MN_MM_TYPE_CC_MON_PARAM=2

"UserCuttingEdge" can then be programmed for the parameter $TC\ MOPC1$.

Buffered working memory is used. A value change can - but need not - lead to reconfiguration of the buffered memory.

Related to:

MD18100 \$MN MM NUM CUTTING EDGES IN TOA

MD18098 \$MN_MM_NUM_CC_MON_PARAM

18100	MM_NU	MM_NUM_CUTTING_EDGES_IN_TOA			W1			
-	Tool offs	Tool offsets in the TO range (SRAM)			PowerOn			
-								
802d-cu3	-	144	0	288	0/0			
802d-ng2	-	144	0	288	0/0			
802d-ng3	-	144	0	288	0/0			
802d-tm1	-	32	0	64	0/0			
802d-tm2	-	64	0	128	0/0			
802d-tm3	-	128	0	200	0/0			

Description:

Defines the number of tool cutting edges in a TO area. This machine data reserves approximately 250 bytes of battery-backed memory per TOA block for each tool cutting edge, irrespective of the tool type.

Tools with cutting edges of type 400-499 (= grinding tools) also occupy the location of a cutting edge.

Example:

Defining 10 grinding tools each of which has one cutting edge.

Then at least:

MD18082 \$MN MM NUM TOOL = 10

MD18100 \$MN MM NUM CUTTING_EDGES_IN_TOA = 20 must apply.

See also MD18082 \$MN_MM_NUM_TOOL

Buffered user memory is used.

Special cases:

The battery-backed data are lost if this machine data is altered.

18102	MM_TYPE_OF_CUTTING_EDGE			N02, N09	W1
-	Type of D No. programming (SRAM)			DWORD	PowerOn
-					
-	-	0	0	1	2/2

Description:

This MD activates the 'flat D number management'.

The type of D programming can be determined by individual values:

- direct or
- indirect programming.

The default value is zero. This means that the NCK manages the ${\tt T}$ and ${\tt D}$ numbers.

The NCK only accepts a value > 0 if bit 0 is not set in MD18080 $MN_M_TOOL_MANAGEMENT_MASK$. That means the tool managment function cannot be active at the same time.

Value: Meaning

0: No 'flat D number management' active

1: D numbers are programmed directly and absolutely

Values 2, 3 have not yet been released

General machine data

18105	MM_MAX_CUT	TING_EDGE_NO	N02, N09	W1	
-	maximum value of D number			DWORD	PowerOn
-					
-	-	9	1	32000	0/0

Description:

Maximum value of the D number.

This does not affect the maximum number of D numbers per cutting edge.

The monitoring of the D number assignment associated with this value is only active when the D numbers are redefined. This means that existing data blocks are not subsequently checked if the MD is changed.

The following settings are advantageus:

MD18105 \$MN MM MAX CUTTING EDGE NO is equal to

MD18106 \$MN MM MAX CUTTING EDGE PER TOOL.

If MD18105 \$MN_MM_MAX_CUTTING_EDGE_NO is selected > MD18106 \$MN_MM_MAX_CUTTING_EDGE_PER_TOOL, then the difference between off-set number D and cutting-edge number CE should be known.

See also language commands CHKDNO, CHKDM, GETDNO, SETDNO, DZERO.

The machine data is not evaluated with the function "flat D number", and therefore has no significance there.

The MD can affect the memory requirement:

If the relation between the two, above-mentioned MDs changes from "less than or equal to" to "greater than" or vice versa, then this affects the non-buffered memory requirement.

Related to:

MD18106 \$MN MM MAX CUTTING EDGE PER TOOL

18106	MM_MAX_CUTTING_EDGE_PERTOOL			N02, N09	W1			
-	maximum number of D numbers per tool			DWORD	PowerOn			
-								
-	-	9 1			0/0			

Description:

Maximum number of cutting edges (D offsets) per tool (per T number).

This enables more safety to be achieved in the data definition. The value can be set to 1 if only tools with one cutting edge are used. This prevents more than one cutting edge being assigned to a tool in the data definition.

The following settings are advantageus: MD18105

 $MN_MM_MAX_CUTTING_EDGE_NO is equal to MD18106$

\$MN MM MAX CUTTING EDGE PER TOOL. If MD18105

 $MN_MM_MAX_CUTTING_EDGE_NO is selected > MD18106$

 $MN_MM_MAX_CUTTING_EDGE_PER_TOOL,$ then the difference between offset number D and cutting-edge number CE should be known.

See also language commands CHKDNO, CHKDM, GETDNO, SETDNO, DZERO.

The machine data is not evaluated with the function "flat D number", and therefore has no significance there.

The data can affect the memory requirement.

The MD can affect the memory requirement.

If the relation between the two, above-mentioned MDs changes from "less than or equal to" to "greater than" or vice versa, then this affects the non-buffered memory requirement.

Related to:

MD19105 \$MN_MM_MAX_CUTTING_EDGE_NO

06/2009 Machine Data

General machine data

18108	MM_NUM_SUM	MCORR	N02, N09	W1				
-	Resulting offsets in TO area (SRAM)			DWORD	PowerOn			
-		·						
-	-	-1	9000	0/0				

Description:

Total number of resulting offsets in the NCK.

The value = -1 means that the number of resulting offsets is equal to the number of cutting edges multiplied by the number of resulting offsets per cutting edge.

A value > 0 and < "number of cutting edges multiplied by the number of resulting offsets per cutting edge" means that a maximum "number of resulting offsets per cutting edge" can be defined per cutting edge but do not have to be. This means that buffered memory can be used economically. Only those cutting edges for which explicit data have been defined have a resulting offset data block.

Buffered memory is reserved. The memory requirement for a resulting offset doubles if "setup offset active" has also been configured, see MD18112 \$MN MM KIND OF SUMCORR.

See also:

MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA, MD18110 \$MN_MM_MAX_SUMCORR_PER_CUTTEDGE

18110	MM_MAX_SUMCORR_PER_CUTTEDGE			N02, N09	S7			
-	Max. number of	Max. number of additive offsets per edge (SRAM)			PowerOn			
-								
-	-	1	1	6	0/0			

Description:

Maximum number of resulting offsets per cutting edge.

If MD18108 \$MN MM NUM SUMCORR > 0 then:

The data is not memory defining, but is only used for monitoring. If MD18108 MN MM NUM SUMCORR = -1 then:

The data is memory defining.

See also

MD18108 \$MN_MM_NUM_SUMCORR,

MD18100 \$MN_MM_NUM_CUTTING_EDGES_IN_TOA.

18112	MM_KIND_OF_SUMCORR			N02, N09	W1	
-	Properties of resulting offsets in TO area (SRAM)			DWORD	PowerOn	
-						
-	-	0	0	0x1F	0/0	

Description:

Properties of the resulting offsets in NCK.

Bit 0=0 "Resulting offsets fine" are backed up when the tool data are backed up.

Bit 0=1 "Resulting offsets fine" are backed up when the tool data are backed up.

Bit 1=0 Set-up offsets are backed up when the tool data are backed up.

Bit 1=1 Set-up offsets are not backed up when the tool data are backed up.

Bit 2=0 If work is done with the function tool management (TOOL-MAN) and/or tool monitoring (TMMO), existing "resulting offsets fine/setup offsets" are not affected when the tool status is set to "active".

Bit 2 =1 Existing resulting offsets are set to zero when the tool status is set to "active".

Bit 3=0 If work is done with the function "TOOLMAN" + "adapter",

the "resulting offsets fine"/setup offsets are transformed.

Bit 3=1 No transformation of the "resulting offsets fine"/setup offsets

Bit 4=0 No set-up offset data blocks

Bit 4=1 Set-up offset data blocks are additionally created.

Whereby the resulting offset is composed of the sum of the set-up offset + "resulting offset fine"

Changing the status of bits 0, 1, 2, 3 does not change the memory structure.

Changing the status of bit 4 triggers restructuring of the buffered memory after the next PowerOn.

See also

MD18100 \$MN MM NUM CUTTING EDGES IN TOA

MD18108 \$MN_MM_NUM_SUMCORR

MD18110 \$MN MM MAX SUMCORR PER CUTTEDGE

MD18080 \$MN MM TOOL MANAGEMENT MASK,

MD20310 \$MC_TOOL_MANAGEMENT_MASK,

MD18086 \$MN_MM_NUM_MAGAZINE_LOCATION,

MD18104 \$MN MM NUM TOOL ADAPTER

Machine Data

18114	MM_ENABLE_	TOOL_ORIENT	N02, N09	W1, F2			
-	Assign tool cutting edge orientation			DWORD	PowerOn		
-							
-	-	0	3	0/0			

Description:

The function allows an orientation deviating from the default value to be assigned to each tool cutting edge.

Value = 0:

The tool orientation function is inactive.

Value = 1:

The system parameter \$TC_DPV[n, m] is assigned to each tool cutting edge D=m of the tool T=n, with the aid of which one of 6 possible tool orientations in positive or negative coordinate direction can be defined.

Value = 2:

Not only the system parameter $TC_DPV[n, m]$ but also the additional three system parameters $TC_DPV3[n, m]$, $TC_DPV4[n, m]$ and $TC_DPV5[n, m]$ are assigned to each tool cutting edge D=m of the tool T=n, with the aid of which any spatial tool orientation can be defined

 ${\tt T}\textsc{,}\ {\tt D}$ are the NC addresses ${\tt T}$ and ${\tt D}$ with which the tool change or the tool selection and the offset selection are programmed.

Value = 3:

Not only the system parameters $TC_DPV[n, m]$ and $TC_DPV3 - TC_DPV5$ but also the additional three system parameters $TC_DPVN3[n, m]$, $TC_DPVN4[n, m]$ and $TC_DPVN5[n, m]$ are assigned to each tool cutting edge D=m of the tool T=n, with the aid of which a vector (normal vector) can be defined that is preferably perpendicular to the tool orientation. The normal vector may be modified so that it lies in the plane formed by the orientation and the programmed normal vector but perpendicular to the orientation

The orientation and the possibly modified normal vector together define a complete orientation coordinate system. The machine data affects the requirement for battery-backed memory.

18116	MM_NUM_TOOL_ENV			N02, N09	W1		
-	Number of tool environments in the TO area (SRAM)			DWORD	PowerOn		
-							
-	-	0	0	600	0/0		

Description:

Total number of tool environments in the NCK.

Battery-backed memory is reserved.

General machine data

18118	MM_NUM_GUD_MODULES			N02	S7			
-	Number of GUD files in active file system (SRAM)			DWORD	PowerOn			
-								
-	-	7	1	9	0/0			

Description:

A GUD block corresponds to a file in which user-defined data can be stored. 9 GUD blocks are available of which 3 are already assigned to specific users/applications.

UGUD DEF USER (block for user) SGUD DEF USER (block for SIEMENS)

MGUD DEF USER (block for machine manufacturer)

Special cases:

The number of GUD modules is determined by the GUD module with the highest number entered.

Example:

If the following GUD modules are defined,

UGUD MGUD

GUD5

GUD8

then the machine data must be set to a value of 8, signifying a memory requirement of 8 x 120 bytes = 960 bytes.

It is therefore advisable to selected the "lowest" possible GUD module. If GUD modules UGUD and MGUD have not been assigned elsewhere, then they may be used for this purpose.

Related to: MD18150 \$MN MM GUD VALUES MEM

(Memory space for user variables)

18120	MM_NUM_GUD_NAMES_NCK			N02	S7		
-	Number of global user variable names (SRAM)			DWORD	PowerOn		
-		·					
-	-	50 0			2/2		

Description:

Defines the number of user variables for NCK global user data (GUD). Approximately 80 bytes of memory per variable are reserved in the SRAM for the names of the variables. The additional memory required for the value of the variable depends on the data type of the variable. The number of available NCK global user data is exhausted on reaching the limit value set in MD18120 \$MN MM NUM GUD NAMES NCK or MD18150 \$MN MM GUD VALUES MEM (memory space for user variables).

Buffered user memory is used.

Special cases:

The battery-backed data are lost if this machine data is altered.

Related to:

MD18150 \$MN MM GUD VALUES MEM (Memory space for user variables) 06/2009 Machine Data

General machine data

18130	MM_NUM_GUD_NAMES_CHAN			N02	S7
-	Number of channel-specific user variable names (SRAM)			DWORD	PowerOn
-					
-	-	150	0	32000	2/2

Description:

Defines the number of user variable names for channel-specific global user data (GUD). Approximately 80 bytes of memory are reserved in the SRAM for each variable name. The additional memory required for the value of the variable is equal to the size of the data type of the variable multiplied by the number of channels. This means that each channel has its own memory available for the variable values. The number of available channel-specific global user data is exhausted on reaching the limit value set in MD18130 \$MN_MM_NUM_GUD_NAMES_CHAN or MD18150 \$MN_MM_GUD_VALUES_MEM (memory space for user variables).

The name created with the DEF statement is valid for all channels. The memory requirement for the variable value is equal to the size of the data type multiplied by the number of channels.

Buffered user memory is used.

Special cases:

The battery-backed data are lost if this machine data is altered.

Related to:

MD18150 \$MN_MM_GUD_VALUES_MEM (Memory space for user variables)

18150	MM_GU	D_VALUES_MEM		N02	A2
-	Memory	location for global us	er variable values (SRAM)	DWORD	PowerOn
-			•		
802d-cu3	-	48	0	32000	2/2
802d-ng2	-	48	0	32000	2/2
802d-ng3	-	48	0	32000	2/2
802d-tm1	-	32	0	32000	2/2
802d-tm2	-	32	0	32000	2/2
802d-tm3	-	32	0	32000	2/2

Description:

The specified value reserves memory space for the variable values of the global user data (GUD). The dimensioning of the memory depends to a large extent on the data types used for the variables.

Overview of the memory requirements of the data types:

Data type Memory requirement

REAL 8 bytes
INT 4 bytes
BOOL 1 byte
CHAR 1 byte

STRING 1 byte per character, 100 characters permitted

per string

AXIS 4 bytes

FRAME up to 1KB depending on control model

General machine data

The total memory required by a channel or axis-specific global user variable is the memory requirement of the variables multiplied by the number of channels or axes. The number of global user variables available is given when the limit defined in MD18120 \$MN_MM_NUM_GUD_NAMES_NCK, MD18130 \$MN_MM_NUM_GUD_NAMES_CHAN, MD18140 \$MN_MM_NUM_GUD_NAMES_AXIS or MD18150 \$MN_MM_GUD_VALUES_MEM is reached.

Buffered user memory is used.

Special cases:

The buffered data are lost if this machine data is altered! Related to:

MD18118 \$MN MM NUM GUD MODULES

(Number of GUD blocks)

MD18120 \$MN_MM_NUM_GUD_NAMES_NCK

(Number of global user variables)

MD18130 \$MN MM NUM GUD NAMES CHAN

(Number of channel-specific user variables)

18160	MM_NU	M_USER_MACROS		N02	S7
-	Number	of macros (DRAM)		DWORD	PowerOn
-				•	
802d-cu3	-	70	0	32000	1/1
802d-ng2	-	70	0	32000	1/1
802d-ng3	-	70	0	32000	1/1
802d-tm1	-	50	0	32000	1/1
802d-tm2	-	50	0	32000	1/1
802d-tm3	-	50	0	32000	1/1

Description:

Defines the number of macros that can be stored in the files _N_SMAC_DEF, _N_MMAC_DEF und _N_UMAC_DEF. Each of these files which is opened occupies at least one kbyte memory space for the file code in the part program memory. Another kbyte of memory is reserved for the file when the one kbyte file code limit is exceeded.

The dynamic user memory is used. For the stated number of macros, approximately 375 bytes are reserved per macro for management tasks.

06/2009 Machine Data

General machine data

18170	MM_NUM_MAX_FUNC_NAMES			N02	V2,A2				
-	Number of miscellaneous functions (cycles, DRAM)			DWORD	PowerOn				
-									
-	-	100	32000	0/0					

Description:

The data limits the maximum number of special functions over and above the predefined functions (such as sine, cosine, etc.) which can be used in

- cycle programs
- compile cycle software.

The function names are entered in the global NCK dictionary and must not conflict with the names that already exist.

The SIEMENS cycle package contains special functions that are taken into account by the default setting of the MD.

The data are stored in unbuffered memory. Approximately 150 bytes are required for each special function for management purposes. Related to:

MD18180 \$MN_MM_NUM_MAX_FUNC_PARAM (Number. of additional parameters)

18180	MM_NUM_MA	MM_NUM_MAX_FUNC_PARAM			V2			
-	Number of add MD 18170	Number of additional parameters for cycles according to MD 18170			PowerOn			
-								
-	-	1000	32000	0/0				

Description:

Defines the maximum number of parameters required for the special functions in

- cycle programs
- compile cycle software.

50 parameters are required for the special functions of the SIE-MENS cycle package, software version 1.

The data are stored in unbuffered memory. 72 bytes of memory are reserved for each parameter.

Related to:

MD18170 \$MN_MM_NUM_MAX_FUNC_NAMES
(Number of special functions)

General machine data

18190				N12, N02, N06, N09	A3
-	Number of files for machine-related protection zones (SRAM)			DWORD	PowerOn
-					
802d-cu3	-	0	0	10	1/1
802d-ng2	-	0	0	10	1/1
802d-ng3	-	0	0	10	1/1
802d-tm1	-	0	0	10	-1/2
802d-tm2	-	0	0	10	-1/2
802d-tm3	-	0	0	10	-1/2

Description:

This machine data defines how many blocks are created for the protection zones available in the NCK.

Buffered memory is used.

Special cases:

The battery-backed data are lost if this machine data is altered.

References:

/FB/, A3, "Axis Monitoring, Protection Zones"

18204	MM_NUM_CCS_TDA_PARAM			N02, N09	FBW
-	Number of Sien	Number of Siemens OEM tool data (SRAM)			PowerOn
-					
-	-	0 0			0/0

Description:

Only when MD18080 $MN_M_{TOOL}MANAGEMENT_MASK$, bit 2=1 ('H4'), is set:

User or OEM data of the tools.

Number of Siemens OEM TDA (=tool-specific) data (standard format Int).

See also: MD18094 \$MN_MM_NUM_CC_TDA_PARAM, MD18082 \$MN_MM_NUM_TOOL Buffered user memory is used

06/2009 Machine Data

General machine data

18205	MM_TYPE_CCS_TDA_PARAM			N02, N09	FBW			
-	Type of Siemens OEM tool data (SRAM)			DWORD	PowerOn			
-								
-	10	4,4,4,4,4,4,4,4,4	6	0/0				

Description:

Only when MD18080 $MN_M_{TOOL}MANAGEMENT_MASK, bit 2=1 ('H4'), is set:$

User or OEM data in the tool management.

Type of tool-specific Siemens user data configured by MD18204

\$MN MM NUM CCS TDA PARAM.

Each parameter can be assigned its own type. The permissible types

are

Type Value of the machine data

(See types of the NC language)

BOOL 1
CHAR 2
INT 3
REAL 4

STRING 5 (permits identifiers up to 31

characters long)

AXIS 6

FRAME not defined See also: MD18204 \$MN_MM_NUM_CCS_TDA_PARAM, MD18082

\$MN MM NUM TOOL

Buffered user memory is used

18206	MM_NUM_CCS_TOA_PARAM			N02, N09	FBW
-	No. of Siemens	OEM data per cutting e	DWORD	PowerOn	
-					
-	-	0	0	10	0/0

Description:

Only when MD18080 $MN_M_{TOOL}MANAGEMENT_MASK, bit 2=1 ('H4'), is set:$

User or OEM data of the tools.

Number of Siemens OEM TOA data (standard format IN Real).

See also: MD18096 \$MN_MM_NUM_CC_TOA_PARAM, MD18100

\$MN_MM_NUM_CUTTING_EDGES_IN_TOA
Buffered user memory is used

General machine data

18207	MM_TYPE_CCS_TOA_PARAM			N02, N09	FBW
-	Type of Siemens OEM data per cutting edge (SRAM)			DWORD	PowerOn
-					
-	10	4,4,4,4,4,4,4,4,4	1	6	0/0

Description:

Only when MD18080 $MN_M_{TOOL}MANAGEMENT_MASK$, bit 2=1 ('H4'), is set:

User or OEM data in the tool management.

Type of cutting-edge-specific Siemens user data configured by MD18206 \$MN MM NUM CCS TOA PARAM.

MD18206 \$MN_MM_NOM_CCS_TOA_PARAM.

Each parameter can be assigned its own type. The permissible types $\frac{1}{2}$

are _

Type Value of the machine data

(See types of the NC language)

BOOL 1
CHAR 2
INT 3
REAL 4

• (STRING is explicitly impossible here; value 5 is treated like value 2)

AXIS 6

FRAME not defined

See also: MD18206 \$MN_MM_NUM_CCS_TOA_PARAM, MD18100

\$MN_MM_NUM_CUTTING_EDGES_IN_TOA
Buffered user memory is used

18208	MM_NUM_CCS_MON_PARAM			N02, N09	FBW			
-	No. of Siemens OEM monitor data (SRAM)			DWORD	PowerOn			
-								
-	-	0 0			0/0			

Description:

Only when MD18080 $MN_M_{TOOL}MANAGEMENT_MASK$, bit 0 = 1 or bit 1 = 1 and bit 2=1 ('H4'), is set:

User or OEM data in the tool management.

Number of Siemens OEM monitoring data; standard format IN Int).

See also: MD18098 \$MN_MM_NUM_CC_MON_PARAM, MD18100

\$MN_MM_NUM_CUTTING_EDGES_IN_TOA Buffered user memory is used 06/2009 Machine Data

General machine data

18209	MM_TYPE_CCS_MON_PARAM			N02, N09	FBW				
-	Type of Siemens OEM monitor data (SRAM)			DWORD	PowerOn				
-									
-	10	3,3,3,3,3,3,3,3,3	1	6	-1/2				

Description:

Only when MD18080 $MN_M_{TOOL}MANAGEMENT_MASK$, bit 0 = 1 or bit 1 = 1 and bit 2=1 ('H4'), is set:

User or OEM data in the tool management.

Type of monitoring-specific Siemens user data configured by MD18208 \$MN MM NUM CCS MON PARAM.

Each parameter can be assigned its own type. The permissible types $\ensuremath{\mathsf{E}}$

Type Value of the machine data

(See types of the NC language)

BOOL 1
CHAR 2
INT 3
REAL 4

• (STRING is explicitly impossible here; value 5 is treated like value 2)

AXIS 6

FRAME not defined See also: MD18208 \$MN MM NUM CCS MON PARAM, MD18100

\$MN_MM_NUM_CUTTING_EDGES_IN_TOA
Buffered user memory is used

18210	MM_US	MM_USER_MEM_DYNAMIC			S7
-	User me	emory in DRAM [KB]		DWORD	PowerOn
-			·		
802d-cu3	-	3000	0	17920	0/0
802d-ng2	-	3000	0	15360	0/0
802d-ng3	-	3000	0	16384	0/0
802d-tm1	-	3000	0	13312	0/0
802d-tm2	-	3000	000 0 1		0/0
802d-tm3	-	3000	0	16384	0/0

Description:

The DRAM in the NC is used jointly by the system and the user. MD18210 $MN_MMUSER_MEM_DYNAMIC$ defines the size of the DRAM available to the user. The input limits depend upon the hardware and software configurations of the CNC.

There are various types of user data in this memory area, for example.

- Local user data
- IPO block buffers
- User macros
- Diagnostics functions such as trace recording of times,....
- Tool management trace

General machine data

 Communication with 1-n HMIs; Value of n: See MD10134 \$MN MM NUM MMC UNITS.

Reorg Log file (required for internal purposes of the NC program sequence)

•

is

permits.

Each additionally active channel occupies a substantial amount of memory here.

Each activated axis requires part of this memory.

Exactly how much that is depends largely on the control model and the software version.

The settable values depend on the hardware and software configurations.

The value of NCK is automatically set after unbuffered startup of the NCK or deletion of the memory. The value is then such that the free memory defined in MD18050 \$MN_INFO_FREE_MEM_DYNAMIC is available to the user.

(See the description of MD18050 $MN_INFO_FREE_MEM_DYNAMIC$). If the value is set too high (in the sense that the memory required

more than that available on the memory module), the NCK responds at the next NCK reset/power on by automatically reducing the machine data value to the maximum possible value that the hardware

Message alarm 6030 advises of this process. This corresponds to a legal response of the NCK and is not an incorrect response.

The essential significance of the machine data is not to release the entire memory to the user because the memory is shared between the system and the user. A part of the physically existing memory is reserved for future developments of the NCK.

The maximum amount of memory available on the hardware can be found by selecting a value for the data that is so large that, after the subsequent restart, message alarm 6030 indicates the maximum available memory. Applications that use the maximum available memory will in all probability have memory problems with a software conversion to a newer NCK version.

Upper and lower limits are not necessary. The software rejects values outside the permissible range and then automatically sets suitable values.

(See also message alarm 6030.)

The data in the dynamic memory are not battery-backed. Note:

During power on, the system software compares the sum of all requests for dynamic memory with the value in MD18210 \$MN_MM_USER_MEM_DYNAMIC. Alarm 6000 "Memory allocated with standard machine data" is output if the memory required exceeds the memory capacity set with the MD. Alarm 6030 "User memory limit has been adapted" is output if the control detects during the power on that the memory capacity required by MD18210 \$MN_MM_USER_MEM_DYNAMIC is larger than the physical memory.

Related to:

The available dynamic memory can be taken from MD18050 $MN_IFO_FREE_MEM_DYNAMIC$ (display data of the free dynamic memory).

18220	MM_USER_MEM_DPR			EXP, N02	-
-	User memory in DUAL PORT RAM (DPR)			DWORD	PowerOn
-					
-	-	0			-1/0

Description: The functionality is not available in previous software versions.

18230	MM_US	MM_USER_MEM_BUFFERED			S7
-	User me	mory in SRAM		DWORD	PowerOn
-			·		
802d-cu3	-	0	0	10240	0/0
802d-ng2	-	0	0 9		0/0
802d-ng3	-	0	0	10240	0/0
802d-tm1	-	0	0	6144	0/0
802d-tm2	-	0	0		0/0
802d-tm3	-	0	0	10240	0/0

Description:

Battery-backed user memory (in kbyte).

Various types of user data are stored in this memory area.

For example:

- NC part programs
- R parameters
- Global user data (GUD)
- Definitions of the protection zones
- Correction tables EEC, CEC, QEC
- Tool / magazine data

. . .

This data is retained after control power off.

(Provided the data backup (battery,...) is in good working order and the Init switch is correctly set on the control).

This means that they are available unchanged after restart.

In the case of control models without a backup battery (e.g. 802S,...) there is, as a rule, an option of , specifically backing up the data by operation, so that they are available again after the next power on process.

The settable values depend on the hardware and software configurations.

The set values are designed for the minimum memory configuration of the particular control model.

256, 512 and 2000, 4000 KB of battery-backed memory are available on the hardware.

Approximately 30KB of this physically present memory is used for internal purposes. This means that approximately 226, 482, 1970, 3970KB of user memory can be set.

After all the NCK functions have taken 'their' memory corresponding to the relevant machine data values, the rest of the memory is added to the part program memory. As a rule, the user will thus have more part program memory available than that guaranteed in the sales brochure. This 'more' may however vary from version to version.

General machine data

If there are various memory configuration options for a control model then the data may have to be increased correspondingly when using the larger memory variants.

In this respect, see the meaning of MD18060
\$MN_INFO_FREE_MEM_STATIC

Special cases:

The battery-backed data are lost if this machine data is altered.

18231	MM_USER_MEM_BUFFERED_TYPEOF			N02	-
-	Technology for	chnology for data buffering			PowerOn
-					
-	3	1,1,1	0	1	0/0

Description:

Type of technology used for data back-up

Value = 0 SRAM memory only

 ${\tt Value = 1 \ SRAM \ and \ flash/disk \ memory}$

If the value = 1 then see also MD18232 \$MN_MM_ACTFILESYS_LOG_FILE_MEM

Index 0 = Reserved

Index 1 = Definition for the battery-backed data of the active file system (incl. machine data).

Index 2 = Definition for the battery-backed data of the passive file system (part programs, cycles, \dots).

 $\hbox{ This value is in each case automatically derived during power on }$

from MD11292 \$MN DRAM FILESYST CONFIG.

18232	MM_ACTFILESYS_LOG_FILE_MEM			N02	-			
-	System: logfile	System: logfile size in SRAM [KB]			PowerOn			
-								
-	3	200,5,30	0	32000	0/0			

Description:

Buffered log file for buffered data of the active file system (in $\ensuremath{\mathsf{kbytes}}$)

Systems with slow data buffer media store changed buffered data in the internal system SRAM. When the buffer is full, all data of the active file system are made persistent. The buffer backs up the data persistence of the last persistence operation until the next power fail. After a power fail (power failure or power OFF), data that had not yet been made persistent at the time of the power fail can be restored from this buffer.

The log file serves to minimize or totally avoid data loss in the event of power fail.

1000 entries require approximately 70 kB.

A value greater than 0 is only practicable if MD18231

\$MN_MM_USER_MEM_BUFFERED_TYPEOF[1] = 1.

A value equal to 0 means that the buffered data are not voltage loss safe $% \left(1\right) =\left(1\right) +\left(1\right) +$

if MD18231 \$MN_MM_USER_MEM_BUFFERED_TYPEOF[1] = 1 (typical for SINUMERIK solution line)

Example:

With MD18232 $MN_M_ACTFILESYS_LOG_FILE_MEM[2] = 0$, data changes from synchronized actions can be excluded from the power fail data backup.

An improved time response of the synchronized actions would be advantageous. This should only be set if the buffered data that are changed by the synchronized action are not safety-relevant. Index Meaning

- 0 Preprocessing buffer
- Buffer for data changes within the range of the tool change
- $2\,$ $\,$ Buffer for data changes of the main processing (especially synchronized actions)

See also MD17610 $MN_DEPTH_OF_LOGFILE_OPT_PF$, which can be used to optimize the behavior.

18233	IS_CONTINOUS_DATA_SAVE_ON			EXP, N02	-
-	System: Autom	stem: Automatic saving of persistent data			PowerOn
-					
-	3	TRUE,TRUE,TRUE	-	-	0/0

Description:

The machine data is relevant only if MD18231

\$MN MM USER MEM BUFFERED TYPEOF = 1.

The default value should be changed only if the system is operated in an environment,

Value = 0: Continuous saving of persistent data on disk/flash/etc. is deactivated.

The dynamic response of the software on systems of the SolutionLine range can thus be improved.

 $\mbox{Value} = 1$: Continuous automatic saving of persistent data on $\mbox{disk/flash/etc.}$ is active.

Index 0 = Reserved

Index 1 = Definition for the buffered data of the active file system (incl. machine data).

Index 2 = Definition for the buffered data of the passive file system (part programs, cycles, ...).

The default value should be changed only for diagnostic purposes or for optimizing the dynamic response.

The default value should be changed only if the system is operated in an environment,

where no spontaneous shutdown of the system $\!\!\!/$ spontaneous power failure occurs.

Otherwise, persistent data can be lost.

18235	MM_INCOA_MEM_SIZE			EXP	-		
-	Size of the DRAM memory for INCOA applications [Kbyte]			DWORD	PowerOn		
-		·					
-	-	0	0	25600	-1/2		

Description:

On cold restart of the control system, the default value of MD18235 \mbox{SMN} MM INCOA MEM SIZE specifies

the DRAM memory range that is available for INCOA applications in total.

This MD can only be read. With the diagnostics function "Read current actual value" the $\,$

memory space actually occupied by the INCOA applications can be determined.

18237	MM_CYC_DATA_MEM_SIZE			EXP, N02	-
-	Cycle/display setting data in SRAM [kB]			DWORD	PowerOn
-					
-	-	0	0	96	1/RO

Description:

Size of the buffered memory for 'Setting data for cycles and display' [kB]

18240	MM_LUD_HASH_TABLE_SIZE			EXP, N02	S7
-	Hash table size	lash table size for LUD (DRAM)			PowerOn
-					
-	-	37	11	107	0/0

Description:

Defines the size of the hash table for local user data (LUD). The value entered must be a primary number. The setting allows the optimization of $\ \ \,$

- \bullet $\,$ the interpreter execution time (low value = longer execution time) and
- memory requirements (low value = less memory).

A larger table requires a smaller number of decoding operations for internally decoding the variables and consequently a shorter interpreter execution time. The value of this machine data affects the amount of dynamic memory required for managing the blocks for local user variables with REORG, see MD28010

 $MC_MM_NUM_REORG_LUD_MODULES$ (Number of blocks for local user variables with REORG (DRAM)).

Note:

This machine data is assigned internally by the control and must not be altered by the user.

18242	MM_MAX_SIZE_OF_LUD_VALUE			N02	V2
-	Maximum mem	ory block size for LUD/G	SUD values	DWORD	PowerOn
-					
-	-	920	920	SLMAXVARBYTE S	0/0

Description:

Defines the net memory array size for LUD/GUD variables. Each NC program that defines at least one LUD/GUD variable or has call parameters then occupies at least one memory array of this size. The LUD/GUD variables of a program may occupy the complete LUD/GUD value memory set for the channel. However, then there is no memory available for other programms.

06/2009 Machine Data

General machine data

Example:

MM_LUD_VALUES_MEM = 12 (kbytes gross)
MM_MAX_SIZE_OF_LUD_VALUE = 660 (bytes net)

+ 16 (bytes management data per array)

676 (bytes gross)

One then obtains 12*1024 / 676 = 18 memory arrays each of 660 bytes.

This means that 12 NC programs can either each occupy one array or one NC program can define, for example, 18 variables of type Frame (whose size is approximately 660 bytes.

Data type Memory requirement REAL 8 bytes
INT 4 bytes
BOOL 1 byte
CHAR 1 byte

STRING 1 byte per character,

100 characters are possible per

string

AXIS 4 bytes

FRAME up to 1 kbyte (depending on control model)

Related to:

MD28040 \$MC_MM_LUD_VALUES_MEM

(Memory size for local user variables (DRAM))

Warning:

The battery-backed data are lost when this machine data is changed!

The size of the NC language type Frame depends on the maximum number of channel axes generated by the NCK.

There are NCK systems with a maximum number of channel axes from 4 to 20. In the case of 20 axes, the type Frame then has a size of 660 bytes.

18250	MM_CHAN_HASH_TABLE_SIZE			EXP, N02	S7			
-	Hash table size for channel-specific data (DRAM)			DWORD	PowerOn			
-								
-	-	23	3	193	0/0			

Description:

Defines the size of the hash table for channel-specific names. The value entered must be a primary number. The setting allows the optimization of

- the interpreter execution time (low value = longer execution time) and
- memory requirements (low value = less dynamic memory).

A larger table requires a smaller number of decoding operations for internally decoding the variables and consequently a shorter interpreter execution time. The value of this machine data affects the amount of dynamic memory required.

The memory required per channel in bytes is equal to the value entered multiplied by 68.

Note:

This machine data is assigned internally by the control and must not be altered by the user.

Warning:

The battery-backed data are lost if this machine data is altered!

18260	MM_NCK_HASH_TABLE_SIZE			EXP, N02	S7
-	Hash table size	Hash table size for global data (DRAM)			PowerOn
-					
-	-	4001	537	4327	0/0

Description:

Defines the size of the NCK-specific names. The value entered must be a primary number. The setting allows the optimization of

- the interpreter execution time (low value = longer execution time) and
- memory requirements (low value = less dynamic memory).

A larger table requires a smaller number of decoding operations for internally decoding the variables and consequently a shorter interpreter execution time. The value of this machine data affects the amount of dynamic memory required. The memory required in bytes is equal to the value entered multiplied by 68.

This machine data is assigned internally by the control and must not be altered by the user.

18270	MM_NUM_SUBDIR_PER_DIR			N02	S7
-	Number of subdirectories (DRAM)			DWORD	PowerOn
-					
-		MD_MAXNUM_DIR_I N_FILESYSTEM	-	-	0/RO

Description:

Defines the maximum number of subdirectories that can be created in a directory or subdirectory of the passive file system. This value is for information only, and cannot be changed. See also MD18280 \$MN_MM_NUM_FILES_PER_DIR (number of files per directory).

18280	MM_NUM_FILES_PER_DIR			N02	S7
-	Number of files per directory (DRAM)			DWORD	PowerOn
-					
-	-	MD_MAXNUM_FILES _PER_DIR	-	-	0/RO

Description:

Defines the maximum number of files that can be created in a directory or subdirectory of the passive file system. This value is for information only, and cannot be changed. See also MMD18270 \$MN_MM_NUM_SUBDIR_PER_DIR (number of subdirectories per directory).

18290	MM_FILE_HASH_TABLE_SIZE			EXP, N02	S7
-	Hash table size	for files of a directory (S	SRAM)	DWORD	PowerOn
-					
-	-	47	3	299	0/0

Description:

Defines the size for the files of a directory. The value entered must be a primary number. The setting allows the optimization of

- the interpreter execution time (low value = longer execution time) and
- memory requirements (low value = less memory).

The value of this machine data affects the amount of static memory required for the management of directories, see MD18310 \$MN_MM_NUM_DIR_IN_FILESYSTEM (number of directories in the passive file system)

Buffered user memory is used.

Note.

This machine data is assigned internally by the control and must not be altered by the user.

Special cases:

The battery-backed data are lost if this machine data is altered!

18300	MM_DIR_HASH_TABLE_SIZE			EXP, N02	S7			
-	Hash table size	for subdirectories (SRA	DWORD	PowerOn				
-		·						
-	-	11	3	349	0/0			

Description:

Defines the size of the subdirectories of a directory. The value entered must be a primary number. The setting allows the optimization of

- \bullet $\,$ the interpreter execution time (low value = longer execution time) and
- memory requirement (low value = less memory).

The value of this machine data affects the amount of static memory required for the management of directories, see MD18310 $MN_M NUM_DIR_IN_FILESYSTEM$ (number of directories in the passive file system).

Buffered user memory is used.

Note:

This machine data is assigned internally by the control and must not be altered by the user.

Special cases:

The battery-backed data are lost if this machine data is altered!

General machine data

18310	MM_NU	MM_NUM_DIR_IN_FILESYSTEM			S7
-	Number	of directories in pass	ive file system (SRAM)	DWORD	PowerOn
-				•	
802d-cu3	-	30	30	256	0/0
802d-ng2	-	30	30	256	0/0
802d-ng3	-	30	30	256	0/0
802d-tm1	-	30	30	50	0/0
802d-tm2	-	30	30	256	0/0
802d-tm3	-	30	30	256	0/0

Description:

This machine data limits the number of directories in the passive file system.

It can be used to reserve memory in the SRAM for the management of the directories. The directories and subdirectories of the passive file system set up by the system are included in this machine data. The memory required for the management of the directories can be calculated as follows:

Memory required = a (440+28 (b+c)) bytes

a = Input value of MD18310 \$MN_MM_NUM_DIR_IN_FILESYSTEM

(no. of directories in passive file system)

b = Input value of MD19300 \$MN_MM_DIR_HASH_TABLE_SIZE

(HASH table size for subdirectories)
c = Input value of MD18290 \$MN MM FILE HASH TABLE SIZE

(hash table size for the files of a directory)

Buffered user memory is used.

Special cases:

The battery-backed data are lost if this machine data is altered.

Related to:

MD18270 \$MN_MM_NUM_SUBDIR_PER_DIR
(Number of subdirectories)

18320	MM_NUM_FILES_IN_FILESYSTEM			N02	S7
-	Number of files	in passive file system (S	SRAM)	DWORD	PowerOn
-					
802d-cu3	-	512	64	768	0/0
802d-ng2	-	512	64	768	0/0
802d-ng3	-	512	64	768	0/0
802d-tm1	-	150	64	768	0/0
802d-tm2	-	64		768	0/0
802d-tm3	-	512	64	768	0/0

Description:

Defines the number of files available in the part program memory. This machine data is used to reserve memory in SRAM - approximately 320 bytes per file - for managing the file memory. Each file created requires a minimum of one kbyte of memory for the file code. If the one kbyte limit for the file code is exceeded another kbyte is reserved for the file.

Buffered user memory is used.

Special cases:

The battery-backed data are lost if this machine data is altered. $\ensuremath{\mathsf{I}}$

Related to:

MD18280 \$MN_MM_NUM_FILES_PER_DIR
(Number of files in directories)

18321	MM_NU	MM_NUM_SYSTEM_FILES_IN_FS			-
-	Number	of system files		DWORD	PowerOn
-					
802d-cu3	-	300	100	512	1/1
802d-ng2	-	300	100	512	1/1
802d-ng3	-	300	100	512	1/1
802d-tm1	-	100	100	512	1/1
802d-tm2	-	300	100	512	1/1
802d-tm3	-	300	100	512	1/1

Description:

Number of temporary system files in the passive file system (see also MD18355 MD_{MM_T} FILE MEM_SIZE);

For example: Compilations of cycles (preprocessing), system traces

18331	MM_FLASHFILESYS_MEM			N01, N02	-
-	Reserved for FI	Reserved for FFS (DRAM)			PowerOn
-					·
-	8	0,0,0,0,0,0,0	-	-	0/0

Description: Reserved for FFS

18332	MM_FLASH_FILE_SYSTEM_SIZE			N01, N02	IAD			
-	Size of FFS			DWORD	PowerOn			
-		<u> </u>						
-	-	0	0	4096	0/0			

Description:

Size of the flash file system on the PCNC (in kbyte)

Entries have to be made in steps of 128KB. Apart from 0, the smallest possible value is 512KB.

If the flash file system is used as a backup memory for the DRAM file system, then MD18332 $MN_MFLASH_FILE_SYSTEM_SIZE$ must be at least 3 times the size of the largest file in the DRAM file system larger than MD18351 $MN_MDRAM_FILE_MEM_SIZE$.

Additional memory space is needed in the DRAM file system for log files if this has been configured by MD11295 \$PROTOC_FILE_MEM.

18342	MM_CE	C_MAX_POINTS	N01, N02	K3	
-	max. nu (SRAM)	mber of interpolation points on	per of interpolation points on sag compensation		PowerOn
-				•	•
802d-cu3	2	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	120	1/1
802d-ng2	2	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	120	1/1
802d-ng3	2	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	120	1/1
802d-tm1	2	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0	-1/2
802d-tm2	2	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	120	1/1
802d-tm3	2	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	120	1/1

Description:

The MD defines the memory space available for the compensation tables.

When MD18342 $MN_MCEC_MAX_POINTS = 0$, no memory is set up for the table. The sag compensation function cannot then be used. Caution!

If MD18342 \$MN_MM_CEC_MAX_POINTS[t] is changed, when the system is powered up, the buffered NC user memory is automatically reset. This deletes all user data in the buffered user memory (e.g. drive and HMI machine data, tool offsets, part programs etc.). Related to:

SD41300 \$SN CEC TABLE ENABLE[t]

Evaluation of the sag compensation table (t) enabled.

References:

/FB/, S7, "Memory Configuration"

18350	MM_USER_FILE_MEM_MINIMUM			EXP, N02	S7
-	minimum part program memory (SRAM)			DWORD	PowerOn
-					
-	-	0 0			0/0

Description:

Valid only for PowerLine control models.

Minimum user memory for files in the passive file system (in kbyte)

There are various types of user data in this memory area.

Defines the minimum remaining battery-backed memory area for the files of the passive file system (in kbyte). The settable value depends on the hardware and software configurations (memory allocation SRAM) and on MD18230 \$MN_MM_USER_MEM_BUFFERED (user memory in the SRAM). During the memory allocation of the SRAM, the files of the passive file system are assigned to the end of the remaining memory.

The remaining memory must have at least the memory space stated in MD18350 \$MN_MM_USER_FILE_MEM_MINIMUM available for the file system to be able to work. If this is not ensured, the control assigns the pre-assigned data to the memory during power on, as a consequence of which all the battery-backed data entered by the user is lost. Alarm 6000 "Memory allocation with standard machine data" is also output.

The available part program memory can be taken from the MD18060 $\mbox{SMN_INFO_FREE_MEM_STATIC}$ (display data of the free static memory). Special cases:

The battery-backed data are lost if this machine data is changed and the remaining memory is less than the value of MD18350 \$ MN MM USER FILE MEM MINIMUM.

18351	MM_DRAM_FILE_MEM_SIZE			EXP, N02	TE7,V2,M5,S7
-	Size of part program memory (DRAM)			DWORD	PowerOn
-					
-	-	0	0	32768	0/0

Description:

Size of memory for files in the DRAM of the passive file system (in kbyte).

If the flash file system is used as a background memory for the DRAM file system then MD18332 $MN_M_{FLASH_FILE_SYSTEM_SIZE}$ must be at least 3 times the size of the largest file in the DRAM file system and be larger than MD18351 MN_M MM DRAM FILE MEM SIZE.

18352	MM_U_F	MM_U_FILE_MEM_SIZE			S7
-	End use	r memory for part progra	ms/cycles/files	DWORD	PowerOn
-					
802d-cu3	3	3136,0,0	0	3200	0/0
802d-ng2	3	1088,0,0	0	1152	0/0
802d-ng3	3	3136,0,0	0	3200	0/0
802d-tm1	3	576,0,0	0	640	0/0
802d-tm2	3	1088,0,0	0	1152	0/0
802d-tm3	3	3136,0,0	0	3200	0/0

Description:

The machine data is not available or not defined for PowerLine control models.

End user memory for files in the passive file system (in kbyte). There are various types of user data in this memory area.

E.g.: NC part programs, cycle programs of the end user, diagnostic files, \ldots

The settable values depend on the hardware and software configurations.

The settable size of the part program memory is, apart from the upper limit value,

determined by the MD18230 $MN_M_USER_MEM_BUFFERED$ and can also be determined by a software option.

Index 0 = Size of the battery-backed part program / cycle program memory

Index 1 = Reserved
Index 2 = Reserved

18353	MM_M_FILE_N	MM_M_FILE_MEM_SIZE			S7
-	Memory capac	ity for machine manufac	turer's cycles/files	DWORD	PowerOn
-					
802d-cu3	3	0,0,0	0	512	0/0
802d-ng2	3	0,0,0	0	512	0/0
802d-ng3	3	0,0,0	0	512	0/0
802d-tm1	3	0,0,0	0	256	0/0
802d-tm2	3	0,0,0	0	512	0/0
802d-tm3	3	0,0,0	0	512	0/0

Description:

The machine data is not available or not defined for PowerLine control models.

Memory for machine manufacturer files in the passive file system (in kbyte).

The machine manufacturer's files are in this memory area of the passive file system.

E.g.: cycle programs

The settable values depend on the hardware and software configurations.

The settable size of the memory is, apart from the upper limit value, $\$

determined by the MD18230 \$MN MM USER MEM BUFFERED.

Index 0 = Minimum size of the battery-backed (persistent) part program / cycle program memory

Index 1 = Reserved

Index 2 = Reserved

06/2009 Machine Data

General machine data

18354	MM_S_FILE_MEM_SIZE			EXP, N02	-				
-	Memory capacity for NC manufacturer's cycles/files			DWORD	PowerOn				
-		·							
-	3	384,0,128	0	768	0/0				

Description:

The machine data is not available or not defined for PowerLine control models.

Memory for the control manufacturer's files in the passive file system (in kbyte).

The control manufacturer's files are in this memory area of the passive file system.

E.g.: cycle programs, system files

The settable values depend on the hardware and software configurations.

The settable size of the memory is, apart from the upper limit value, $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

for index = 0 determined by MD18230 \$MN MM USER MEM BUFFERED.

For index 1 = Reserved.

For index 2 =limited by the size of the internally availble battery-backed memory (SRAM).

Index 0 = Size of the battery-backed cycle program memory

Index 1 = Reserved

Index 2 = Size of the battery-backed memory for system files

18355	MM_T_FILE_MEM_SIZE			EXP, N02	-
-	Memory size for temporary files			DWORD	PowerOn
-					
-	-	1000	0	-	0/0

Description:

The machine data is not available or not defined for PowerLine control models.

Memory for temporary files in the passive file system (in kbyte) For example: Compilate of cycles (preprocessing), system traces

General machine data

18356	MM_E_FILE_MEM_SIZE			EXP, N02	-
-	Memory size fo	r the clipboard of extern	al files	DWORD	PowerOn
-					
802d-cu3	3	512,0,0	0	3200	0/0
802d-ng2	3	512,0,0	0	1152	0/0
802d-ng3	3	512,0,0	0	3200	0/0
802d-tm1	3	256,0,0	0	640	0/0
802d-tm2	3	512,0,0	0	1152	0/0
802d-tm3	3	512,0,0	0	3200	0/0

Description:

For PowerLine control models the machine data is not available or has not been defined.

Memory for the clipboard of external files in the passive file system (in kB)

The settable values depend on the hardware and software configuration.

The settable memory size is limited, except for the upper limit value, $\$

for index = 0 by MD18230 \$MN MM USER MEM BUFFERED.

for index = 1 reserved
for index = 2 reserved

Index 0 = size of the buffered clipboard

Index 1 = reserved
Index 2 = reserved

18390	MM_COM_COMPRESS_METHOD			EXP, N01, N02	-			
-	Supported compression methods.			DWORD	PowerOn			
-		·						
-	-	0x01	-	-	0/0			

Description: Setting for the compression methods to be supported.

18400	MM_NUM_CURVE_TABS			N02, N09	M3		
-	Number of curve tables (SRAM)			DWORD	PowerOn		
-							
-	-	0	0	INT_MAX	-1/1		

Description:

Defines the maximum number of curve tables that can be stored in the SRAM of the entire system. A curve table consists of a number of curve segments.

Related to:

MD18402 \$MN_MM_NUM_CURVE_SEGMENTS

18402	MM_NUM_CURVE_SEGMENTS			N02, N09	M3,B3		
-	Number of curve segments (SRAM)			DWORD	PowerOn		
-							
-	-	0	0	INT_MAX	-1/1		

Description:

Defines the maximum number of curve segments that can be stored in the SRAM of the entire system. The curve segments are a component of a curve table.

Related to

MD18400 \$MN_MM_NUM_CURVE_TABS

18403	MM_NUM_CURVE_SEG_LIN			N02, N09	M3		
-	Number of linear curve segments (SRAM)			DWORD	PowerOn		
-							
-	-	0	0	INT_MAX	-1/1		

Description:

Number of linear curve segments in the SRAM available throughout the NCK.

A curve table may consist of "normal" curve segments and linear segments. The number of "normal" curve segments in the SRAM is defined by MD18402 $MN_M_NUM_CURVE_SEGMENTS$, these curve segments can accommodate polynomials.

Linear curve segments can only accommodate straight lines. These linear curve segments are stored in battery-backed memory.

18404	MM_NUM_CURVE_POLYNOMS			N02, N09	M3,B3		
-	Number of curv	umber of curve table polynomials (SRAM)			PowerOn		
-		·					
-	-	0	0	INT_MAX	-1/1		

Description:

Defines the maximum total number of polynomials for curve tables that can be stored in the SRAM of the entire system. The polynomials are a component of a curve segment. A maximum of 3 polynomials are required for a curve segment. As a rule, only 2 polynomials are used for each curve segment.

Related to

MD18400 \$MN_MM_NUM_CURVE_TABS
MD18402 \$MN_MM_NUM_CURVE_SEGMENTS

18406	MM_NUM_CURVE_TABS_DRAM			N02, N09	M3		
-	Number of curve tables (DRAM)			DWORD	PowerOn		
-							
-	-	0	0	INT_MAX	-1/1		

Description:

Number of curve tables in the DRAM available throughout the NCK. The curve tables are stored either in the buffer $% \left(1\right) =\left(1\right) +\left(1\right) +$

This MD is used to set the number of curve tables in the dynamic memory (DRAM).

18408	MM_NUM_CURVE_SEGMENTS_DRAM			N02, N09	M3		
-	Number of curv	e segments (DRAM)	DWORD	PowerOn			
-							
-	-	0	0	INT_MAX	-1/1		

Description:

Number of polynomial curve segments in the DRAM available throughout the NCK.

The curve segments are stored either in the buffer memory or in the dynamic memory.

This MD is used to set the number of segments in the dynamic memory (DRAM).

18409	MM_NUM_CURVE_SEG_LIN_DRAM			N02, N09	M3		
-	Number of linear curve segments (DRAM)			DWORD	PowerOn		
-		·					
-	-	0	0	INT_MAX	-1/1		

Description:

Number of linear curve segments in the DRAM $% \left(1\right) =\left(1\right) +\left(1\right)$

A curve table may consist of "normal" curve segments and linear segments. The number of "normal" curve segments in the DRAM is defined by MD18408 \$MN_MM_NUM_CURVE_SEGMENTS_DRAM, these curve segments can accommodate polynomials. Linear curve segments can only accommodate straight lines.

The curve segments are stored either in the buffer $% \left(1\right) =0$ memory. This MD defines the number of curve segments in the dynamic memory (DRAM).

18410	MM_NUM_CURVE_POLYNOMS_DRAM			N02, N09	M3		
-	Number of curv	nber of curve table polynomials (DRAM)			PowerOn		
-		·					
-	-	0	0	INT_MAX	-1/1		

Description:

Number of polynomials for curve tables in the DRAM available throughout the NCK.

The polynomials for curve tables are stored in the buffer memory or in the dynamic memory.

This MD is used to set the number of polynomials for curve tables in the dynamic memory (DRAM).

18450	MM_NUM_CP_MODULES			N02, N09	-			
-	Max. number of CP modules			DWORD	PowerOn			
-		<u> </u>						
-	-	4	0	48	-1/1			

Description:

Number of CP coupling modules available within the NCK The MD defines the max. permissible number of CP couplings and reserves the required dynamic memory (DRAM).

18452	MM_NUM_CP_MODUL_LEAD I			N02, N09	-		
-	Maximum numb	num number of CP master values			PowerOn		
-		·					
-	-	4	99	-1/1			

Description:

Number of NCK-wide available CP master values.

This MD defines the max. permissible number of CP master values and reserves the required dynamic memory (DRAM).

18500	MM_EXTCOM_TASK_STACK_SIZE			EXP, N02	S7	
-	Stack size for external communications task (DRAM)			DWORD	PowerOn	
-						
-	-	30	30	60	0/0	

Description:

Defines the size (KB) of the stack for external communication. The dynamic memory area is used.

Note:

This machine data is assigned internally by the control and must not be altered by the user.

18510	MM_SERVO_TASK_STACK_SIZE			EXP, N02	S7
-	Stack size of servo task (DRAM)			DWORD	PowerOn
-					
-	- 20 20			40	0/0

Description:

Defines the stack size for the SERVO task. The dynamic memory is used for this purpose.

Note:

This machine data is assigned internally by the control and must not be altered by the user.

18512	MM_IPO_TASK_STACK_SIZE			EXP, C02	-	
-	Stack size of IPO task (DRAM)			DWORD	PowerOn	
-						
-	-	30	30	40	0/0	

Description:

Size of the IPO task stack in kbyte.

The dynamic memory is used.

18540	MM_PLC_TASK_STACK_SIZE			EXP, N02	-
-	Stack size of the PLC task (DRAM)			DWORD	PowerOn
-					
-	-	30	30	60	0/0

Description: Size of the stack of the PLC task in kbyte.

Dynamic memory is used.

18541	MM_PLCBG_TASK_STACK_SIZE			EXP, N02	-		
-	Stack size of the PLC background task (DRAM)			DWORD	PowerOn		
-		·					
-	-	30	30	60	0/0		

Description: Size of the stacks for the PLC background task in Kbyte.

The dynamic memory is used.

18542	MM_PLCINT_TASK_STACK_SIZE			EXP, N02	-		
-	Stack size of th	Stack size of the servosynch. PLC task (DRAM)			PowerOn		
-							
-	-	30	30	60	0/0		

Description: Size of the stack of the servosynchronous PLC task in KB.

Dynamic memory is used.

18600	MM_FRAME_FINE_TRANS			N02	K2,M5	
-	Fine offset with FRAME (SRAM)			DWORD	PowerOn	
-						
-	-	1	0	1	0/0	

Description:

- The fine offset cannot be entered or programmed.
- Disabling fine offset saves a maximum of 10KB SRAM, (depending on MD28080 \$MC_MM_NUM_USER_FRAMES).
- The fine offset is possible for settable frames, the basic frame and the programmable frame by operator input or via program.

18601	MM_NUM_GLOBAL_USER_FRAMES			N02	K2,M5
-	Number of global predefined user frames (SRAM).			DWORD	PowerOn
-					
-	-	0	0	100	0/0

Description:

Number of global predefined user frames.

The value corresponds to the number of field elements for the predefined field \$P UIFR[].

If the value of the data is greater than 0, then all settable fields are only global. The MD28080 $MC_MM_NUM_USER_FRAMES$ is then ignored.

18602	MM_NUM_GLOBAL_BASE_FRAMES			N02	K2,M5
-	Number of global base frames (SRAM).			DWORD	PowerOn
-	·				
-	-	0 0			0/0

Description:

Number of NCU basic frames.

18660	MM_NUM_SYNACT_GUD_REAL			N02	-
-	Number of configurable GUD variables of type REAL			DWORD	PowerOn
-					
-	9	0,0,0,0,0,0,0,0	0	32767	0/0

Description:

The MD18660 \$MN_MM_NUM_SYNACT_GUD_REAL[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type REAL. The GUD blocks are differentiated by the field index:

 $MN_M_NUM_SYNACT_GUD_REAL[0] = <value> -> extension of the SGUD block$

 $MN_M_NUM_SYNACT_GUD_REAL[1] = <value> -> extension of the MGUD block$

\$MN_MM_NUM_SYNACT_GUD_REAL[2] = <value> -> extension of the UGUD
block

 $MN_M_NUM_SYNACT_GUD_REAL[3] = <value> -> extension of the GUD4 block$

 $MN_M_NUM_SYNACT_GUD_REAL[8] = <value> -> extension of the GUD9 block$

In each case, fields with the following properties are created: Data type $\ensuremath{\mathtt{REAL}}$

Field size corresponding to <value> of the relevant machine data Predefined names:

 $SYG_RS[] \rightarrow Synact$ parameter of type REAL in the SGUD block $SYG_RM[] \rightarrow Synact$ parameter of type REAL in the MGUD block $SYG_RU[] \rightarrow Synact$ parameter of type REAL in the UGUD block

SYG R4[] -> Synact parameter of type REAL in the GUD4 block

. . . .

 $SYG_R9[$] -> Synact parameter of type REAL in the GUD9 block The parameters can be read and written both by the part program and also via synchronous actions.

18661	MM_NUM_SY	MM_NUM_SYNACT_GUD_INT			-			
-	Number of con	Number of configurable GUD variables of type integer			PowerOn			
-								
-	9	0,0,0,0,0,0,0,0	0	32767	0/0			

Description:

The MD18661 \$MN_MM_NUM_SYNACT_GUD_INT[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type INTEGER. The GUD blocks are differentiated by the field index:

 $MN_M_NUM_SYNACT_GUD_INT[0] = <value> -> extension of the SGUD block$

 $MN_M_NUM_SYNACT_GUD_INT[1] = <value> -> extension of the MGUD block$

 $MN_M_NUM_SYNACT_GUD_INT[2] = <value> -> extension of the UGUD block$

\$MN_MM_NUM_SYNACT_GUD_INT[3] = <value> -> extension of the GUD4
block

 $MN_M_NUM_SYNACT_GUD_INT[8] = <value> -> extension of the GUD9 block$

In each case, fields with the following properties are created: ${\tt Data\ type\ BOOL}$

Field size corresponding to <value> of the relevant machine data Predefined names:

SYG_IS[] -> Synact parameter of type INT in the SGUD block SYG_IM[] -> Synact parameter of type INT in the MGUD block SYG_IU[] -> Synact parameter of type INT in the UGUD block SYG_I4[] -> Synact parameter of type INT in the GUD4 block

 ${\tt SYG_I9[\]}$ -> Synact parameter of type INT in the GUD9 block The parameters can be read and written both by the part program and also via synchronous actions.

Machine Data 06/2009

General machine data

18662	MM_NUM_SYNACT_GUD_BOOL			N02	-
-	Number of configurable GUD variables of type Boolean			DWORD	PowerOn
-					
-	9	0,0,0,0,0,0,0,0	0	32767	0/0

Description:

The MD18662 \$MN_MM_NUM_SYNACT_GUD_BOOL[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type Boolean. The GUD blocks are differentiated by the field index:

\$MN_MM_NUM_SYNACT_GUD_BOOL[0] = <value> -> extension of the SGUD
block

 $MN_M_NUM_SYNACT_GUD_BOOL[1] = <value> -> extension of the MGUD block$

 $MN_M_NUM_SYNACT_GUD_BOOL[2] = <value> -> extension of the UGUD block$

\$MN_MM_NUM_SYNACT_GUD_BOOL[3] = <value> -> extension of the GUD4
block

 $MN_M_NUM_SYNACT_GUD_BOOL[8] = <value> -> extension of the GUD9 block$

In each case, fields with the following properties are created: ${\tt Data\ type\ BOOL}$

Field size corresponding to <value> of the relevant machine data Predefined names:

SYG_BS[] -> Synact parameter of type Boolean in the SGUD block SYG_BM[] -> Synact parameter of type Boolean in the MGUD block SYG_BU[] -> Synact parameter of type Boolean in the UGUD block SYG_B4[] -> Synact parameter of type Boolean in the GUD4 block

 $SYG_B9[\]$ -> Synact parameter of type Boolean in the GUD9 block The parameters can be read and written both by the part program and also via synchronous actions.

18663	MM_NUM_SYNACT_GUD_AXIS			N02	-
-	Number of conf	Number of configurable GUD variables of type Axis			PowerOn
-					
-	9	0,0,0,0,0,0,0,0	0	32767	0/0

Description:

The MD18663 \$MN_MM_NUM_SYNACT_GUD_AXIS[] can be used to extend individual GUD blocks by additional channel-specific parameter areas of type AXIS. The GUD blocks are differentiated by the field index:

\$MN_MM_NUM_SYNACT_GUD_AXIS[0] = <value> -> extension of the SGUD
block

 $MN_M_NUM_SYNACT_GUD_AXIS[1] = <value> -> extension of the MGUD block$

 $MN_M_NUM_SYNACT_GUD_AXIS[2] = <value> -> extension of the UGUD block$

\$MN_MM_NUM_SYNACT_GUD_AXIS[3] = <value> -> extension of the GUD4
block

 $MN_M_NUM_SYNACT_GUD_AXIS[8] = <value> -> extension of the GUD9 block$

In each case, fields with the following properties are created: ${\tt Data}$ type ${\tt AXIS}$

Field size corresponding to <value> of the relevant machine data Predefined names:

SYG_AS[] -> Synact parameter of type AXIS in the SGUD block SYG_AM[] -> Synact parameter of type AXIS in the MGUD block SYG_AU[] -> Synact parameter of type AXIS in the UGUD block SYG_A4[] -> Synact parameter of type AXIS in the GUD4 block

 $SYG_A9[\]$ -> Synact parameter of type AXIS in the GUD9 block The parameters can be read and written both by the part program and also via synchronous actions.

18664	MM_NUM_SYNACT_GUD_CHAR			N02	-
-	Configurable G	Configurable GUD variable of type Char			PowerOn
-					
-	9	0,0,0,0,0,0,0,0	0	32767	0/0

Description:

The MD18664 \$MN_MM_NUM_SYNACT_GUD_CHAR[]

can be used to extend individual GUD blocks by additional

channel-specific parameter areas of type CHAR.

The GUD blocks are differentiated by the field index:

\$MN_MM_NUM_SYNACT_GUD_CHAR[0] = <value> -> extension of the SGUD

block

 $MN_M_NUM_SYNACT_GUD_CHAR[1] = <value> -> extension of the MGUD$

block

 $MN_M_NUM_SYNACT_GUD_CHAR[2] = <value> -> extension of the UGUD$

block

\$MN_MM_NUM_SYNACT_GUD_CHAR[3] = <value> -> extension of the GUD4

block

\$MN_MM_NUM_SYNACT_GUD_CHAR[8] = <value> -> extension of the GUD9

block

In each case, fields with the following properties are created: $\mbox{\it Data}$ type $\mbox{\it CHAR}$

Field size corresponding to <value> of the relevant machine data Predefined names:

SYG CS[] -> Synact parameter of type CHAR in the SGUD block

SYG_CM[] -> Synact parameter of type CHAR in the MGUD block

SYG CU[] -> Synact parameter of type CHAR in the UGUD block

 ${\rm SYG_C4[\]}$ -> Synact parameter of type CHAR in the GUD4 block

. . . .

 $SYG_C9[\]$ -> Synact parameter of type CHAR in the GUD9 block The parameters can be read and written both by the part program and also via synchronous actions.

18665	MM_NUM_SYN	IACT_GUD_STRING	N02	-	
-	Configurable GUD variable of type STRING			DWORD	PowerOn
-					
-	9	0,0,0,0,0,0,0,0	25	0/0	

Description:

The MD18665 \$MN_MM_NUM_SYNACT_GUD_STRING[] can be used to extend individual GUD blocks by additional channel-specific

parameter areas of type STRING.

The GUD blocks are differentiated by the field index:

 $MN_M_NUM_SYNACT_GUD_STRING[0] = <value> -> extension of the SGUD block$

 $MN_M_NUM_SYNACT_GUD_STRING[1] = <value> -> extension of the MGUD block$

 $MN_M_NUM_SYNACT_GUD_STRING[2] = <value> -> extension of the UGUD block$

 $MN_MM_NUM_SYNACT_GUD_STRING[3] = <value> -> extension of the GUD4 block$

 $MN_MM_NUM_SYNACT_GUD_STRING[8] = <value> -> extension of the GUD9 block$

In each case, fields with the following properties are created: ${\tt Data}$ type ${\tt STRING}$

Field size corresponding to <value> of the relevant machine data The maximum length of a string is 31 characters.

Predefined names:

SYG_SS[] \rightarrow Synact parameter of type STRING in the SGUD block SYG_SM[] \rightarrow Synact parameter of type STRING in the MGUD block SYG_SU[] \rightarrow Synact parameter of type STRING in the UGUD block SYG_S4[] \rightarrow Synact parameter of type STRING in the GUD4 block

 ${\tt SYG_S9[\]}$ -> Synact parameter of type STRING in the GUD9 block The parameters can be read and written both by the part program and also via synchronous actions.

18710	MM_NU	M_AN_TIMER		N02	-
-	Number	of global time variab	le for synchronized actions	DWORD	PowerOn
-			-	-	
802d-cu3	-	0	0	10000	2/2
802d-ng2	-	0	0	10000	0/0
802d-ng3	-	0	0	10000	0/0
802d-tm1	-	0	0	10000	0/0
802d-tm2	-	0	0	10000	0/0
802d-tm3	-	0	0	10000	0/0

Description:

Number of global time variables for motion-synchronous actions (DRAM)

18720	MM_SERVO_FIFO_SIZE			EXP, N01	B3		
-	Setpoint value for buffer size between IPO and position control			DWORD	PowerOn		
-							
-	-	2	2	35	0/0		

Description:

The machine data determines the size of the setpoint value buffer between interpolator and position control, and has a direct effect on the dynamic user memory requirement.

That is normally 2. If several NCUs are connected via NCU link for e.g. rotary indexing machines, the value should be set to 3 on all NCUs. This will balance the transmission rates of the setpoint values via the link.

In a master value application (e.g. line shaft), the value should be set to 4, but only on the NCU that generates the master value. For all the other NCUs, the preset value should be maintained at 2.

Note.

In control loops that are connected via interpolator, every increase of the value generates a further dead-time.

When the IPO cycles of the NCUs within an NCU group are set to different values, the link communication will only run in the slowest IPO cycle. The MD must be increased in the ratio of the NCU IPO cycle to the slowest IPO cycle in the NCU group, in order to achieve a synchronized output of the setpoint values on the drive interface. The formula for this is as follows:

MM_SERVO_FIFO_SIZE = 2 * IPO cycle ratio + 1
Example:

In an IPO cycle ratio of 4:1, the value on the fast NCU should be set to 9 instead of 3. On the slow NCU, the value must be set to 3.

18730	MM_MAXNUM	_ALARM_ACTIONS	N02	-				
-	Length of the alarm action list			DWORD	PowerOn			
-								
-	-	500	2000	1/1				

Description:

Maximum number of alarm actions that are retained. This is the length of the alarm action list.

18800	MM_EXTERN_	MM_EXTERN_LANGUAGE			K1
-	Activation of ex	ternal NC languages		DWORD	PowerOn
-					
802d-cu3	-	0x0001	0x0000	0x0001	1/1
802d-ng2	-	0x0000	0x0000	0x0001	-1/2
802d-ng3	-	0x0000	0x0000	0x0001	-1/2
802d-tm1	-	0x0001	0x0000	0x0001	1/1
802d-tm2	-	x0001 0x0000 (0x0001	1/1
802d-tm3	-	0x0001	0x0000	0x0001	1/1

Description:

The corresponding NC language must be activated to execute part programs of other control manufacturers. Only one external NC language can be selected. The range of instructions which is made available in each case is to be taken from the current documentation.

Bit 0 (LSB):

Execution of part programs ISO_2 or ISO_3. See MD10880 \$MN MM EXTERN CNC SYSTEM for coding.

18840	MM_EPSPARAM_DIMENSION			, - , -	ePS Dokumentation
-	Dimension of ePS-specific variables \$EPS_*			DWORD	PowerOn
-					
-	-	0	0	100	0/0

Description:

Dimension of ePS-specific parameters $EPS_R[i]$, $EPS_I[i]$, $EPS_B[i]$, EPS

18860	MM_MAINTEN	ANCE_MON	EXP, N01	W6				
-	Activation of maintenance data recording			BOOLEAN	PowerOn			
-		·						
-	-	FALSE	-	1/1				

Description:

Maintenance data is recorded when this MD has the value TRUE. The axial MD33060 $MA_MAINTENANCE_DATA$ sets which data are to be recorded.

Details are to be found in the service documentation.

18864	MM_NUM_TRAFO_DATA_SETS			N02, N09	W1
-	Maximum number of definable transformation data blocks.			DWORD	PowerOn
-					
-	-	0	0	100	0/0

Description:

Maximum number of definable transformation data blocks. The data for defining a transformation data block are set by the system variables NT_XXX .

The data are stored in the buffered memory.

18866	MM_NUM_KIN_TRAFOS			N02, N09	W1
-	Maximum number of transformation objects in NCK			DWORD	PowerOn
-					
-	-	0	0	200	0/0

Description:

Maximum number of transformation objects in NCK.

This machine data defines the maximum number of transformation objects in NCK which can be created by transformations that are defined by kinematic chains.

18900	FPU_ERROR_MODE			EXP	-
-	System reactio	System reaction to FPU calculation error			PowerOn
NBUP, NDLD					
-	-	0x1	-	-	0/0

Description:

System response to floating point unit arithmetic errors Bit 0 = 0: (LSB)

The response to an FPU arithmetic error takes place during a station change by the station controller polling the FPU status word. (For CPUs without exception handling)

Bit 0 = 1:

There is an immediate branch into an exception when an FPU arithmetic error occurs:

The address at which the arithmetic error occurred can be exactly localized in the alarm output

18910	FPU_CTRLWO	RD_INIT	EXP	-				
-	Basic initialization of FPU control word			DWORD	PowerOn			
NBUP, NDLD								
-	-	0x37F	-	-	0/0			

Description:

The basic initialization of the FPU control word enables the FPU mode of operation (e.g. rounding mode) to be changed. Significance of the bit: see manual of the FPU used.

06/2009 Machine Data

General machine data

18920	FPU_EXEPTIO	N_MASK	EXP	-					
-	Exception mask for FPU calculation errors			DWORD	PowerOn				
NBUP, NDLD		,							
-	-	0xD	-	-	0/0				

Description:

```
The exception mask for FPU calculation errors enables selection of
the FPU error for which an exception was issued.
Significance of the bits for Intel 486:
Bit 0 (LSB):
  invalid operation
Bit 1:
  denormalized operand: | operand | < as the smallest 2nd power
Bit 2:
  zero divide
Bit 3:
  overflow: result is larger than the largest displayable number
  underflow: result is smaller than the smallest displayable num-
  her
Bit 5:
  precision: result cannot be displayed exactly (e.g. 1/3)
Significance of the bits for Intel 960:
Bit 12:
  integer overflow
Bit 24:
  floating overflow
Bit 25:
  floating underflow
Bit 26:
  invalid operation
Bit 27:
  zero divide
Bit 28:
  floating inexact (precision): result cannot be displayed
  exactly
Bit 29:
  denormalized operand
```

18930	COREFILE	_NAME		EXP	-		
-	Path for co	Path for core file creation			PowerOn		
-							
-	-		-	-	0/0		

Description:

File name with path name under which a core file is created in the case of a control crash.

The core file is used for problem analysis by NCK development. A core file will be created, if a valid file name is entered in this MD.

2.3 Channel-specific machine data

Number	Identifier	dentifier			Reference
Unit	Name	me			Active
Attributes					
System	Dimension	Default value	Minimum value	Maximum value	Protection

Description: Description

2.3.1 Basic channel machine data

20000	CHAN_NAME			C01, C10	B3,K1
-	Channel name	hannel name			PowerOn
-					
-		CHAN1,CHAN2,CHA N3,CHAN4	-	-	0/0

Description: The channel name can be defined in this MD. The channel name is only used for the display on the HMI.

20050	AXCON	F_GEOAX_ASSIGN_TAB	C01, C10	TE7,TE8,M1,R2,K 1,K2	
-	Assignm	ent of geometry axis to channe	el axis	BYTE	PowerOn
-					
802d-cu3	3	1, 2, 3,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-ng2	3	1, 0, 2	0	20	2/2
802d-ng3	3	1, 0, 2	0	20	2/2
802d-tm1	3	1, 2, 3,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-tm2	3	1, 2, 3,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-tm3	3	1, 2, 3,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2

Description:

This MD assigns a geometry axis to a channel axis.

The assignment has to apply to all three geometry axes (X, Y, Z). If no assignment has been made for one geometry axis, then enter value 0. The geometry axis is thus not available and cannot be programmed. For example, in the case of the "Turning" technology the second geometry axis $Y \to \text{entry}$: value 0 (see default setting for turning) is missing.

20060	AXCONF_GEC	DAX_NAME_TAB		C01, C11, C10	F2,V2,M1,K2
-	Geometry axis	name in channel		STRING	PowerOn
-					
802d-cu3	3	X, Y, Z,X, Y, Z	-	-	1/1
802d-ng2	3	X, , Z	-	-	1/1
802d-ng3	3	X, , Z	-	-	1/1
802d-tm1	3	X, Y, Z,X, Y, Z	-	-	1/1
802d-tm2	3	X, Y, Z,X, Y, Z	-	-	1/1
802d-tm3	3	X, Y, Z,X, Y, Z	-	-	1/1

This MD is used to enter the names of the geometry axes separately for each channel. Geometry axes can be programmed in the part program using the names specified here.

Special cases:

- The geometry axis name entered must not conflict with the designations and assignments of the machine and channel axis names.
- The machine axis names entered must not be the same as the names entered for Euler angles (MD10620 \$MN_EULER_ANGLE_NAME_TAB), names specified for directional vectors (MD10640 \$MN_DIR_VECTOR_NAME_TAB), names given to intermediate point coordinates in the case of CIP (MD10660 \$MN_INTERMEDIATE_POINT_NAME_TAB) or the names of interpolation parameters (MD10650 \$MN_IPO_PARAM_NAME_TAB).
- The geometry axis name entered must not include any of the following reserved address letters:
 - D Tool offset (D function)

- E Reserved

- F Feedrate (F function)

- G Preparatory

- function
- H Auxiliary function (H function) L Subroutine call
- M Miscellaneous function (M function) N Subblock
- P Subroutine number of passes R Arithmetic parameters
- S Spindle speed (S function) T Tool (T function)
- The name must not include any keywords (e.g. DEF, SPOS etc.) or pre-defined identifiers (e.g. ASPLINE, SOFT).
- The use of an axis identifier consisting of a valid address letter (A, B, C, I, J, K, Q, U, V, W, X, Y, Z) followed by an optional numerical extension (1-99) gives slightly better block cycle times than a general identifier.
- Identical names may be given to geometry axes assigned to different channels.

Related to:

```
MD10000 $MN_AXCONF_MACHAX_NAME_TAB

(machine axis name [axis no.])

MD20080 $MC_AXCONF_CHANAX_NAME_TAB

(channel axis name in the channel [channel axis no.])
```

20070	AXCON	AXCONF_MACHAX_USED			TE3,B3,K5,M1,K1 ,K2,P3 pl,P3 sl,S1
-	Machine	axis number valid in chan	nel	BYTE	PowerOn
-				·	·
802d-cu3	6	1, 2, 3, 4, 5, 0	0	31	2/2
802d-ng2	6	1, 2, 3, 4, 5, 0	0	31	2/2
802d-ng3	6	1, 2, 3, 4, 5, 0	0	31	2/2
802d-tm1	4	1, 2, 3, 4	0	31	2/2
802d-tm2	6	1, 2, 3, 4, 5, 0	0	31	2/2
802d-tm3	6	1, 2, 3, 4, 5, 0	0	31	2/2

Description:

This MD assigns a channel axis to a machine axis.

The SINUMERIK 802D has five channel axes.

For the axes activated in the channel, the channel axis identifiers must be set by default in MD20080 $MC_AXCONF_CHANAX_NAME_TAB$. These axes can be programmed.

A machine axis not assigned to a channel axis is not active, i.e. no axis control, no display on the screen.

20080	AXCON	AXCONF_CHANAX_NAME_TAB			F2,V2,M1,K2,V1		
-	Channel	axis name in channel		STRING	PowerOn		
-							
802d-cu3	6	X, Y, Z, SP, A, PLCX	-	-	2/2		
802d-ng2	6	X, Z, C, A, B, PLCX	-	-	2/2		
802d-ng3	6	X, Z, C, A, B, PLCX	-	-	2/2		
802d-tm1	4	X, Y, Z, SP	-	-	2/2		
802d-tm2	6	X, Y, Z, SP, A, PLCX	-	-	2/2		
802d-tm3	6	X, Y, Z, SP, A, PLCX	-	-	2/2		

Description:

This MD is used to set the name of the channel axis. The channel axis in the work (workpiece coordinate system) is displayed under this name. The same name is also written in the program. Generally, the first two or three channel axes are used as geometry axes (see also MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB). The remaining channel axes are called additional axes. The SINUMERIK 802D has five channel axes.

20082	AXCONF_CHA	NAX_DEFAULT_NAME	C01, C11, C10	-				
-	Default axis nar	Default axis name for axis variables in the channel			PowerOn			
-		<u> </u>						
-	-		-	-	0/0			

Variables or parameters of type Axis which have not been initialized are initialized with a default axis identifier. The identifier can be configured via the machine data MD20082

\$MC_AXCONF_CHANAX_DEFAULT_NAME. If this machine data is set with an empty string, the 1st geometry axis is used, as previously. MD20082 \$MC_AXCONF_CHANAX_DEFAULT_NAME can be set by default with all available, valid axis identifiers. The value of this machine data should generally always correspond to a value of \$MD20060 \$MC_AXCONF_GEOAX_NAME_TAB, MD20080 \$MC_AXCONF_CHANAX_NAME_TAB or MD10000 \$MN AXCONF MACHAX NAME TAB.

If an invalid axis name is entered as a value or if this name has been changed, for example, in MD20080 $MC_AXCONF_CHANAX_NAME_TAB$ but not in MD20082 $MC_AXCONF_CHANAX_DEFAULT_NAME$, then this is indicated with alarm 4041 channel %1 block %2 axis identifier %3 is invalid".

Only valid axis identifiers, empty string and "NO_AXIS" may be entered in MD20082 \$MC_AXCONF_CHANAX_DEFAULT_NAME. "NO_AXIS" is used to indicate a non-initialized axis variable, empty string means previous behavior, i.e. each variable is initialized with the 1st geometry axis.

20090	SPIND_	DEF_MASTER_SPIND	C01, C03	H2,K1,K2,P3 pl,P3 sl,S1,W1
-	Initial se	tting of master spindle in channel	BYTE	PowerOn
-				
802d-cu3	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	2	2/2
802d-ng2	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	2	1/1
802d-ng3	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	2	1/1
802d-tm1	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	1	1/1
802d-tm2	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	2	2/2
802d-tm3	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	2	2/2

Description:

Definition of the default setting for the master spindle (in the channel).

The number of the spindle is entered.

A number of functions are linked to the master spindle, which are not possible with any other spindle.

Note:

The language command SETMS (n) can declare the spindle number as the master spindle.

The spindle defined in this MD is declared once again as the master spindle with SETMS.

The spindle defined in this MD is also declared as the master spindle at program end and program abort.

Machine Data 06/2009

Channel-specific machine data

20094	SPIND_	RIGID_TAPPING_M_NR	C01, C03, C	10 H2,K1,S1
-	M function	on for switching into controlled axis m	ode DWORD	PowerOn
-				
802d-cu3	-	70,70,70,70,70,70,70, - 70,70,70,70,70,70	-	2/2
802d-ng2	-	70,70,70,70,70,70,70, - 70,70,70,70,70,70	-	1/1
802d-ng3	-	70,70,70,70,70,70,70, - 70,70,70,70,70,70	-	1/1
802d-tm1	-	70,70,70,70,70,70,70, - 70,70,70,70,70,70	-	0/0
802d-tm2	-	70,70,70,70,70,70,70, - 70,70,70,70,70,70	-	2/2
802d-tm3	-	70,70,70,70,70,70,70, - 70,70,70,70,70,70	-	2/2

Description:

This machine data defines the M auxiliary function number with which the spindle is switched into axis mode.

The M number defined in the machine data replaces ${\rm M70}$ in Siemens language mode.

Note:

On the VDI interface, M70 is always output with the corresponding address extension to indicate the switch to axis mode.

Restrictions: Refer to machine data MD10715 $MN_MNO_FCT_CYCLE$ Related to:

```
MD10714 $MN M NO FCT EOP,
```

MD10715 \$MN M NO FCT CYCLE,

MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,

MD22254 \$MC AUXFU ASSOC MO VALUE

For external language mode:

MD10814 \$MN EXTERN M NO MAC CYCLE,

MD10804 \$MN EXTERN M NO SET INT

MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,

MD10800 \$MN EXTERN CHAN SYNC M NO MIN,

MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX

MD20095 \$MC_EXTERN_RIGID_TAPPING_M_NR

For nibbling:

\$MD26008 \$MC NIBBLE PUNCH CODE

20095	EXTERN	N_RIGID_TAPPING_M_NR	C01, C11, C03, C10	H2,K1
-	M function mode)	on for switching to controlled axis mode(exte	ernal DWORD	PowerOn
-				
802d-cu3	-	29,29,29,29,29,29, - 29,29,29,29,29,29	-	2/2
802d-ng2	-	29,29,29,29,29,29, - 29,29,29,29,29,29	-	-1/2
802d-ng3	-	29,29,29,29,29,29, - 29,29,29,29,29,29	-	-1/2
802d-tm1	-	29,29,29,29,29,29, - 29,29,29,29,29,29	-	0/0
802d-tm2	-	29,29,29,29,29,29, - 29,29,29,29,29,29	-	2/2
802d-tm3	-	29,29,29,29,29,29, - 29,29,29,29,29,29	-	2/2

This machine data defines the M function number with which the switchover to controlled spindle/axis mode is to be carried out. The M number defined in the machine data replaces M29 in external language mode.

Pre-defined M numbers, such as M00,M1,M2,M3, etc., are not allowed as M numbers.

Restrictions: See machine data MD10715 \$MN_M_NO_FCT_CYCLE Related to:

MD10714 \$MN_M_NO_FCT_EOP,

MD10715 \$MN_M_NO_FCT_CYCLE,

MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,

MD22254 \$MC_AUXFU_ASSOC_M0_VALUE

For external language mode:

MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE,

MD10804 \$MN_EXTERN_M_NO_SET_INT

MD10806 \$MN EXTERN M NO DISABLE INT,

MD10800 \$MN EXTERN CHAN SYNC M NO MIN,

MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX

MD20095 \$MC EXTERN RIGID TAPPING M NR

For nibbling:

MD26008 \$MC_NIBBLE_PUNCH_CODE

Machine Data 06/2009

Channel-specific machine data

20096	T_M_AD	T_M_ADDRESS_EXT_IS_SPINO			H2,W1
-	Meaning	Meaning of address extension at T, M tool change			PowerOn
-					
-	-	FALSE,FALSE,FAL E,FALSE,FALSE,FA SE		-	1/1

Description:

This MD is only significant if the functions 'Tool management'/'flat D numbers' are inactive.

FALSE

The contents of the address extensions of the NC addresses T and M 'tool change command number' are not evaluated by the NCK. The PLC decides on the significance of the programmed extension.

The address extensions of the NC addresses T and M 'tool change command number' - 'tool change command number'=TOOL_CHANGE_M_CODE with 6 as the default value - are interpreted as spindle numbers. NCK treats the extension in the same way as the active functions 'tool management' and 'flat D number management'.

That is, the programmed D number always refers to the T number of the programmed main spindle number.

See also:

MD20090 \$MC_SPIND_DEF_MASTER_SPIND, MD22550 \$MC_TOOL_CHANGE_MODE, MD22560 \$MC TOOL CHANGE M CODE

20098	DISPLAY	/_AXIS		EXP, C01	-
-	Display a	axis on HMI		DWORD	Immediately
-				•	<u> </u>
802d-cu3	6	0xFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF	-	-	1/1
802d-ng2	6	0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF	-	-	1/1
802d-ng3	6	0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF	-	-	1/1
802d-tm1	4	0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF	-	-	1/1
802d-tm2	6	0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF, 0xFFFFFFF	-	-	1/1
802d-tm3	6	0xFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF	-	-	1/1

Identification whether the axis is to be displayed by the HMI as a machine, geometry or auxiliary axis.

This data is only evaluated by the HMI.

Bit 0 to 15: MCS

Bit 0= 1 Display machine axis in the actual-value windows

0 Hide machine axis in the actual-value windows

Bit 1= 1 Display machine axis in the reference-point windows

O Hide machine axis in the reference-point windows

Bit 2=1 Display machine axis in the present/basic offset/scratch window

0 Hide machine axis in the present/basic off-set/scratch window

Bit 3= 1 Display machine axis in the handwheel selection window

O Hide machine axis in the handwheel selection window

Bit 16 to 31: WCS

Bit 16= 1 Display geometry axis in the actual-value window

0 Hide geometry axis in the actual-value window

(Bit 17) not assigned

Bit $18=\ 1$ Display geometry axis in the basic offset window

 $\ensuremath{\text{0}}$ $\ensuremath{\text{\text{Hide}}}$ geometry axis in the basic offset window

Bit 19= 1 Display geometry axis in the handwheel selection window

O Hide geometry axis in the handwheel selection window

20100	DIAMETE	DIAMETER_AX_DEF			H1,M5,P1,V1,W1
-	Geometry	axis with transvers	se axis function	STRING	PowerOn
-			·		
802d-cu3	-		-	-	1/1
802d-ng2	-	Х	-	-	1/1
802d-ng3	-	X	-	-	1/1
802d-tm1	-		-	-	1/1
802d-tm2	-		-	-	1/1
802d-tm3	-		-	-	1/1

Description:

This MD is used to define a geometry axis as a transverse axis. Only one transverse axis can be defined here for each channel. The axis identifier of an active geometry axis that has been defined in the channel-specific MD20050 \$MC AXCONF GEOAX ASSIGN TAB[n] or MD24120

 $MC_{TRAFO} AX_{GEOAX} ASSIGN_{TAB_1[n]}$ (from SW 4) and MD20060 $MC_{AXCONF} GEOAX_{NAME} TAB[n]$ must be specified.

If space characters are entered or if an axis identifier is specified for an axis which is not defined as a geometry axis, this leads to the following alarms:

- during runup, to alarm 4032 "Channel %1 wrong identifier for transverse axis in %2", if the "Diameter programming" function (DIAMON) or constant cutting velocity G96/G961/G962 is the switch-on setting.
- when the "Diameter programming (DIAMON)" function is activated, to alarm 16510 "Channel %1 block %2 No transverse axis available for diameter programming", if no axis has been permitted via DIAMCHANA[AX] for channel-specific diameter programming.
- when G96/G961/G962 has been programmed, to alarm 10870 "Channel %1 block %2 No transverse axis defined as reference axis for G96/G961/G962", if no geometry axis has been defined as the reference axis for G96/G961/G962 by the instruction SCC[ax].

Related to:

```
MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB[n]
(assignment of geometry axis to channel axis)
MD20060 $MC_AXCONF_GEOAX_NAME_TAB[n]
(geometry axis name in the channel)
MD24120 $MC_TRAFO_AX_GEOAX_ASSIGN_TAB_1[n]
(assignment of GEO axis to channel axis for transformation 1)
```

20106	PROG_EVENT_IGN_SINGLEBLOCK			N01	K1,Z1
-	Prog-Events igr	Prog-Events ignore single block			PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1F	2/2

Event-controlled programm calls (Prog-Events) can be set regarding their single block behavior.

Bit 0 = 1:

Prog-Event after part program start causes block change without restart

Bit 1 = 1:

Prog-Event after part program end causes block change without restart

Bit 2 = 1 :

Prog-Event after OP reset causes block change without restart

Bit 3 = 1:

Prog-Event after runup causes block change without restart

Bit 4 = 1 .

 $\begin{tabular}{ll} Prog-Event after 1st start after search run causes block change \\ without restart \\ \end{tabular}$

20107	PROG_EVENT_IGN_INHIBIT			N01	K1,Z1
-	Prog-Events ignore read-in disable			DWORD	PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1F	2/2

Description:

Event-controlled programm calls (Prog-Events) can be set regarding their read-in disable behavior.

Bit 0 = 1:

Prog-Event after part program start causes block change despite read-in disable

Bit 1 = 1 :

Prog-Event after part program end causes block change despite read-in disable

Bit 2 = 1 :

Prog-Event after OP reset causes block change despite read-in disable

Bit 3 = 1:

Prog-Event after runup causes block change despite read-in dis-

Bit 4 = 1:

Prog-Event after 1st start after search run causes block change despite read-in disable $\,$

20108	PROG_EVENT_MASK			N01, -	TE3,K1
-	Setting of even	Setting of event-driven programm calls			PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xF	2/2

Description:

Parameterization of the events, at which the user program set with MD11620 \$MN_PROG_EVENT_NAME (default: _N_PROG_EVENT_SPF) is called implicitly:

Bit 0 = 1: Part program start Bit 1 = 1: Part program end Bit 2 = 1: Operator panel reset

Bit 3 = 1: Runup

The user program is called via the following search path:

1. /_N_CUS_DIR/_N_PROG_EVENT_SPF

2. /_N_CMA_DIR/_N_PROG_EVENT_SPF

3. /_N_CST_DIR/_N_PROG_EVENT_SPF

20109	PROG_EVENT_MASK_PROPERTIES			N01	K1
-	Properties of Prog-Events			DWORD	PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	2/2

Description:

Parameterization of additional properties of the event-controlled program calls (in short, Prog-Event), that is, the MD20108 $MC_{PROG_{EVENT_MASK}}$ is further parameterized.

Bit 0 = 1 :

An ASUB started from channel status RESET does not result in a $\operatorname{Prog-Event}$.

20110	RESET_MODE	:_MASK		·	F2,K6,M3,TE4,W5 ,B3,K5,M1,G2,K1, K2,P1,S1,W1,2.4, 2.7
-	Definition of basic control settings after reset/PP end			DWORD	Reset
-					
-		0x4045,0x4045,0x404 5,0x4045,0x4045	0	0x7FFFF	1/1

The initial setting of the control after runup and on reset / part program end with regard to the G codes (in particular the active plane and the settable zero offset), tool length compensation and transformation is defined by setting the following bits:

Bit 0: Reset mode

Bit 1: Suppress auxiliary function output on tool selection

Bit 2: Select reset response after POWER ON; e.g. tool offset

Bit 3: Select reset response after end of test mode with reference to active tool offsets. This bit is only relevant when bits 0 and 6 are set.

It defines what "Current setting for active tool length compensation" refers to:

- the program which was active at the end of test mode
- the program which was active before test mode was switched on
- Bit 4: Reserved! Setting now via MD20152 \$MC GCODE RESET MODE[..]
- Bit 5: Reserved! Setting now via MD20152 \$MC GCODE RESET MODE[..]
- Bit 6: Reset response "Active tool length compensation"
- Bit 7: Reset response "Active kinematic transformation"
- Bit 8: Reset response "Coupled-motion axes"
- Bit 9: Reset response "Tangential follow-up"
- Bit 10: Reset response "Synchronous spindle"
- Bit 11: Reset response "Revolutional feedrate"
- Bit 12: Reset response "Geo-axis replacement"
- Bit 13: Reset response "Master value coupling"
- Bit 14: Reset response "Basic frame"
- Bits 4 to 11 are only evaluated when bit 0 = 1.
- Bit 15: Function for "electronic gearbox", not relevant for tool management.
- Bit 16=0: The spindle number defined by MD20090
- $\mbox{SMC_SPIND_DEF_MASTER_SPIND}$ is the number of the master spindle after programm end/reset.
- Bit 16=1: The programmed value of SETMS is retained after programm end/reset.
- Bit 17=0: The tool holder number defined by MD20124
- $\MC_TOOL_MANAGEMENT_TOOLHOLDER$ is the number of the master tool holder after programm end/reset.
- Bit 17=1 The programmed value of SETMS is retained after programm end/reset.
- These two bits are only relevant if bit 0=1 is also set. The bit value=0 is selected so that the previous response with bit 0=1 is retained. (Retention of the programmed values of SETMTH/SETMS after programm end already applied to bit 0=0.)
- Bit 18=0 Reference axis for G96/G961/G962 according to MD20100 \$MC_DIAMETER_AX_DEF. Bit 18 = 1 is recommended when using SCC with its own spindle reset (see also MD20112 \$MC_START_MODE_MASK, Bit 18).

Bit 18=1 Reference axis for G96/G961/G962 is retained.
Related to:
MD20120 \$MC_TOOL_RESET_VALUE
MD20130 \$MC_CUTTING_EDGE_RESET_VALUE
MD20150 \$MC_GCODE_RESET_VALUES
MD20152 \$MC_GCODE_RESET_MODE
MD20140 \$MC_TRAFO_RESET_VALUE
MD20112 \$MC_START_MODE_MASK
MD20121 \$MC_TOOL_PRESEL_RESET_VALUE
MD20118 \$MC_GEOAX_CHANGE_RESET

20112	START_MODE	_MASK			K6,M3,K5,M1,K1, K2,P1,S1,W1
-	Definition of basic setting of control after part program start			DWORD	Reset
-					
-		0x400,0x400,0x400,0 x400,0x400,0x400	0	0x7FFFF	1/1

Description:

The initial setting of the control at the start of the part program with respect to G codes (in particular, current plane and active settable zero offset), active tool length compensation, transformation and axis couplings is defined by setting the following bits:

Bit 0: Not assigned: MD20112 \$MC_START_MODE_MASK is evaluated every time a part program is started.

Bit 1: Suppression of auxiliary function output on tool selection.

Bit 4: Start response for G code "Current plane"

Bit 5: Start response for G code "Settable zero offset"

Bit 6: Start response for "Active tool length compensation"

Bit 7: Start response for "Active kinematic transformation"

Bit 8: Start response for "Coupled-motion axes"

Bit 9: Start response for "Tangential follow-up"

Bit 10: Start response for "Synchronous spindle"

Bit 11: Reserved

Bit 12: Start response for "Geometry axis replacement"

Bit 13: Start response for "Master value coupling"

Bit 14: Start response for "Basic frame".

Bit 15: Function for electronic gearboxes (irrelevant to tool management)

Bit 16=0: The current value of SETMS is retained (it is a function of the settings in MD20110 $MC_RESET_MODE_MASK$).

Bit 16=1: At program start, the spindle defined by MD20090

\$MC SPIND DEF MASTER SPIND is the master spindle.

Bit 17=0: The current value of SETMH is retained (it is a function of the settings in MD20110 MC RESET MODE MASK).

Bit 17=1: At program start, the number allocated by MD20124 $MC_TOOL_MANAGEMENT_TOOLHOLDER$ is the number of the master tool holder.

Bit 18=0: Reference axis for G96/G961/G962 according to MD20100 \$MC_DIAMETER_AX_DEF. Bit 18=1 is recommended when using SCC with its own spindle reset (see also MD20110 \$MC_RESET_MODE_MASK, bit 18).

Bit 18=1: Reference axis for G96/G961/G962 is retained.

Related to:
MD20120 \$MC_TOOL_RESET_VALUE
MD20130 \$MC_CUTTING_EDGE_RESET_VALUE
MD20150 \$MC_GCODE_RESET_VALUES
MD20152 \$MC_GCODE_RESET_MODE
MD20140 \$MC_TRAFO_RESET_VALUE
MD20110 \$MC_RESET_MODE_MASK

MD20121 \$MC_TOOL_PRESEL_RESET_VALUE MD20118 \$MC_GEOAX_CHANGE_RESET

x0,0x0,0x0,0x0...

20114	MODES	WITCH_MASK	C03	K1
-	Interrupt	ion MDA by mode change	DWORD	Reset
-				
_	_	0x0.0x0.0x0.0x0.0x0.0 0	0xFFFF	1/1

Description:

After program interruption in MDI mode (e.g. in order to carry out a measurement on the workpiece and to correct the tool wear values or after tool breakage) the tool can be manually withdrawn from the contour by changing into JOG mode.

In this case, the control stores the coordinates of the position of the interruption and indicates the path differences traversed by the axes in JOG mode as "Repos offset". When MDI mode is selected again, the axis is repositioned on the contour. This response can be canceled by means of this machine data.

Bit 0 (LSB) = 0:

When MDI (JOG, JOGREF, JOGREPOS, MDIREF and MDIREPOS) are deselected in stopped status, the system ASUB Repos is selected.

Bit 0 (LSB) = 1:

When MDI (JOG, JOGREF, JOGREPOS, MDIREF and MDIREPOS) are deselected in stopped status, the system ASUB Repos is not selected.

Bit 1 (LSB) = 0:

If the NCK stops at a part program block in the program execution in which repositioning is not possible, alarm 16916 is generated if an attempt is made to switch to manual mode.

Bit 1 (LSB) = 1:

If the NCK stops at a part program block in the program execution in which repositioning is not possible, no alarm is generated if an attempt is made to switch to manual mode.

20116	IGNORE_INHIBIT_ASUP			C01	K1,Z1
-	Execuite interrupt program despite read-in disable			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	2/2

Description:

In spite of the set read-in disable, an assigned user ASUB is completely executed for the interrupt channel with the set bit.

Bit 0 is assigned to interrupt channel 1.

Bit 1 is assigned to interrupt channel 2, etc.

Related to:

MD20117 \$MC_IGNORE_SINGLEBLOCK_ASUP

20117	IGNORE_SINGLEBLOCK_ASUP			C01	K1,Z1
-	Execute interrupt program completely despite single block			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	2/2

Description:

In spite of the set single-block processing mode, an assigned user ASUB is completely executed for the relevant channel with the set bit.

Bit ${\tt 0}$ is assigned to interrupt channel 1.

Bit 1 is assigned to interrupt channel 2, etc.

The MD is only active with single block type 1.

Related to:

MD20116 \$MC IGNORE INHIBIT ASUP

20118	GEOAX_CHANGE_RESET			C03	M1,K1,Z1		
-	Enable automatic geometry axis change			BOOLEAN	Reset		
-							
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	•	•	0/0		

Description:

- 0: The current configuration of the geometry axes remains unchanged on reset and part program start. With this setting, the response is identical to that with older software versions without geometry axis replacement.
- 1: The configuration of the geometry axes remains unchanged on reset or part program end, depending on MD20110 \$MC_RESET_MODE_MASK and, on part program start, depending on MD20112 \$MC_START_MODE_MASK, or is switched to the initial state defined by MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB. Related to:

MD20050 \$MC_AXCONF_GEOAX_ASSIGN_TAB

MD20110 \$MC RESET MODE MASK

MD20112 \$MC_START_MODE_MASK

20120	TOOL_	TOOL_RESET_VALUE			K1,W1
-	I	Tool with length compens. during runup (reset/part program end).			Reset
-					
-	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	32000	1/1

Description:

Definition of the tool for which tool length compensation is selected during runup or on reset or part program end as a function of MD20110 \$MC_RESET_MODE_MASK, and on part program start as a function of MD20112 \$MC_START_MODE_MASK

Related to:

MD20110 \$MC_RESET_MODE_MASK MD20112 \$MC_START_MODE_MASK

20121	TOOL_PRESEL_RESET_VALUE			C03	K1,W1
-	Preselected too	Preselected tool on RESET			Reset
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	32000	1/1

Description:

Definition of the preselected tool in MD20310

\$MC_TOOL_MANAGEMENT_MASK=1. A tool is selected after runup, or on reset or part program end as a function of MD20110

 $\mbox{\sc SMC}_{\mbox{\sc RESET}}\mbox{\sc MODE}_{\mbox{\sc MASK}}$ and on part program start as a function of

MD20112 \$MC_START_MODE_MASK.
This MD is valid only without tool management.

Related to:

MD20110 \$MC_RESET_MODE_MASK MD20112 \$MC_START_MODE_MASK

20123	USEKT_RESET_VALUE			C03	-
-	Preselected val	Preselected value of \$P_USEKT on RESET			Reset
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0xF	0/0

Description:

The system variable \$P USEKT is set with the value of this MD:

• after run-up:

As a function of MD20112 \$MC_START_MODE_MASK

• after RESET or part program end:

As a function of MD20110 \$MC RESET MODE MASK

Related to:

MD20110 \$MC_RESET_MODE_MASK MD20112 \$MC START MODE MASK

20126	TOOL_CARRIER_RESET_VALUE			C03	W1
-	Active tool hold	Active tool holder on RESET			Reset
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	0/0

Description:

Definition of the tool holder for which tool length compensation is selected during runup or on reset or part program end as a function of MD20110 $MC_RESET_MODE_MASK$ and as a function of MD20112 $MC_RESET_MODE_MASK$ and as a function of MD20112

This data is valid without tool management.

Related to:

MD20110 \$MC_RESET_MODE_MASK MD20112 \$MC_START_MODE_MASK

20127	CUTMOD_INIT			C08	K1,W1
-	nitialize CUTMOD after power ON			DWORD	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-2	99999999	0/0

Description:

The value programmable with NC command CUTMOD is initialized automatically on power ON with the value stored in this machine data. If the value of the machine data equals -2, CUTMOD will be set to the value included in MD20126 \$MC_TOOL_CARRIER_VALUE.

20130	CUTTING_EDG	GE_RESET_VALUE	C03	-	
-	Tool edge with length compens. during runup (reset/end of pp)			DWORD	Reset
-					
-	-	1,1,1,1,1,1,1,1,1	0	32000	1/1

Description:

Definition of the cutting edge for which tool length compensation is selected during runup or on reset or part program end as a function of MD20110 \$MC RESET MODE MASK, and as a function of MD20112 \$MC START MODE MASK on part program start.

With active tool management and with bit 0 and bit 6 set in MD20110\$MC RESET MODE MASK at selection, the last offset of the tool active at power OFF - as a rule the tool on the spindle - is effective after runup.

Related to:

MD20110 \$MC_RESET_MODE_MASK MD20112 \$MC START MODE MASK

20132	SUMCORR_RESET_VALUE			C03	-
-	Effective resulting offset on RESET			DWORD	Reset
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	6	0/0

Description:

Definition of the total offset with which the tool length compensation is selected in the runup and on reset or part program end as a function of MD20110 \$MC RESET MODE MASK and as a function of MD20112 \$MC_START_MODE_MASK on part program start. MD18110 \$MN MM MAX SUMCORR PER CUTTEDGE determines the maximum useful value which can be entered.

20140	TRAFO_	_RESET_VALUE		C03	F2,TE4,M1
-	Transfor end)	Transformation data block selected during runup (reset/pp end)			Reset
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20	2/2
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20	2/2
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20	2/2

Description:

Definition of the transformation data block which is selected during runup and on reset or part program end as a function of MD20110 \$MC RESET MODE MASK, and as a function of

MD20112 \$MC START MODE MASK on part program start.

Number of the transformation data block (1...n) corresponding with MD24100 \$MC TRAFO TYPE 1 bis TRAFO TYPE n.

Not relevant MD20110 \$MC RESET MODE MASK:

MD20110 \$MC RESET MODE MASK, Bit 0 = 0

MD20112 \$MC START MODE MASK

20142	TRAFO_RESET_NAME			C03	K1		
-	Transformation	during power up (reset/	part program end)	STRING	Reset		
-							
802d-cu3	-		-	-	2/2		
802d-ng2	-		-	-	2/2		
802d-ng3	-		-	-	2/2		
802d-tm1	-		-	-	0/0		
802d-tm2	-		-	-	2/2		
802d-tm3	-		-	-	2/2		

Specifies the name of a transformation ($NT_NAME[n]$) defined with the aid of kinematic chains, which is selected during power on or on reset or part program end as a function of MD20110

 $MC_RESET_MODE_MASK$ and, on part program start, as a function of MD20112 $MC_START_MODE_MASK$.

If this machine data is not empty, machine data 20140:

 $\tt TRAFO_RESET_VALUE$ is ignored. This means that $\tt TRAFO_RESET_NAME$ has priority over $\tt TRAFO_RESET_VALUE$

MD irrelevant:

MD20110 \$MC RESET MODE MASK, bit 0 = 0

20144	TRAFO	_MODE_MASK	C07	M1	
-	Function	selection of kinematic transfor	mation	BYTE	Reset
-					-
802d-cu3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x03	1/1
802d-ng2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x03	7/2
802d-ng3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x03	7/2
802d-tm1	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x03	7/2
802d-tm2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x03	7/2
802d-tm3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x03	7/2

Description:

The specific functionality of the kinematic transformation is selected by setting the following bits:

Bit 0 = 0:

Default behavior.

Bit 0 = 1:

The transformation as defined in MD20140 \$MC_TRAFO_RESET_VALUE is persistent. That is, it is also selected with TRAFOOF and not shown in the display. This requires that the transformation defined in MD20140 \$MC_TRAFO_RESET_VALUE is selected automatically after RESET and START via MD20110 \$MC_RESET_MODE_MASK and MD20112 \$MC_START_MODE_MASK. This means that:

MD20110 $MC_RESET_MODE_MASK$ bit 0 = 1 and bit 7 = 0,

MD20112 \$MC START MODE MASK bit 7 = 1

MD20118 \$MC GEOAX CHANGE RESET = TRUE

Bit 1 = 0:
 Default behavior.
Bit 1 = 1:

The last active transformation is selected again after control power on. MD20110 $MC_RESET_MODE_MASK\ Bit\ 0 = 1\ and\ Bit\ 7 = 1\ also have to be set.$

20150	GCODE_	_RESET_VALUES	C11, C03	F2,TE4,K3,M1,M5 ,K1,K2,P1,V1
-	Initial set	ting of G groups	BYTE	Reset
-			'	1
802d-cu3	70	2, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1	-	1/1
802d-ng2	70	2, 0, 0, 1, 0, 2, 1, 2, 0, 1, 0, 1, 2, 1	-	1/1
802d-ng3	70	2, 0, 0, 1, 0, 2, 1, 2, 0, 1, 0, 1, 2, 1	-	1/1
802d-tm1	70	2, 0, 0, 1, 0, 1, 1, 1, 0, - 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1	-	1/1
802d-tm2	70	2, 0, 0, 1, 0, 1, 1, 1, 0, - 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1	-	1/1
802d-tm3	70	2, 0, 0, 1, 0, 1, 1, 1, 0, - 1, 0, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1	-	1/1

Description:

Definition of the G codes which become active on runup and reset or at part program end depending on MD20110 $MC_RESET_MODE_MASK$ (up to software version 4) and MD20152 $MC_GCODE_RESET_MODE$ (from software version 5) and at part program start depending on MD20112 $MC_GCODE_MESET_MODE$ (from START MODE MASK.

The index of the ${\tt G}$ codes in the respective groups must be programmed as the default value.

For a list of the ${\tt G}$ groups and their ${\tt G}$ functions, please refer to References:

Programming Manual, Fundamentals

TitleGroupDefault setting on 840D/810D

GCODE_RESET_VALUES[0] 12 (G1) GCODE_RESET_VALUES[1] 20 (inactive) GCODE RESET VALUES[2] 30 (inactive) GCODE RESET VALUES[3] 42 (STARTFIFO) GCODE RESET VALUES[4] 50 (inactive) GCODE_RESET_VALUES[5] 61 (G17) GCODE_RESET_VALUES[6] 71 (G40) GCODE_RESET_VALUES[7] 81 (G500) GCODE_RESET_VALUES[8] 90 (inactive) GCODE RESET VALUES[9] 101 (G60) GCODE RESET VALUES[10] 110 (inactive) GCODE_RESET_VALUES[11] 121 (G601) GCODE_RESET_VALUES[12] 132 (G71) GCODE RESET VALUES[13] 141 (G90) GCODE RESET VALUES[14] 151 (G94)

```
GCODE RESET VALUES[15]
                      161 (CFC)
GCODE RESET VALUES[16] 171 (NORM)
GCODE RESET VALUES[17] 181 (G450)
GCODE_RESET_VALUES[18] 191 (BNAT)
GCODE_RESET_VALUES[19] 101 (ENAT)
GCODE RESET VALUES[20] 211 (BRISK)
GCODE RESET VALUES[21] 221 (CUT2D)
GCODE RESET VALUES[22] 231 (CDOF)
GCODE RESET VALUES[23] 241 (FFWOF)
                      251 (ORIWKS)
GCODE RESET VALUES[24]
GCODE_RESET_VALUES[25] 262 (RMI)
GCODE_RESET_VALUES[26] 271 (ORIC)
GCODE RESET VALUES[27] 281 (WALIMON)
GCODE RESET VALUES[28] 291 (DIAMOF)
GCODE RESET VALUES[29] 301 (COMPOF)
GCODE RESET VALUES[30] 311 (inactive)
GCODE RESET VALUES[31] 321 (inactive)
GCODE_RESET_VALUES[32] 331 (FTOCOF)
GCODE_RESET_VALUES[33] 341 (OSOF)
GCODE_RESET_VALUES[34] 351 (SPOF)
GCODE_RESET_VALUES[35] 361 (PDELAYON)
GCODE RESET VALUES[36] 371 (FNORM)
) GCODE RESET VALUES[37] 381 (SPIF1)
GCODE RESET VALUES[38] 391 (CPRECOF)
                      401 (CUTCONOF)
GCODE RESET VALUES[39]
GCODE_RESET_VALUES[40] 411 (LFOF)
GCODE_RESET_VALUES[41] 421 (TCOABS)
GCODE RESET VALUES[42] 431 (G140)
GCODE RESET VALUES[43] 441 (G340)
GCODE RESET VALUES [44] 451 (SPATH)
GCODE RESET VALUES [45] 461 (LFTXT)
GCODE RESET VALUES[46] 471 (G290 SINUMERIK mode)
GCODE_RESET_VALUES[47] 483 (G460)
GCODE_RESET_VALUES[48] 491 (CP)
GCODE RESET VALUES[49] 501 (ORIEULER)
GCODE RESET VALUES[50] 511 (ORIVECT)
GCODE RESET VALUES[51] 521 (PAROTOF)
GCODE RESET VALUES[52] 531 (TOROTOF)
GCODE RESET VALUES[53] 541 (ORIROTA)
                      551 (RTLION)
GCODE RESET VALUES[54]
GCODE_RESET_VALUES[55] 561 (TOWSTD)
GCODE_RESET_VALUES[56] 571 (FENDNORM)
GCODE RESET VALUES[57] 581 (RELIEVEON)
GCODE RESET VALUES[58] 591 (DYNNORM)
GCODE RESET VALUES[59] 601 (WALCSO)
GCODE_RESET VALUES[60]
                      611 (ORISOF)
GCODE RESET VALUES[69]
                       701 (not defined)
```

20152	GCODE_	GCODE_RESET_MODE			M1,K1,K2,P1		
-	Reset res	sponse of G groups	BYTE	Reset			
-							
-	70	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	1	1/1		

Description:

This MD is only evaluated if bit 0 is set in MD20110 $\mbox{\tt SMC}$ RESET MODE MASK.

For each entry in MD20150 $MC_GCODE_RESET_VALUES$ (that is for each G group), this MD is used to determine whether, on reset/part program end, the setting in MD20150 $MC_GCODE_RESET_VALUES$ is used again (MD = 0) or the current setting is retained (MD = 1). Example:

Here, the basic setting for the 6th G group (current plane) is read from MD20150 $MC_GCODE_RESET_VALUES$ at each reset / part program end:

 $MC_GCODE_RESET_VALUES[5]=1$; reset value of the 6th G group is M17

 $\C _{GCODE_RESET_MODE[5]=0}$; basic setting for 6th G group corresponds, after

;reset / part program end

;to MD20150 \$MC GCODE RESET VALUES[5]

However, if the current setting for the 6th G group (current plane) is to be retained after reset / part program end, then the following setting results:

 $MC_GCODE_RESET_VALUES[5]=1$; reset value of the 6th G group is M17

 $MC_GCODE_RESET_MODE[5]=1$; current setting for 6th G group ; is retained even after reset / part program end.

Related to:

MD20110 \$MC_RESET_MODE_MASK

MD20112 \$MC_START_MODE_MASK

20154	EXTERN	_GCODE_RESET_VALUES	C11, C03	-
-	Initial set	ting of G groups in ISO mode	BYTE	Reset
-			<u>.</u>	
802d-cu3	31	1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 2, 1, 3, 2, 1, 0, 1, 1, 1	-	1/1
802d-ng2	31	1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 2, 1, 3, 2, 1, 0, 1, 1, 1	-	-1/2
802d-ng3	31	1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 2, 1, 3, 2, 1, 0, 1, 1, 1	-	-1/2
802d-tm1	31	1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 2, 1, 3, 2, 1, 0, 1, 1, 1	-	1/1
802d-tm2	31	1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 2, 1, 3, 2, 1, 0, 1, 1, 1	-	1/1
802d-tm3	31	1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 2, 2, 1, 3, 2, 1, 0, 1, 1, 1	-	1/1

When an external NC programming language is used, the G codes which become active on runup and reset or at part program end are defined as a function of MD20110 \$MC_RESET_MODE_MASK and at part program start as a function of MD20112 \$MC_START_MODE_MASK.

The following external programming languages are possible:

ISO2 dialect Milling

ISO3 dialect Turning

The G group division that is to be used is stated in the current ${\tt SINUMERIK}$ documentation.

The following groups within MD20154 $MC_EXTERN_GCODE_RESET_VALUES$ can be written:

ISO2 dialect M:

G group 2: G17/G18/G19

G group 3: G90/G91

G group 5: G94/G95

G group 6: G20/G21

G group 13: G96/G97

G group 14: G54-G59

ISO3 dialect T:

G group 2: G96/G97

G group 3: G90/G91

G group 5: G94/G95

G group 6: G20/G21

G group 16: G17/G18/G19

20156	EXTERN	EXTERN_GCODE_RESET_MODE			-
-	Reset res	sponse of external G groups		BYTE	Reset
-					
802d-cu3	31	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	1	1/1
802d-ng2	31	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	1	-1/2
802d-ng3	31	0, 0	0	1	-1/2
802d-tm1	31	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	1	1/1
802d-tm2	31	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	1	1/1
802d-tm3	31	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	1	1/1

Description:

This MD is evaluated only if bit0 is set in MD20110 $\mbox{MC_RESET_MODE_MASK}$ (see there).

For each entry in MD20154 $MC_EXTERN_GCODE_RESET_VALUES$ (that is for each G group), this MD is used to determine whether, on reset/part program end, the setting in MD20154

 $MC_EXTERN_GCODE_RESET_VALUES$ is used again (MD = 0) or the current setting is retained (MD = 1).

Example for ISO dialect M:

Here, the basic setting for the 14th G group (settable zero offset) is read from MD20154 $MC_EXTERN_GCODE_RESET_VALUES$ at each reset / part program end:

 $\texttt{MD20154} \ \texttt{\$MC_EXTERN_GCODE_RESET_VALUES[13]=1}$; the reset value for the 14th G group

;is G54

 $\texttt{MD20156} \ \texttt{$MC_EXTERN_GCODE_RESET_MODE[13]=0}$; the basic setting for the 14th G group

;after reset / part

program end is defined by

;MD20154

\$MC_EXTERN_GCODE_RESET_VALUES[13]

;

However, if the current setting for the 14th G group is to be retained beyond reset / part program end, this results in the following setting:

MD20154 \$MC_EXTERN_GCODE_RESET_VALUES[13]=1 ;reset value for the 14th G group

;is G54

MD20156 $\texttt{SMC_EXTERN_GCODE_RESET_MODE}[13]=1$; current setting for the 14th

;G group is retained

even after

;reset / part program end

20180	TOCARR_ROT_ANGLE_INCR			C08	W1
-	Rotary axis incr	rement of orientable tool	DOUBLE	NEW CONF	
-					
-		0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0	-	-	0/0

For orientable tool carriers, this machine data defines the size of the minimum increment (in degrees) by which the first or second orientation axis can be changed (e.g. for Hirth tooth systems).

A programmed or calculated angle is rounded to the nearest value resulting from $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

phi = s + n * d

with integer n.

In which:

s = MD20180 \$MC TOCARR ROT ANGLE INCR[i]

d = MD20182 \$MC_TOCARR_ROT_ANGLE_OFFSET[i]

and i is 0 for the 1st and 1 for the 2nd axis.

There is no rounding if this machine data is equal to zero.

20182	TOCARR_ROT_ANGLE_OFFSET			C08	-
-	Rotary axis offset of orientable tool holder			DOUBLE	NEW CONF
-					
-		0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0	-	-	0/0

Description:

This machine data defines the offset of the rotary axis for an orientable tool holder if its position cannot be continuously changed.

It is only evaluated if MD20180 $MC_TOCARR_ROT_ANGLE_INCR$ is not equal to zero.

For the precise meaning of this machine data, see the description of MD20180 \$MC TOCARR ROT ANGLE INCR.

20184	TOCARR_BASE_FRAME_NUMBER			C08	K2,W1
-	Base frame number for holding machine table offset			DWORD	NEW CONF
-					
-	-	-1,-1,-1,-1,-1,-1,-1,- 1,-1,-1,-1,-1	-1	15	0/0

Description:

This machine data indicates into which channel-specific base frame the table offset of an orientable tool holder with a rotary table is written.

This machine data must refer to a valid base frame.

If its content is less than 0 or greater than or equal to the maximum number of base frames set in MD28081 \$MC_MM_NUM_BASE_FRAMES, selection of a corresponding tool holder causes an alarm.

20188	TOCARR_FINE_LIM_LIN			C07	W1
mm	Limit of linear fi	Limit of linear fine offset TCARR			Immediately
-					
-		1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0	-	-	0/0

Description:

Indicates for each channel the input limit for the linear fine offset values of an orientable tool holder.

20190	TOCARR_FINE_LIM_ROT			C07	W1
degrees	Limit of rotary fine offset TCARR			DOUBLE	Immediately
-					
-		1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0	-	-	0/0

Description:

Indicates for each channel the input limit for the rotary fine offset values of an orientable tool holder.

20191	IGN_PROG_STATE_ASUP			EXP	K1
-	Do not display interrupt program execution on OPI			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	0/0

Description:

If the ASUB is started, OPI variables

progStatus and chanStatus do not change, i.e. the HMI does not see this normally short program execution.

Bit 0 is assigned to interrupt channel 1.

Bit 1 is assigned to interrupt channel 2, etc.

Korrespondiert mit:

MD20192 \$MC_PROG_EVENT_IGN_PROG_STATE

20192	PROG_EVENT_IGN_PROG_STATE			EXP	-	
-	Do not display the Prog-Event on OPI			DWORD	PowerOn	
-						
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xF	2/2	

Description:

Event-controlled program calls (Prog-Events) can be influenced with regard to their behavior on the OPI interface.

In this case, the progStatus and chanStatus variables are not influenced despite active Prog-Event execution and remain in the old value. Thus, the Prog-Event execution can be hidden from the ${\tt HMI}$.

Bit 0 = 1 :

Reserved bit without effect

Bit 1 = 1:

Prog-Event after part program end does not change progStatus and chanStatus

Bit 2 = 1 :

Prog-Event after operator panel reset does not change progStatus and chanStatus.

Bit 3 = 1 :

Prog-Event after power up does not change prog Status and chan-Status.

20193	PROG_EVENT_IGN_STOP			EXP	-		
-	Prog-Events ignore the stop key			DWORD	PowerOn		
-							
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xF	2/2		

Event-controlled program calls (Prog-Events) can be influenced with regard to their behavior after pressing of the stop key. The Stop, StopAll and StopAtEnd key of the PLC is ignored, if required.

Bit 0 = 1:

Prog-Event after part program start delays the stop until the part program starts, i.e. the stop only becomes active in the part program, not before its start. If the part program starts with a traversing block, it is possible that it starts briefly, i.e. a short motion occurs, although Stop has already been pressed in the Start-Prog-Event.

Bit 1 = 1:

Prog-Event after part program end ignores the stop

Bit 2 = 1 :

Prog-Event after operator panel reset ignores the stop Bit 3 = 1:

Prog-Event after power up ignores the stop

20196	TOCARR_ROTAX_MODE			C07	W1
-	ToolCarrier: rotary axis setting with axis positions not defined			DWORD	Immediately
-					
-	-	2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	0	3	0/0

Description:

The MD is bit-coded. Bit 0 applies to orientable tool holders with one axis, bit 1 for those with 2 axes.

When the axis positions of an orientable tool holder are determined from a specified frame, it might happen that the required orientation is achieved at any position of a rotary axis.

This MD specifies how the rotary axis position is defined in these cases:

If the relevant bit is 0, the position of the rotary axis will be 0; a possibly necessary rotation is performed through the specified frame.

If the relevant bit is 1, the rotation is performed by means of the rotary axis of the orientable tool holder. The resulting frame will no longer include a rotation.

Example:

A tool in its basic position points into the Z direction, and an axis of the orientable tool holder rotates the workpiece around Z (C_Axis). If the tool shall be oriented in parallel with the Z axis of a rotating frame, and if the frame only rotates around the Z axis, the tool orientation will not be changed, if the C axis is rotated. The condition saying that the tool is to point in the direction of the Z axis defined by the frame is therefore fulfilled for any position of the Z axis.

20200	CHFRNI	CHFRND_MAXNUM_DUMMY_BLOCKS			V1		
-	Empty b	Empty blocks with chamfer/radii			PowerOn		
-							
802d-cu3	-	3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0	15	1/1		
802d-ng2	-	3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0	15	0/0		
802d-ng3	-	3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0	15	0/0		
802d-tm1	-	3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0	15	0/0		
802d-tm2	-	3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0	15	0/0		
802d-tm3	-	3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,	0	15	1/1		

Description:

Indicates the maximum number of blocks without traversing information in the compensation plane (dummy blocks) that can be programmed between two blocks with traversing information when chamfer/rounding are active.

20201	CHFRND_MODE_MASK			C09	V1
-	Chamfer/rounding behavior			DWORD	Reset
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFF	1/1

Description:

Determination of the chamfer/rounding behavior

Bit 0: (LSB) Assignment of the chamfer/rounding to the preceding or following block.

This influences:

- The technology of the chamfer/rounding (feed, type of feed, M commands ...)
- The execution of the blocks without movement in the active plane (e.g. M commands, movement in the applicate) before or after a modal rounding (RNDM)

Bit 1: free

Meaning of the individual bits:

Bit 0 = 0

Chamfer/rounding is derived from the following block (default value).

The technology of the chamfer/rounding is determined by the following block. Blocks without movement (M commands) or movement only in the applicate between two movement blocks in the plane are executed before the modal rounding.

Bit 0 = 1:

Chamfer/rounding is derived from the preceding block.

The technology of the chamfer/rounding is determined by the preceding block. Blocks without movement (M commands) or movement only in the applicate between two movement blocks in the plane are executed after the modal rounding.

20202	WAB_M	WAB_MAXNUM_DUMMY_BLOCKS			W1
-	maximui SAR	maximum number of blocks w/o traversing movement with SAR			Reset
-					
802d-cu3	-	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0	10	1/1
802d-ng2	-	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0	10	0/0
802d-ng3	-	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0	10	0/0
802d-tm1	-	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0	10	0/0
802d-tm2	-	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0	10	0/0
802d-tm3	-	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0	10	1/1

Maximum number of blocks which can appear between the SAR (soft approach and retraction) block and the traversing block which determines the direction of the approach or retraction tangent.

20204	WAB_CLEARANCE_TOLERANCE			C06	W1
mm	Change of direction with SAR			DOUBLE	PowerOn
-					
-		0.01,0.01,0.01,0.01,0. 01,0.01,0.01	-	-	2/2

Description:

In the case of smooth approach and retraction, the point defined with DISCL, from which, in the case of infeed from the initial plane, traversing is carried out at lower speed (G341) or the point in which the actual approach movement begins (G 340), must lie between the initial plane and the approach plane.

If this point lies outside this interval and the deviation is less than or equal to this machine data, it is assumed that the point lies in the approach or retraction plane.

If the deviation is greater, then alarm 10741 is output. Example:

An approach is made from position Z = 20. The SAR plane is at Z = 0. The point defined by DISCL must therefore lie between these two values. If it lies between 20.000 and 20.010 or between 0 and - 0.010, it is assumed that the value 20.0 or 0.0 was programmed (under the condition that the MD has the value 0.010). The alarm is output if the position is greater than 20.010 or less than - 0.010.

20210	CUTCO	CUTCOM_CORNER_LIMIT			W1
degrees	Maximui compen	m angle f. compensation blocks sation	DOUBLE	Reset	
-					
802d-cu3	-	100.,100.,100.,100.,10 0.,100.,100	0.0	150.	1/1
802d-ng2	-	100.,100.,100.,100.,10 0.,100.,100	0.0	150.	0/0
802d-ng3	-	100.,100.,100.,100.,10 0.,100.,100	0.0	150.	0/0
802d-tm1	-	100.,100.,100.,100.,10 0.,100.,100	0.0	150.	0/0
802d-tm2	-	100.,100.,100.,100.,10 0.,100.,100	0.0	150.	0/0
802d-tm3	-	100.,100.,100.,100.,10 0.,100.,100	0.0	150.	1/1

Description:

Where outer corners are very pointed, G451 can result in long idle paths. The system therefore switches automatically from G451 (intersection) to G450 (transition circle, with DISC where appropriate) when the outer corners are very pointed. The contour angle which can be traversed following this automatic switchover (intersection ---> transition circle) can be defined in CUTCOM_CORNER_LIMIT.

20220	CUTCO	CUTCOM_MAX_DISC			W1
-	Maximur	m value for DISC		DOUBLE	Reset
-					
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	75.0	1/1
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	75.0	0/0
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	75.0	0/0
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	75.0	0/0
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	75.0	0/0
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	75.0	1/1

Description:

The G450 transition circle cannot produce sharp outer contour corners, because the path of the tool center point through the transition circle is controlled so that the cutting edge stops at the outer corner (programmed position).

Where sharp outer corners are to be machined with G450, the DISC instruction can be used in the program to program an overshoot. This transforms the transition circle into a conic section and the cutting edge lifts off from the outer corner.

The value range of the DISC instruction extends from 0 to theoretically 100 in steps of 1.

DISC = 0 ...Overshoot disabled, transition circle active DISC = 100 ...Overshoot large enough to theoretically produce a response similar to intersection (G451).

Programmed values of DISC which are higher than those stored in CUTCOM_MAX_DISC are limited to this maximum value without output of a message. A severely non-linear alteration in the path speed can thus be avoided.

Special cases:

It is not generally meaningful to enter values higher than $50\ \mathrm{in}$ DISC.

It is therefore not possible to enter values > 75.

20230	CUTCON	CUTCOM_CURVE_INSERT_LIMIT			W1			
-	Maximun	n angle for calculation of inters	ection with TRC	DOUBLE	Reset			
-								
802d-cu3	-	10.,10.,10.,10.,10.,10., 10.,10.,10	0.0	150.	1/1			
802d-ng2	-	10.,10.,10.,10.,10.,10., 10.,10.,10	0.0	150.	0/0			
802d-ng3	-	10.,10.,10.,10.,10.,10., 10.,10.,10	0.0	150.	0/0			
802d-tm1	-	10.,10.,10.,10.,10.,10., 10.,10.,10	0.0	150.	0/0			
802d-tm2	-	10.,10.,10.,10.,10.,10., 10.,10.,10	0.0	150.	0/0			
802d-tm3	-	10.,10.,10.,10.,10.,10., 10.,10.,10	0.0	150.	1/1			

Description:

Where outer corners are very flat, G450 (transition circle) and G451 (intersection) approximate each other more and more. In such a case, it is no longer useful to insert a transition circle. Especially with 5-axis machining, it is not allowed to insert a transition circle at these outer corners, as this might lead to losses in velocity during continuous-path mode (G64). That is why the system switches automatically from G450 (transition circle, possibly with DISC) to G451 (intersection) in the case of very flat outer corners. The contour angle (in degrees), as of which the automatic switchover (transition circle ---> intersection) is to be carried out, can be specified in CUTCOM CURVE INSERT LIMIT.

Machine Data

20240	CUTCO	M_MAXNUM_CHECK_BLOCKS	C08, C02	W1
-	Blocks f	or look-ahead contour calculation with TRC	DWORD	PowerOn
-			<u>.</u>	
802d-cu3	-	4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	10000	1/1
802d-ng2	-	4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	10000	0/0
802d-ng3	-	4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	10000	0/0
802d-tm1	-	4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	10000	0/0
802d-tm2	-	4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	10000	0/0
802d-tm3	-	4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	10000	1/1

Description:

Indicates the maximum number of blocks with traversing information at the offset plane that are considered simultaneously for collision detection with active radius compensation.

20250	CUTCO	M_MAXNUM_DUMM	Y_BLOCKS	C08, C02	W1
-	maximur TRC	n number of blocks w	mber of blocks without traversing motion in		PowerOn
-					<u>.</u>
802d-cu3	-	5	0	1000	1/1
802d-ng2	-	5	0	1000	0/0
802d-ng3	-	5	0	1000	0/0
802d-tm1	-	5	0	1000	0/0
802d-tm2	-	5	0	1000	0/0
802d-tm3	-	5	0	1000	1/1

Description:

During active TRC only program blocks with movements of geometry axes perpendicular to the current tool orientation are normally programmed. Nevertheless, individual intermediate blocks that do not contain such path information may also be programmed during active TRC. For example:

- Movements in the direction of tool orientation
- Movements in axes that are not geometry axes
- Auxiliary functions
- In general: Blocks that are taken over into the main run and executed there

The maximum number of intermediate blocks is defined with this MD. If the value is exceeded, alarm 10762 "Too many empty blocks between 2 traversing blocks during active tool radius compensation" is output.

Note:

Comment blocks, arithmetic blocks and empty blocks are not intermediate blocks in the sense of this MD and can therefore be programmed in any number (without an alarm being triggered).

20252	CUTCOM_MAXNUM_SUPPR_BLOCKS			EXP, C01, C08, C02	W1
-	Maximum number of blocks with compensation suppression			DWORD	PowerOn
-					
-	-	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	0	1000	0/0

Indicates the maximum number of blocks for active tool radius compensation, in which the function "Keep radius offset constant" (CUTCONON or reprogramming of G41 / G42 during active TRC) may be active.

Note:

The restriction of the number of blocks with active CUTONON is necessary in order to carry out repositioning in this situation too. Increasing this value for the machine data can lead to an increased memory requirement for NC blocks.

20260	PATH_IPO_IS_ON_TCP			EXP, C09, C05	-
-	Velocity control with spline			BOOLEAN	PowerOn
-					
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0

Description: For SW-internal function optimization.

20262	SPLINE_FEED	_PRECISION	EXP, C09, C05	-	
-	Permissible rel.	error of path velocity for	DOUBLE	PowerOn	
-					
-		0.001,0.001,0.001,0.0 01,0.001,0.001	0.000001	1.0	0/0

Description:

This machine data is evaluated only if MD28540 $\,$ SMC MM ARCLENGTH SEGMENTS is greater than 0.

The factor indicates how large the relative error of the path velocity may be for splines, compressor and polynomial interpolation. The smaller the factor the more computing time is required for preprocessing.

Furthermore, more memory is required to display the arc length function (see 28540 $MC_MM_ARCLENGTH_SEGMENTS).$

Example:

SPLINE_FEED_PRECISION=0.1, programmed path velocity=1000 mm/min. The actual path velocity for polynomial and spline interpolations may then vary within the range between 900 and 1100 mm/min.

Machine Data 06/2009

Channel-specific machine data

20270	CUTTING_EDGE_DEFAULT			C11, C03	H2,W1
-	Initial position of	of tool cutting edge witho	DWORD	PowerOn	
-					
-	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-2	32000	1/1

Description:

Default cutting edge after tool change

If no cutting edge has been programmed after a tool change, the default cutting edge number set in MD20270 $\,$

\$MC_CUTTING_EDGE_DEFAULT is used.

Value

:= 0

Initially, no cutting edge is active after a tool change.

The cutting edge is not selected until D programming.

:= 1

MD SLMAXCUTTINGEDGENUMBER

No. of cutting edge (MD_SLMAXCUTTINGEDGENUMBER=9 is valid up to P4)

:= -1

Cutting edge number of old tool also applies to new tool.

:= -2

Cutting edge (correction) of old tool remains active until D is programmed. This means that the old tool remains the active tool until D is programmed. In other words, the tool on the spindle remains the programmed tool until D is programmed.

Example:

MD20270 \$MC CUTTING EDGE DEFAULT = 1;

After a tool change, the first cutting edge is active if no other cutting edge has been programmed.

20272	SUMCORR_DEFAULT			C03	H2,W1
-	Initial position resulting offset without program			DWORD	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-1	6	0/0

Description:

The number of the total offset of the cutting edge which becomes active when a new cutting edge compensation is activated without a programmed DL value being available.

MD18110 \$MN MM MAX SUMCORR PER CUTTEDGE

defines the maximum useful value which can be entered.

Value Meaning

> 0 Number of the total offset

= 0 No total offset active with D programming

= 1 The total offset number for the previously programmed D is used.

Related to:

MD20270 \$MC CUTTING EDGE DEFAULT.

20310	TOOL_N	MANAGEMENT_MASK		C09	P3 pl,P3 sl
-	Activation	on of tool management function	S	DWORD	PowerOn
-				<u>.</u>	
802d-cu3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFFFF	2/2
802d-ng2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFFFF	2/2
802d-ng3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFFFF	2/2
802d-tm1	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFFFF	0/0
802d-tm2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFFFF	2/2
802d-tm3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFFFF	2/2

Description:

Value = 0: no tool monitoring

Value = 0x2: tool monitoring activated (possible only if "Tool

monitoring" option is available)

Related to:

MD18080 \$MN MM TOOL MANAGEMENT MASK

20320	TOOL_1	TOOL_TIME_MONITOR_MASK			-
-	Time mo	Time monitoring for tool in tool holder			PowerOn
-				<u>.</u>	
802d-cu3	-	0x1	-	-	2/2
802d-ng2	-	0x1	-	-	2/2
802d-ng3	-	0x1	-	-	2/2
802d-tm1	-	0x0	-	-	2/2
802d-tm2	-	0x1	-	-	2/2
802d-tm3	-	0x1	-	-	2/2

Description:

Activation of the tool time monitoring for the tool holders and spindles 1..x.

As soon as the path axes have been traversed (not with G00, always with G63), the tool time monitoring data of the active D compensation are updated for the tool in the selected tool holder, which is also the master tool holder.

Bit 0...x-1: Monitoring of the tool in tool holder 1...x

20350	TOOL_C	GRIND_AUTO_TMON	C06, C09	-	
-	Activatio	n of tool monitoring. 0/1: Monit	oring off/on	BYTE	PowerOn
-				<u> </u>	
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0

Description:

This MD is used to define whether tool monitoring is switched on automatically if tool length compensation for a grinding tool with monitoring is selected (odd type number types 401 - 499). TOOL_GRIND_AUTO_TMON = 1 : Automatic monitoring switched on TOOL_GRIND_AUTO_TMON = 0 : Automatic monitoring switched off

20360	TOOL_PARA	TOOL_PARAMETER_DEF_MASK			M5,P1,W1		
-	Definition of t	tool parameters	DWORD	PowerOn			
-							
-	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFF	2/2		

Description:

Bit 0=0: For turning tools the wear parameter of the transverse axis X is calculated as a radius value.

Bit 0=1:For turning tools the wear parameter of the transverse axis X is calculated as a diameter value.

20370	SHAPED_TOOL_TYPE_NO			C01, C08	-
-	Tool type number for contour tools			DWORD	Immediately
-					
-		0, 0, 0, 0,0, 0, 0, 0,0, 0, 0, 0	-	-	0/0

Description:

Indicates for each channel max. two number ranges for tool types that are treated as forming tools. Therefore individual ranges are possible both for grinding and for turning tools.

The first range is specified by the first and the second number, the second range by the third and fourth number.

If the first number is not smaller than the second one (the same applies for the third and fourth number), no range will be defined, but two individual numbers will be specified instead. The numbers 400 through 599 are permissible (tool type numbers for turning and grinding tools), and also value 0 (no tool type number defined).

Examples:

400 405 590 596 : Tool types 400-405 and 590-596 are contour tools 410 400 590 596 : tool types 400, 410 and 590-596 are contour tools 450 0 420 430 : Tool types 450 and 420-430 are contour tools

20372	SHAPED_TOOL_CHECKSUM			C01, C08	-		
-	Checksum test for contour tools			BOOLEAN	Immediately		
-		·					
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0		

Indicates for each channel whether for completion of the contour tool definition an edge must be available that includes the negative sums of tool length components and tool radius of the previous edges.

20380	TOOL_C	CORR_MODE_G43G44	C01, C08, C11	-	
-	Treatme	nt of tool length compensation	with G43 / G44	BYTE	Reset
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	-1/2
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	-1/2
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2

Description:

This machine data determines in ISO dialect M (G43 / G44) the way in which length compensations programmed with H are processed.

0: Mode A

Tool length H always acts on the third geometry axis (usually Z)

1: Mode B

Tool length H acts, depending on the active plane, on one of the three geometry axes. This means with $\,$

 ${
m G17}$ on the 3rd geometry axis (usually ${
m Z}$)

G18 on the 2nd geometry axis (usually Y)

G19 on the 1st geometry axis (usually X)

In this mode, compensations in all three geometry axes can be configured through multiple programming, i.e. through the activation of one component, the length compensation possibly active in another axis is not deleted.

2: Mode C

The tool length acts, independent of the active plane, on the axis that has simultaneously been programmed with H. Otherwise, the response is the same as with mode B.

20382	TOOL_CORR_MOVE_MODE			C01, C08	-		
-	Traversing of tool length compensation			BOOLEAN	Reset		
-							
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1		

Description:

This machine data determines how the tool length compensations are traversed.

0: A tool length compensation is only traversed if the associated axis has been programmed (behavior as in previous software versions)

1: Tool lengths are always traversed independently of whether the associated axes are programmed or not.

20384	TOOL_COR	TOOL_CORR_MULTIPLE_AXES			-
-	Tool length of	compensation in several ax	es simultaneously	BOOLEAN	Reset
-				1	-1
802d-cu3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	1/1
802d-ng2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/2
802d-ng3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/2
802d-tm1	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	1/1
802d-tm2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	1/1
802d-tm3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	1/1

Description:

This machine data determines for tool length compensation in ISO dialect M (ISO2) (G43 / G44), whether the compensation shall be allowed in mode C (selection of the axis on which the compensation is acting by specifying the corresponding axis letter) to act on several axes simultaneously.

If this machine data is 1, this type of programming is allowed; otherwise it is rejected with an alarm.

20390	TOOL_TEMP_COMP_ON			C01, C08	K3,W1
-	Activation of ter	Activation of temperature compensation for tool length			Reset
-					
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1

Description:

This machine data activates the temperature compensation in tool direction (see also SD42960 \$SC_TOOL_TEMP_COMP)

20392	TOOL_TEMP_COMP_LIMIT			C01, C08	W1
mm	Max. temperatu	Max. temperature compensation for tool length			Reset
-					
-	3	1.0, 1.0 , 1.0,1.0, 1.0 , 1.0	-	-	1/1

With temperature compensation, this machine data indicates the maximum permissible value for the tool length for each geometry axis.

If a temperature compensation value larger than this limit value is entered, it will be limited without an alarm.

20396	TOOL_OFFSET_DRF_ON			C01, C08	-		
-	Handwheel override in tool direction			BOOLEAN	Reset		
-							
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	-1/2		

Description:

This machine data activates the handwheel override in tool direction.

When this machine data is set, a handwheel override is active in the axis that is assigned to length L1 of the active tool, in the direction defined by tool orientation.

Example:

G17 is active; the tool is a milling tool; tool length L1 is therefore assigned to the ${\tt Z}$ axis (the 3rd geometry axis).

When the tool (e.g. with active 5-axis transformation) is turned around the Y axis by 90 degrees, so that it shows in X direction, a handwheel override becomes active in the 3rd axis in the X axis.

20400	LOOKAH	I_USE_VELO_NEXT_BLOCK		EXP, C05	B1
-	LookAhe	ad following block velocity		BOOLEAN	PowerOn
-					
802d-cu3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	1/1
802d-ng2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-ng3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-tm1	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-tm2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-tm3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	1/1

Description: For SW-internal function optimization.

20430	LOOKA	LOOKAH_NUM_OVR_POINTS			B1
-	Number	of override characteristics for L	.ookAhead	DWORD	PowerOn
-				<u>.</u>	
802d-cu3	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0	2	1/1
802d-ng2	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0	2	0/0
802d-ng3	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0	2	0/0
802d-tm1	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0	2	0/0
802d-tm2	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0	2	0/0
802d-tm3	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0	2	1/1

 $\textbf{Description:} \qquad \text{For SW-internal function optimization.}$

20440	LOOKA	H_OVR_POINTS		EXP, C05	B1
-	Override	switch points for Look Ahead	I	DOUBLE	PowerOn
-				<u>.</u>	
802d-cu3	2	1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2	0.2	2.0	1/1
802d-ng2	2	1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2	0.2	2.0	0/0
802d-ng3	2	1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2	0.2	2.0	0/0
802d-tm1	2	1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2	0.2	2.0	0/0
802d-tm2	2	1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2	0.2	2.0	0/0
802d-tm3	2	1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2,1.0, 0.2	0.2	2.0	1/1

Description: For SW-internal function optimization.

20442	LOOKAH_SYSTEM_PARAM			EXP	-	
-	System parame	System parameter for extended LookAhead			NEW CONF	
-						
-		0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0	-	-	0/0	

Description: System parameter for extended LookAhead.

20443	LOOKAH_FFORM			EXP, C05	-			
-	Activate extend	Activate extended LookAhead			NEW CONF			
-								
-	5	0, 0, 0, 0, 0,0, 0, 0, 0, 0	0	5	0/0			

Description:

The MD specifies for which technology group the extended LookAhead is active. Value 0: default LookAhead; value 1: extended LookAhead e.g. MD20443 \$MC_LOOKAH_FFORM[4]=1; i.e. activation for DYNFINISH. Entry for all dynamic G code groups.

20450	LOOKAH_RELIEVE_BLOCK_CYCLE			EXP, C05	B1
-	Relief factor for	Relief factor for block cycle time			PowerOn
-					
-		0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	2/2

Description:

Block cycle problems occur for the following reason:

The traversing length of the NC blocks to be processed is so short that the Look Ahead function must reduce the machine velocity to provide enough time for block preparation. In this situation, constant deceleration and acceleration of the path motion can occur. This machine data defines the extent to which such velocity fluctuations are to be smoothed.

Special cases:

Values up to approx. 1.0 are appropriate.

The value 0.0 means that the function is deactivated.

20455	LOOKAH_FUNCTION_MASK			EXP, C05	-
-	Look Ahead spe	Look Ahead special functions			NEW CONF
-					
-		1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	0	1	0/0

Description:

Look Ahead special functions:

Bit 0 = 1:

The Safety Integrated setpoint limitation is already taken into account in Look Ahead.

20460	LOOKAH_SMOOTH_FACTOR			EXP, C05	B1
%	Smoothing factor	Smoothing factor for Look Ahead			NEW CONF
-					
-		0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.	500.0	2/2

Description:

A smoothing factor can be defined to give a more stable path velocity control.

It defines the maximum permitted productivity loss.

Acceleration procedures which contribute less than this factor to a shorter program run time are then not executed.

In this case, only those acceleration procedures whose frequency lies above the frequency parameterized in MD32440 $\,$

\$MA_LOOKAH_FREQUENCY are taken into account.

The entry of 0.0 deactivates the function.

20462	LOOKAH	I_SMOOTH_WITH_FEED	EXP, C05	B1
-	Path velo	ocity smoothing with programmed feed	BOOLEAN	NEW CONF
-				-
802d-cu3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	1/1
802d-ng2	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	0/0
802d-ng3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	0/0
802d-tm1	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	0/0
802d-tm2	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	0/0
802d-tm3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	1/1

Description:

The MD defines whether the programmed feed is also taken into account for smoothing the path velocity. In these cases, the factor defined in MD20460 $MC_LOOKAH_SMOOTH_FACTOR$ can be better maintained when the override is set to 100%.

Related to:

MD32440 \$MA_LOOKAH_FREQUENCY,
MD20460 \$MC LOOKAH SMOOTH FACTOR

20464	PATH_MODE_MASK			EXP, C05	-
-	Path behavior	Path behavior			Reset
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0xffff	0/0

Description:

This machine data is used to influence the path action BitO:

If only rotary axes are traversed in the block as path axes with active G700, the programmed rotary axis velocity corresponds to

0: [degrees/min]

1: [25.4*degrees/min]

20465	ADAPT_PATH_DYNAMIC			EXP, C05	B1			
-	Adaptation of path dynamic response			DOUBLE	NEW CONF			
-								
-		1.0, 1.0,1.0, 1.0,1.0, 1.0,1.0, 1.0	1.0	100.0	0/0			

Description:

This adaptation factor can be used to reduce the dynamics of changes in tool path velocity.

 ${\tt ADAPT_PATH_DYNAMIC[0]}$ is effective with Brisk, reducing the permissible acceleration

ADAPT_PATH_DYNAMIC[1] is effective with Soft, reducing the permissible jerk

Considering only acceleration processes using a frequency above the frequency parameterized in MD32440 \$MA_LOOKAH_FREQUENCY. To disable this function, enter 1.0.

20470	CPREC_WITH_FFW			EXP, C06, C05	K6
-	Programmable	Programmable contour accuracy			PowerOn
-					
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0

Description:

This machine data defines the behavior of the programmable function CPRECON in conjunction with feedforward control.

FALSE: The CPRECON function is inactive when feedforward control is activated simultaneously.

 $\ensuremath{\mathsf{TRUE}}\colon$ CPRECON is also active with feedforward control.

Related to:

SD42450 \$SC_CONTPREC, SD42460 \$SC_MINFEED

20485	COMPRESS_SMOOTH_FACTOR			EXP, C05	B1
-	Smoothing by c	ompressor		DOUBLE	NEW CONF
-					
-		0., 0., 0., 0., 0., 0., 0., 0., 0., 0	0.	1.	1/1

Description:

Smoothing of the programmed block end points with compressor type COMPCAD. Value 0: no smoothing. Value 1: maximum smoothing. Entry for all dynamic G code groups.

20486	COMPRESS_SPLINE_DEGREE			EXP, C05	B1			
-	Compressor sp	ompressor spline degree			NEW CONF			
-		·						
-	5	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	3	5	0/0			

Description:

Spline degree for compressor type COMPCAD. Value 3 is recommended; value 5 may be possible for roughing, if soft and rapid movements are more important than accuracy
Entry for all dynamic G code groups.

20490	IGNORE_	IGNORE_OVL_FACTOR_FOR_ADIS			B1
-	G641/G64	12 independent of overload fac	ctor	BOOLEAN	NEW CONF
-					
802d-cu3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1
802d-ng2	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1
802d-ng3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1
802d-tm1	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-tm2	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1
802d-tm3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1

Description:

A block transition is normally only smoothed with G641 and G642 when the path velocity at block transition is reduced by the overload factor set in MD32310 \$MA_MAX_ACCEL_OVL_FACTOR. When SOFT is active, the maximum jerk occurring at block transitions is also limited by MD32432 \$MA_PATH_TRANS_JERK_LIM. This means that the effect of smoothing with G641 and G642 depends on the values set for the overload factor and possibly for the maximum jerk. By setting MD20490 \$MC_IGNORE_OVL_FACTOR_FOR_ADIS = TRUE a block transition can be smoothed with G641 and G642, irrespectively of the values set for the overload factor.

20500	CONST_VELO_MIN_TIME			EXP, C05	B2
s	Minimum time v	Ainimum time with constant velocity			PowerOn
-					
-		0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	0.1	2/2

Defines the minimum time for constant velocity during transition from acceleration to deceleration in short blocks in which the set velocity cannot be reached. Entering a time of at least several IPO cycles prevents a direct transition from the acceleration to the deceleration phase and thus reduces the acceleration jump to half. This acceleration limitation is only active with the acceleration profile BRISK.

MD irrelevant for:

Look Ahead does not take account of this function.

20550	EXACT_POS_MODE			EXP	B1
-	Exact stop cond	Exact stop conditions on G00/G01.			NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	33	2/2

Description:

Configuration of the exact stop conditions for ${\tt G00}$ and other ${\tt G}$ codes of the 1st ${\tt G}$ code group.

The MD is decimal-coded. The units digits define the behavior at G00 (infeed motion) and the tens digits the behavior of all the other G codes of the 1st group ("machining G codes").

 ${\tt x0:}\;\;$ At G00, the relevant programmed exact stop conditions become active.

x1: At G00, G601 (fine positioning window) becomes active independent of the programmed exact stop condition.

x2: At G00, G602 (coarse positioning window) becomes active independent of the programmed exact stop condition.

x3: At G00, G603 (setpoint value reached) becomes active independent of the programmed exact stop condition.

 ${\tt 0x:}\;\;$ At the machining G codes, the relevant programmed exact stop conditions become active.

1x: At the machining G codes, G601 (fine positioning window) becomes active independent of the programmed exact stop condition.

2x: At the machining G codes, G602 (coarse positioning window)

becomes active independent of the programmed exact stop condition. 3x: At the machining G codes, G603 (setpoint value reached)

becomes active independent of the programmed exact stop condition. The values of the units digits and tens digits are added.

For example, the value of EXACT_POS_MODE = 2 means that the exact stop condition G602 is always activated automatically at G00, independently of which exact stop condition was programmed. At all other G codes of group 1, the programmed exact stop condition becomes active.

20552	EXACT_POS_MODE_G0_TO_G1			EXP	B1
-	Exact stop cond	xact stop condition at G00-G01 transition			NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	5	2/2

Description:

Configuration of a stop at transition from G00 to a different G code of the 1st G code group, and also vice versa, at transition from non-G00 to G00 in continuous-path mode.

In exact-stop mode, the positioning window programmed or set in MD20550 MC EXACT POS MODE is used.

The following applies:

- 0: No additional stop, no control of exact stop
- 1: Behavior active as with G601 (positioning window, fine).
- 2: Behavior active as with G602 (positioning window, coarse).
- 3: Behavior active as with G603 (setpoint reached).
- 4: As 0,

in addition, the override of the subsequent non-G00 block is taken into account in the G00 block via LookAhead in the case of a change from G00 to non-G00.

5: As 0,

in addition, the override of the subsequent block is taken into account via LookAhead in the case of a change from G00 to non-G00 and non-G00 to G00.

20600	MAX_PA	TH_JERK	•	C05	B1,B2
m/s³	Path-rela	ted maximum jerk		DOUBLE	NEW CONF
-					<u>.</u>
802d-cu3	5	1.e6, 1.e6, 1.e6, 1.e6, 1.e6	1.e-9	-	1/1
802d-ng2	5	1.e6, 1.e6, 1.e6, 1.e6, 1.e6	1.e-9	-	0/0
802d-ng3	5	1.e6, 1.e6, 1.e6, 1.e6, 1.e6	1.e-9	-	1/1
802d-tm1	5	1.e6, 1.e6, 1.e6, 1.e6, 1.e6	1.e-9	-	0/0
802d-tm2	5	1.e6, 1.e6, 1.e6, 1.e6, 1.e6	1.e-9	-	0/0
802d-tm3	5	1.e6, 1.e6, 1.e6, 1.e6, 1.e6	1.e-9	-	1/1

Description:

The jerk limitation restricts the path acceleration change in SOFT mode. The path acceleration divided by the jerk limitation value produces a time in which the acceleration change takes place. The jerk limitation is activated on the path by the NC command SOFT, and deactivated by BRISK.

MD irrelevant for:

Error states that lead to a rapid stop. In addition, the limitation is also inactive for positioning axes.

There is an entry for each dynamic G code group.

20602	CURV_EFFECT_ON_PATH_ACCEL			EXP, C05	B1,B2
-	Effect of path curvature on path dynamic			DOUBLE	NEW CONF
-					
-		0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,	0.	0.95	1/1

This MD is used to determine whether the reaction of path curvature on path acceleration and path velocity is taken into account. \circ

Not taken into account

> 0:

If required, the path velocity and path acceleration are reduced in order to keep a sufficient reserve on the machine axes for centripetal acceleration.

0.75: Recommended setting.

MD20602 $MC_CURV_EFFECT_ON_PATH_ACCEL$ defines the proportion of the axis accelerations (see MD32300 $MA_MAX_AX_ACCEL[..]$) that can be used for centripetal acceleration. The remainder is used for changing the path velocity.

Centripetal acceleration is not required for linear blocks; the full axis acceleration is therefore available for the path acceleration. On slightly curved contours or with a sufficiently low maximum path feedrate \$MC_CURV_EFFECT_ON_PATH_ACCEL has only a partial or no effect. Accordingly, the path acceleration is higher than that specified by (1. - MD20602

\$MC_CURV_EFFECT_ON_PATH_ACCEL) * MD32300 \$MA_MAX_AX_ACCEL[..].
There is an entry for each dynamic G code group.

20603	CURV_EFFECT_ON_PATH_JERK			EXP, C05	B1
-	Effect of path co	ect of path curvature on path jerk			NEW CONF
-					
-		0., 0., 0., 0., 0.,0., 0., 0., 0., 0	0.	1000.	1/1

Description:

Allows the reaction of the path curvature on the path jerk to be taken into account on especially jerk-sensitive machines. Entry for each dynamic G code group.

20605	PREPDYN_SMOOTHING_FACTOR			EXP, C05	B1
-	Factor for curve smoothing			DOUBLE	NEW CONF
-					
-	5	1., 1., 1., 1., 1.,1., 1., 1., 1., 1	-	-	1/1

Description:

Factor to determine the degree of smoothing and torsion.

A larger value of this MD causes a stronger smoothing and thus a more homogenous curvature/torsion and resulting path velocity. With this factor being zero no smoothing is performed. There is an entry for all dynamic G code groups.

20606	PREPDYN_SMOOTHING_ON			EXP, C05	B1
-	Activation of cu	Activation of curve smoothing			NEW CONF
-					
-	5	0, 0, 0, 0, 0,0, 0, 0, 0, 0	-	-	7/7

Description:

Switch on of curve and torsion smoothing.

Smoothing of the curve or torsion causes a homogenous path velocity.

Smoothing is only performed, when the relevant factor is MD 20605 $MC_PREPDYN_SMOOTHING_FACTOR > 0.$

There is an entry for all dynamic G code groups.

20607	PREPDYN_MAX_FILT_LENGTH_GEO			EXP, C05	B1
mm, degrees	Maximum filter	imum filter length for geometry axes			NEW CONF
-					
-	5	2., 2., 2., 2., 2., 2., 2., 2., 2., 2.,	-	-	1/1

Description:

Maximum filter length for curve and torsion smoothing of the geometry axes.

There is an entry for all dynamic G code groups.

20608	PREPDYN_MAX_FILT_LENGTH_RD			EXP, C05	B1		
mm, degrees	Maximum filter	Maximum filter length for rotary axes			NEW CONF		
-							
-		5., 5., 5., 5., 5.,5., 5., 5., 5., 5	-	-	1/1		

Description:

Maximum filter length for curve and torsion smoothing of the rotary axes.

There is an entry for all dynamic G code groups.

20610	ADD_M0	OVE_ACCEL_RESERVE	C05	F2,B2,K1
-	Accelera	tion margin for overlaid movemer	nts DOU	BLE PowerOn
-			·	•
802d-cu3	-	.2,.2,.2,.2,.2,.2,.2,.2, 0. .2,.2,.2,.2	. 0.9	2/2
802d-ng2	-	.2,.2,.2,.2,.2,.2,.2,.2, 0. .2,.2,.2,.2	. 0.9	2/2
802d-ng3	-	.2,.2,.2,.2,.2,.2,.2,.2, 0. .2,.2,.2,.2	. 0.9	2/2
802d-tm1	-	.2,.2,.2,.2,.2,.2,.2,.2, 0. .2,.2,.2,.2	. 0.9	0/0
802d-tm2	-	.2,.2,.2,.2,.2,.2,.2,.2, 0. .2,.2,.2,.2	. 0.9	0/0
802d-tm3	-	.2,.2,.2,.2,.2,.2,.2,.2, 0. .2,.2,.2,.2	. 0.9	0/0

Description:

This machine data contains the factor which defines the acceleration margin which is not used by a path movement in order to provide sufficient acceleration reserves for an overlaid movement for the velocity control.

A factor of 0.2 means that the path axes utilize 80% of the path acceleration in normal operation. Only when a request for overlaid movement is made, can 100% of the path acceleration be utilized.

MD irrelevant for:

Error states that lead to a rapid stop. In addition, the limitation is also ineffective for positioning axes.

Special cases:

At the moment the machine data is only taken into account if the function "Fast retraction" is first activated.

Related to:

MD32300 \$MA_MAX_AX_ACCEL (axis acceleration)

20620	HANDWH_GEOAX_MAX_INCR_SIZE			C08, C06	H1
mm	Limitation handwheel increment for geometry axes			DOUBLE	PowerOn
-					
-		0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	1/1

Description:

> 0: Limitation of the size of the selected increment for geometry axes

\$MN_JOG_INCR_SIZE0[<increment/VDI signal>] or SD41010 \$SN_JOG_VAR_INCR_SIZE for geometry axes 0: No limitation on geometry axes

20622	HANDW	H_GEOAX_MAX_INCR_VSIZE	C08, C06, C05	-
mm/min	Path vel	ocity override	DOUBLE	PowerOn
-			<u> </u>	•
802d-cu3	-	500.,500.,500.,500.,50 - 0.,500.,500	-	1/1
802d-ng2	-	500.,500.,500.,500.,50 - 0.,500.,500	-	0/0
802d-ng3	-	500.,500.,500.,500.,50 - 0.,500.,500	-	1/1
802d-tm1	-	500.,500.,500.,500.,50 - 0.,500.,500	-	0/0
802d-tm2	-	500.,500.,500.,500.,50 - 0.,500.,500	-	0/0
802d-tm3	-	500.,500.,500.,500.,50 - 0.,500.,500	-	1/1

Description:

The following applies to the velocity override of the path:

> 0: Limitation of the size of the selected increment
 (\$MN_JOG_INCR_SIZE_[<increment/VDI signal>] or
 SD41010 \$SN_JOG_VAR_INCR_SIZE) / 1000*IPO sampling time

= 0: No limitation

20624	HANDW	H_CHAN_STOP_COND		EXP, C09	H1,P1
-	Definitio specific	n of response of handwheel tra	evel, channel-	DWORD	PowerOn
-					
802d-cu3	-	0x13FF,0x13FF,0x13 FF,0x13FF,0x13FF	0	0xFFFF	2/2
802d-ng2	-	0x13FF,0x13FF,0x13 FF,0x13FF,0x13FF	0	0xFFFF	1/1
802d-ng3	-	0x13FF,0x13FF,0x13 FF,0x13FF,0x13FF	0	0xFFFF	2/2
802d-tm1	-	0x13FF,0x13FF,0x13 FF,0x13FF,0x13FF	0	0xFFFF	0/0
802d-tm2	-	0x13FF,0x13FF,0x13 FF,0x13FF,0x13FF	0	0xFFFF	0/0
802d-tm3	-	0x13FF,0x13FF,0x13 FF,0x13FF,0x13FF	0	0xFFFF	0/0

Description:

Definition of the behavior for handwheel travel to channel-specific VDI interface signals (bit 0 to bit 7) or the context-sensitive interpolator stop (bit 7):

Bit = 0:

Interruption or collection of the displacements entered via the handwheel.

Bit = 1:

Traversing aborted and no collecting

Bit assignment:

Bit 0: Mode group stop

Bit 1: Mode group stop, axes plus spindle

Bit 2: NC stop

Bit 3: NC stop, axes plus spindles

Bit 4: Feed disable

Bit 5: Feedrate override

Bit 6: Rapid traverse override

Bit $\ \, 7\colon \mbox{Feed stop, geometry axis or context-sensitive interpolator} \ \, stop$

Bit 8 = 0:

The maximum feedrate for handwheel travel of geometry axes is that specified in machine data ${\tt JOG_AX_VELO}$ for the corresponding machine axis/axes.

Bit 8 == 1:

The maximum feedrate for handwheel travel of geometry axes is that specified in machine data ${\tt MAX_AX_VELO}$ for the corresponding machine axis/axes.

Bit 9 = 0:

The override is active during handwheel travel of geometry axes Bit 9 = 1:

During handwheel travel of geometry axes, the override is assumed to be 100% irrespective of the position of the override switch.

Exception: override 0, which is always active.

Bit 10 = 0:

MD11310 $MN_{ADDM_{ADDM_{BEVERSE}}}$ is not active for DRF, i.e. handwheel travel with DRF is carried out as if MD11310

```
MN HANDWH REVERSE = 0.
Bit 10 = 1:
  MD11310 $MN HANDWH REVERSE is active for DRF.
  When the contour handwheel is deselected, program processing is
  continued automatically.
Bit 11 = 1:
    When the contour handwheel is deselected, an NCSTOP is trig-
gered automatically. Program processing is not continued until
NCSTART is entered.
Bit 12 = 0
  NC start has no effect on handwheel travel.
  The previously collected paths are rejected at NC start.
  For DRF, bits 0 - 3 and bit 12: bit = 0 / bit = 1 are active
  (see above).
Bit 13 = 1:
  For DRF, bits 0 - 3 and bit 12 are NOT active: the DRF motion is
  not interrupted by a stop, and a DRF motion can take place even
  in "Automatic interrupted" state (achieved by NC Stop).
     If an alarm leads to an axis stop and if such an alarm is
  pending, no DRF motion can take place.
Bit 14 = 0:
  The maximum feedrate for handwheel travel of geometry axes is
  that specified in SD41120 $SN JOG REV SET VELO or in MD32050
  $MA JOG REV VELO (for revolutional feedrate) or in MD32040
  $MA JOG REV VELO RAPID (for rapid traverse) for the correspond-
  ing machine axis, the spindle or rotary axis feedrate is
  included in the calculation.
Bit 14 = 1:
  The maximum rotational feedrate for handwheel travel of geome-
  try axes is the feedrate specified in MD32000 $MA MAX AX VELO
  for the corresponding machine axis (see also bit 6).
Bit 15 = 0:
  If an axis with active diameter programming is traversed in the
  channel, only half the distance of the specified increment is
  traveled during handwheel travel ($MN HANDWH TRUE DISTANCE = 1
  or 3).
Bit 15 = 1:
  If an axis with active diameter programming is traversed in the
  channel, the specified increment is fully traveled during hand-
```

wheel travel (\$MN HANDWH TRUE DISTANCE = 1 or 3).

20700	REFP_NC_S	REFP_NC_START_LOCK			D1,R1,Z1	
-	NC start disal	NC start disable without reference point			Reset	
-						
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2	

Description:

0: The NC/PLC interface signal V3200 0007.1 (NC Start) for starting of part programs or part program blocks (MDI and overstore) is active even if one or all axes of the channel has/have not yet been referenced.

To ensure that the axes nevertheless reach the correct position after NC Start, the workpiece coordinate system (WCS) must be set to the correct value by means of other methods (scratch method, automatic zero offset determination etc.).

1: Those axes, for which the axial MD34110 $MA_REFP_CYCLE_NR$ specifies that a reference point is obligate (value > -1), must have been referenced before NC Start is allowed.

20730	G0_LINEAR_MODE		C09	P2		
-	G0 interpolation	G0 interpolation mode			PowerOn	
-		<u> </u>				
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2	

Description:

This machine data defines the interpolation behavior of GO:

- 0: Non-linear interpolation (RTLIOF): Each path axis interpolates as an individual axis (positioning axis), independently of the other axes, at the rapid traverse velocity of the axis (MD32000 \$MA MAX AX VELO).
- 1: Linear interpolation (RTLION): The path axes are interpolated jointly.

Related to:

MD20732 \$MC EXTERN GO LINEAR MODE

20732	EXTERN_	_G0_LINEAR_MODE		N12	P2
-	G00 interp	polation mode		BOOLEAN	PowerOn
-				•	
802d-cu3	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-ng2	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	-	-1/2
802d-ng3	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	-	-1/2
802d-tm1	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-tm2	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-tm3	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	-	2/2

This machine data defines the interpolation behavior of G00:

0: Axes are traversed as positioning axes

1: Axes interpolate with each other

Related to:

MD10886 \$MN EXTERN INCREMENT SYSTEM

20734	EXTERN	EXTERN_FUNCTION_MASK			-
-	Function	mask for external language		DWORD	Reset
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0xFFFF	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0xFFFF	-1/2
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0xFFFF	-1/2
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0xFFFF	2/2
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0xFFFF	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	0xFFFF	2/2

Description:

This machine data is used to influence functions in ISO mode. Bit0: 0:

ISO mode T: "A" and "C" are interpreted as axes. If contour definition has been programmed, "A" or "C" must be preceded by a comma.

1:

"A" and "C" in the part program are always interpreted as a contour definition. An axis "A" or "C" is not allowed.

Machine Data 06/2009

Channel-specific machine data

```
Bit1: 0:
  ISO mode T: G10 P < 100 tool geometry
                  P > 100 tool wear
               G10 P < 10000 tool geometry
                   P > 10000 tool wear
Bit2: 0:
  G04 dwell time: always [s] or [ms]
  If G95 is active, in spindle revolutions
Bit.3: 0:
  Errors in ISO scanner lead to an alarm
  Errors in ISO scannner are not output, the block is transferred
  to the Siemens translator.
  G00 is traversed with the current exact stop - continuous-path
  mode G code
      1:
  G00 is always traversed with G09
Bit5: 0:
  Modulo rotary axis is positioned at the shortest possible dis-
  tance
      1:
  Direction of rotation of modulo rotary axis depends on sign
  Only 4-digit program number allowed.
  8-digit program number allowed. If the program number has less
  than 4 digits, it is expanded to 4 digits with 0.
Bit7: 0:
  Axis programming for geometry axis exchange/parallel axes is
  compatible with ISO mode.
  Axis programming for geometry axis exchange/parallel axes in
  ISO mode is compatible with Siemens mode.
Bit8: 0:
  With cycles, the F value transferred is always interpreted as a
  feedrate.
  With threading cycles, the F value transferred is interpreted
  as a pitch.
Bit9: 0:
  Multiplication with 0.01mm / 0.0001inch is carried out in ISO
  mode T for G84, G88 and in standard mode F for G95.
  Multiplication with 0.001mm / 0.00001inch is carried out in ISO
  mode T for G84, G88 and in standard mode F for G95.
Bit10: 0:
  With M96 Pxx, the program programmed with Pxx is always called
  in the case of an interrupt
```

1:

With M96 Pxx, CYCLE396.spf is always called in the case of an interrupt

Bit11: 0:

With G54 Pxx, only G54.1 is displayed

1 •

With G54 Pxx, the programmed program is displayed after the point, e.g. $\mathsf{G54.48}$

Bit12: 0:

When the subroutine defined with M96 Pxx is called, $\ensuremath{\mathtt{P}}$ ISO STACK is not modified

1:

When the subroutine defined with M96 Pxx is called, \$P ISO STACK is incremented

Bit13: 0:

G10 is executed without internal STOPRE

1:

G10 is executed with internal STOPRE

Bit14: 0:

 ${\tt ISO_mode\ T:}\ {\tt No}\ {\tt alarm\ if\ a\ cutting\ edge\ has\ been\ programmed\ in\ the\ T\ command.}$

1:

 $\,$ ISO mode T: Alarm 14185 if a cutting edge has not been programmed in the T command.

20750	ALLOW_G0_IN_G96			C09, C05	P2,V1	
-	G0 logic with G	G0 logic with G96, G961			PowerOn	
-						
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	1/1	

Description:

This machine data defines the speed regulation characteristic of the spindle in ${\tt G0}$ blocks with constant cutting rate (${\tt G96, G961}$) selected .

1: In a GO block, the spindle speed is kept constant at the last value of the previous block that was unequal GO.

Prior to a subsequent block that does not contain G0, the spindle speed is increased to a value that belongs to the transverse axis position of the subsequent block.

0: In a G0 block, the spindle speed changes against the transverse axis position.

Machine Data 06/2009

Channel-specific machine data

20800	SPF_END_TO_VDI			C04, C03	H2,K1		
-	End of subroutine to PLC			BYTE	PowerOn		
-							
-		1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	-	1/1		

Description:

Bit 0 = 1:

The M functions for subroutine end (M17 and/or M2/M30) are transferred to the PLC interface.

Bit 0 = 0:

The M functions for subroutine end (M17 and/or M2/M30) are not transferred to the PLC interface.

Note:

To prevent stopping in continuous-path mode, M17 must not be programmed alone in a block.

Example of a subroutine: G64 F2000 G91 Y10 X10 \times X10 Z10 M17

Bit 1 = 0:

M01:

conditional program stop is always output to PLC, irrespective of whether the M01 signal is active or not.

Fast auxiliary function output $M=QU\left(1\right)$ is inactive because M01 is assigned to the 1st M function group and thus is always output at block end.

Bit 1 = 1:

M01:

conditional program stop is only output to PLC, if ${\tt M01}$ is also active.

This thus enables optimal run-time processing of the part program.

With fast auxiliary function output M=QU(1), M1 is output during the movement; thus it is possible to traverse blocks in continuous-path mode with programmed M01 as long as M01 is not active.

The request of the M01 signal with $M=QU\left(1\right)$ no longer occurs at block end but during the movement.

20850	SPOS_TO_VDI			C04, C03	S1
-	Output of M19 to PLC on SPOS/SPOSA			BYTE	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	1/1

Bit 0 = 0:

When bit 19 is also set to '0' in MD35035 \$MA_SPIND_FUNCTION_MASK, auxiliary function M19 is not generated with SPOS and SPOSA. This also eliminates the acknowledgement time for the auxiliary function, which can cause faults wiith very short blocks.

Bit 0 = 1:

When SPOS and SPOSA are programmed in the part program, auxiliary function M19 is generated and output to the PLC. The address extension corresponds to the spindle number.

Related to:

SPIND_FUNCTION_MASK

20900	CTAB_ENABLE_NO_LEADMOTION			EXP	M3		
-	Curve tables wi	Curve tables with jump of slave axis			Reset		
-							
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0		

Description:

This MD is used to configure the way jumps of the slave axis are processed in curve tables. A jump of the slave axis results from the presence of a movement of the slave axis in a segment of the curve table with no corresponding movement of the master axis. The jumps of the slave axis may be programmed directly, or they are created internally in the control.

These segments may be created especially if a curve table with active tool radius compensation $% \left(1\right) =\left(1\right) +\left(1\right) +\left($

The following configurations are possible:

- 0: No curve tables are created that contain a jump of the slave axis. If a jump of the slave axis occurs, alarm 10949 (CTAB_NO_LEADMOTION) is issued and program processing is terminated. This setting is compatible with previous software versions.
- 1: Curve tables containing a jump of the slave axis may be implemented. If a jump of the slave axis occurs, alarm 10955 (CTAB_NO_LEADMOTIONWARNING) is issued without terminating program processing.
- 2: Curve tables with jumps of the slave axis are implemented without issuing an alarm or a note.

20905	CTAB_DEFAULT_MEMORY_TYPE			EXP	M3		
-	Default memory	fault memory type for curve tables			Reset		
-		·					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0		

Description:

This machine data defines the memory (SRAM or DRAM) in which the curve tables are created by default.

This MD is only relevant if no memory type was specified when defining a curve table using CTABDEF().

The following settings can be selected:

0: By default, curve tables are created in the SRAM.

1: By default, curve tables are created in the DRAM.

21000	CIRCLE_ERROR_CONST			C06	-	
mm	Circle end point	ircle end point monitoring constant			PowerOn	
-						
-		0.01,0.01,0.01,0.01,0. 01,0.01,0.01	-	-	2/2	

Description:

This machine data is used to specify the permissible absolute circle error [mm].

When a circle is programmed, the radii from the programmed center point to the start and end points are usually not equal (the circle is "overdefined").

The maximum permissible difference between these two radii that is accepted without an alarm is defined by the larger value in the following data:

- MD21000 \$MC CIRCLE ERROR CONST
- Start radius multiplied by MD21010 \$MC_CIRCLE_ERROR_FACTOR This means that for small circles the tolerance is a fixed value (MD21000 \$MC_CIRCLE_ERROR_CONST), and for large circles it is proportional to the start radius.

Related to:

MD21010 \$MC_CIRCLE_ERROR_FACTOR
(circle end point monitoring factor)

21010	CIRCLE_ERROR_FACTOR			C06	-		
-	Circle end point	ircle end point monitoring factor			PowerOn		
-							
-		0.001,0.001,0.001,0.0 01,0.001,0.001	-	-	2/2		

Description:

Factor for permissible radius difference.

Defines the factor for large circles by which the starting radius and end radius may deviate from each other

(see also MD21000 $MC_CIRCLE_ERROR_CONST$ (circle end point monitoring constant).

21015	INVOLUTE_RADIUS_DELTA			C06	A2		
mm	Involute end po	volute end point monitoring			PowerOn		
-							
-		0.01,0.01,0.01,0.01,0. 01,0.01,0.01	-	-	1/1		

Permissible absolute difference of radius at involute interpolation [mm].

At involute interpolation, the radius of the basic circle determined by the end point may differ from the programmed radius. This data is used to limit the permissible maximum difference between start radius and end radius.

21016	INVOLUTE_AUTO_ANGLE_LIMIT		C06	A2		
-	Automatic angle limitation during involute interpolation		BOOLEAN	PowerOn		
-						
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1	

Description:

If the angle of rotation is programmed for an involute (AR=angle), the maximum angle of rotation is limited in case the involute is travelling towards the basic circle (AR < 0). The maximum angle of rotation is reached when the involute touches the basic circle. Normally, if an angle larger than the maximum angle is programmed, an alarm is issued and the NC program aborted.

If this MD is set to TRUE any angle is accepted without an alarm for programming. If required, this angle is limited automatically.

21020	WORKAREA_WITH_TOOL_RADIUS			C03, C06	A3	
-	Consideration of tool radius for working area limitation			BOOLEAN	Reset	
-						
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2	

Description:

This machine data indicates whether the tool radius is taken into account in the working area limitation.

0: It is checked whether the tool center lies within the working area limits.

1: The tool radius is taken into account when the working area limitation is checked. This means that the working area is reduced by the tool radius.

21090	MAX_LEAD_ANGLE			C08, C09	M1
degrees	Maximum value progr.	Maximum value of permitted lead angle for orientation progr.			NEW CONF
-					
-		80.,80.,80.,80.,80.,80., 80.,80.,80	0.	80.	0/0

Description: Maximum permissible value of the lead angle in degrees.

21092	MAX_TILT_ANGLE			C08, C09	M1
degrees	Maximum value of permitted side angle for orientation progr.			DOUBLE	NEW CONF
-					
-		180.,180.,180.,180.,18 0.,180.,180	-180.	180.	0/0

Description: Maximum permissible value of the tilt angle in degrees.

21100	ORIENTATION_IS_EULER		C01, C09	F2,TE4,M1		
-	Angle definition	ngle definition for orientation programming			NEW CONF	
-						
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0	

Description:

This data is only active for MD21102 \$MC_ORI_DEF_WITH_G_CODE = 0 MD = 0 (FALSE):

The values programmed with A2, B2, C2 during orientation programming are interpreted as an RPY angle (in degrees).

The orientation vector is produced by rotating a vector in direction Z first by C2 around the Z axis, then by B2 around the new Y axis and finally by A2 around the new X axis. In contrast to Euler angle programming, all three values influence the orientation vector in this case.

MD = 1 (TRUE):

The values programmed with A2, B2, C2 during orientation programming are interpreted as Euler angles (in degrees).

The orientation vector is produced by rotating a vector in direction Z first by A2 around the Z axis, then by B2 around the new X axis and finally by C2 around the new Z axis. This means that the value of C2 is meaningless.

21110	X_AXIS_IN_OLD_X_Z_PLANE			EXP, C01, C09	M1,K2
-	Coordinate system for automatic frame definition			BOOLEAN	PowerOn
-					
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	1/1

1 = With automatic definition of a frame (TOFRAME), the Z direction of which equals the current tool orientation, the new coordinate system is additionally rotated around the new Z axis so that the new X axis is in the old Z-X plane.

 $0 = \mbox{With automatic definition of a frame (TOFRAME), the Z direction of which equals the current tool orientation, the new coordinate system is maintained as it results from the kinematics of the machine, i.e. it is assumed that the coordinate system is fixed to the tool and rotates with the tool (orientation).$

From SW 5.3:

This machine data is only effective when the three lowest value decimal positions (units, tens, hundreds) of SD42980 \$SC_TOFRAME_MODE) equal zero. Otherwise the frame definition is specified by SD42980 \$SC_TOFRAME_MODE.

MD irrelevant for:

No orientation programming

Related to:

MD21100 \$MC ORIENTATION IS EULER

Further references:

/PG/, Programming Guide, Fundamentals

21160	JOG_VE	JOG_VELO_RAPID_GEO			F2			
mm/min	JOG rap	id traverse for geometry axe	S	DOUBLE	Reset			
-								
802d-cu3	3	10000., 10000.0, 10000.,10000., 10000.0, 10000	-	-	1/1			
802d-ng2	3	10000., 10000.0, 10000.,10000., 10000.0, 10000	-	-	0/0			
802d-ng3	3	10000., 10000.0, 10000.,10000., 10000.0, 10000	-	-	0/0			
802d-tm1	3	10000., 10000.0, 10000.,10000., 10000.0, 10000	-	-	0/0			
802d-tm2	3	10000., 10000.0, 10000.,10000., 10000.0, 10000	-	-	0/0			
802d-tm3	3	10000., 10000.0, 10000.,10000., 10000.0, 10000	-	-	0/0			

Description:

Velocity in JOG mode with rapid traverse override for geometry axes in the channel (mm/min)

21165	JOG_VE	JOG_VELO_GEO			F2			
mm/min	Jog feed	Jog feedrate for geometry axes			Reset			
-								
802d-cu3	3	1000., 1000., 1000.,1000., 1000., 1000	-	-	1/1			
802d-ng2	3	1000., 1000., 1000.,1000., 1000., 1000	-	-	0/0			
802d-ng3	3	1000., 1000., 1000.,1000., 1000., 1000	-	-	0/0			
802d-tm1	3	1000., 1000., 1000.,1000., 1000., 1000	-	-	0/0			
802d-tm2	3	1000., 1000., 1000.,1000., 1000., 1000	-	-	0/0			
802d-tm3	3	1000., 1000., 1000.,1000., 1000., 1000	-	-	0/0			

Description: JOG velocity for geometry axes in the channel (mm/min)

21186	TOCARR_ROT_OFFSET_FROM_FR			C01, C07	F2		
-	Offset of TOCARR rotary axes from WO			BOOLEAN	Immediately		
-							
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0		

Description:

Rotary axes offset for the orientable tool holder is automatically accepted from the work offset activated on activation of the orientable tool holder for the rotary axes.

21198	ORI_TRAFO_ONLINE_CHECK_LIM			C07	F2			
mm	Activation limit	of the realtime dynamic	DOUBLE	NEW CONF				
-		·						
-	- 1.0,1.0,1.0,1.0,1.0, - 1.0,1.0,1.0			-	1/1			

Description:

The realtime dynamic limitation is activated if the effective tool length in an orientation transformation differs from the value taken into account in the preprocessing by more than the value defined in this machine data, for example as a result of overlaid motions or activation of the online tool length compensation.

21200	LIFTFAST_DIST			C09	K1,V1,2.6,6.1		
mm	Traversing distance on rapid lift from contour			DOUBLE	PowerOn		
-		·					
-		0.1,0.1,0.1,0.1,0.1,0.1, 0.1,0.1,0.1	-	-	1/1		

Description:

The machine data determines the absolute value of the traverse movement for rapid lift. The direction of the traverse movement is defined in the part program by the command ALF. References:

/PA/, Programming Guide: Fundamentals

21202	LIFTFAST_WITH_MIRROR			C09	K1	
-	Rapid retract with mirrorring			BOOLEAN	PowerOn	
-		·				
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1	

Description:

- 1: When determining the retraction direction, if mirroring of the contour is active then the retraction direction is also mirrored. Mirroring of the retraction direction only refers to the directional components vertical to the tool direction.
- 0: Mirroring of the contour is NOT taken into account when determining the retraction direction.

21204	LIFTFAST_STOP_COND			C09	M3		
-	Stop behavior with fast retraction			DWORD	NEW CONF		
-		·					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	1/1		

Description:

- Specifies the stop behavior of the liftfast motion under different stop conditions
- Bit0:Axial NC/PLC interface signal V380x 0004.3 (Axial feed stop / Spindle stop) or context-sensitive interpolator stop
- =0 Stop of the retraction motion in case of an axial feed stop or context-sensitive interpolator stop
- =1 No stop of the retraction motion in case of an axial feed stop or context-sensitive interpolator stop $\,$
- Bit1:Feed disable in channel NC/PLC interface signal V3200 0006.0 (Feed stop) $\,$
- =0 Stop of the retraction motion in case of the feed stop in the channel $% \left(1\right) =\left(1\right)$
- =1 No stop of the retraction motion in case of the feed stop in the ${\it channel}$

21210	SETINT_ASSIGN_F	ASTIN	C01, C09	-		
-	HW assignment of e interrupts	ext. NCK input byte	DWORD	PowerOn		
-	·					
-	- 1,1,° 1,1,°	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	-	1/1	

Description:

 ${\tt HW}$ assignment of the fast input byte for NC program interrupts ${\tt Bit}\ {\tt 0}\ {\tt to}\ {\tt 7:}$

Number of input used

Bit 16 to 23:

Mask of signals that the channel is not to evaluate $\operatorname{Bit}\ 24$ to $\operatorname{31}$:

Mask of signals that are to be evaluated in inverted form Bit set: Interrupt initiated by falling edge.

Possible inputs:

1 •

On board-inputs of the 840D (4 fast + 4 bits via VDI default) 2 - 5:

External digital inputs (fast NCK I/Os or VDI default) 128 - 129:

Comparator byte (results from fast analog inputs or VDI default) $\,$

21380	ESR_DELAY_TIME1			EXP, N09	M3		
S	Delay time ESR axes			DOUBLE	NEW CONF		
-							
-		0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	1/1		

Description:

When, for example, an alarm occurs, this MD can be used to delay deceleration in order, for example, to enable a retraction from the tooth gap (ESR) in gear wheel machining.

21381	ESR_DELAY_TIME2			EXP, N09	M3		
s	ESR time for IPO controlled braking			DOUBLE	NEW CONF		
-		·					
-		0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	1/1		

Description:

When time MD21380 \$MC_ESR_DELAY_TIME1 has expired, the time (MD21381 \$MC_ESR_DELAY_TIME2) specified for interpolatory braking is still available.

When time MD21381 $MC_{ESR_DELAY_TIME2}$ has expired, rapid deceleration with following tracking is initiated.

2.3.2 Machine data for grinding function

21500	TRACLG_GRIN	NDSPI_VERT_OFFSET	C07	-	
mm	Vertical position offset of grinding axis in centerless grinding			DOUBLE	PowerOn
-					
-		0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0

Description: The vertical offset of the grinding axis is specified in this MD.

21501	TRACLG_GRIN	IDSPI_HOR_OFFSET	C07	-				
mm	Horiz. position offset of grinding axis in centerless grinding			DOUBLE	PowerOn			
-								
-		0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0			

Description:

Horizontal position offset of the grinding axis in centerless

grinding.

The setting in this MD is significant only when MD:

 ${\tt TRAFO_AXES_IN_n[0]} = 0$, i.e. no axis is programmed for the grinding wheel.

21502	TRACLG_CTRLSPI_VERT_OFFSET			C07	-			
mm	vert. position offset of regulating axis in centerless grinding			DOUBLE	PowerOn			
-								
-		0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0			

Description:

The vertical offset for the regulating axis is specified in this $\ensuremath{\mathsf{MD}}\xspace$.

21504	TRACLG_SUPPORT_VERT_OFFSET			C07	-
mm	Vertical offset of work blade in centerless grinding			DOUBLE	PowerOn
-					
-		0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0

Description: Y offset for work blade

Rule: X(0) = Y(offset) + Q1 < Y(direction vectorQ1) + Q2 < Y(direction vector Q2)

21506	TRACLG_SUPPORT_HOR_OFFSET			C07	S8
mm	Horizontal offset of work blade in centerless grinding			DOUBLE	PowerOn
-					
-		0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0

Description: X offset for work blade

Rule: X(0) = X(offset) + Q1 < X(direction vector Q1) + Q2 <

X(direction vector Q2)

21508	TRACLG_VER	T_DIR_SUPPORTAX_1	C07	-				
-	Vertical compo	nent of work blade direct	DOUBLE	PowerOn				
-		<u> </u>						
-	-	1.,1.,1.,1.,1.,1.,1.,1.,1., 1.,1.,1.,1	-	-	0/0			

Description: Y component of blade direction vector for Q1

> Rule: YO = Y(offset) + Q1 < Y(direction vectorQ1) + Q2 < Y(direction vection vector Q2)

21510	TRACLG_HOR_DIR_SUPPORTAX_1			C07	-
-	Horizontal component of work blade direction vector for Q1			DOUBLE	PowerOn
-					
-		0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0

Description: ${\tt X}$ component of blade direction vector for Q1

Rule: X(0) = X(offset) + Q1 < X(direction vector Q1) + Q2 <

X(direction vector Q2)

21512	TRACLG_VERT_DIR_SUPPORTAX_2			C07	-			
-	Vertical component of work blade direction vector for Q2			DOUBLE	PowerOn			
-								
-		0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-	-	0/0			

Description: Y component of blade direction vector for Q2

> Rule: Y(0) = Y(offset) + Q1 < Y(direction vectorQ1) + Q2 < Y(direction vector Q2)

21514	TRACLG_HOR_DIR_SUPPORTAX_2			C07	-
-	Horizontal component of work blade direction vector for Q2			DOUBLE	PowerOn
-					
-	-	1.,1.,1.,1.,1.,1.,1.,1.,1., 1.,1.,1.,1	-	-	0/0

Description: X component of blade direction vector for Q2

Rule: X(0) = X(offset) + Q1 <X(direction vector Q1) + Q2 <</pre>

X(direction vector Q2)

21516	TRACLG_SUPPORT_LEAD_ANGLE			C07	-
degrees	Lead angle of v	Lead angle of work blade in centerless grinding			PowerOn
-					
-	-	0.,0.,0.,0.,0.,0.,0.,0.,0., 0.,0.,0.,0	-90.	90.	0/0

Description: The angle of lead of the work blade (a) is entered here.

21518	TRACLG_CONTACT_UPPER_LIMIT			C07	-
mm	Upper contact limit of work blade with work in centerl. grinding			DOUBLE	PowerOn
-					
-		0.,0.,0.,0.,0.,0.,0.,0.,0., -			0/0

Description:

It is necessary to specify the upper contact limit of the blade with the part to be ground (d1) for the purpose of monitoring the support range limits.

Related to:

MD21520 \$MC_TRACLG_CONTACT_LOWER_LIMIT

21520	TRACLG_CONTACT_LOWER_LIMIT			C07	-
mm	Lower contact limit of work blade with work in centerl. grinding			DOUBLE	PowerOn
-					
-		0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0			0/0

Description:

It is necessary to specify the lower contact limit of the blade with the part to be ground (d2) for the purpose of monitoring the support range limits.

Related to:

MD: TRACLG_CONTACT_UPPER_LIMIT

21522	TRACLO	TRACLG_GRINDSPI_NR			-
-	Definition	Definition of grinding spindle for centerless grinding			PowerOn
-					·
-	-	2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	1	20	0/0

Description: The number of the grinding spindle is specified in this MD.

21524	TRACLG_CTRLSPI_NR			C07	-
-	Definition of reg	Definition of regulating spindle for centerless grinding			PowerOn
-					
-	-	1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,			0/0

 $\textbf{Description:} \qquad \text{The number of the regulating spindle is specified in this MD.} \\$

21526	TRACLG_G0_IS_SPECIAL			C07	-		
-	Special logic for	Special logic for G0 in centerless grinding			PowerOn		
-							
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0		

Description:

This MD can be used to define how the speed of the regulating wheel must respond in the case of transitions from motion blocks with ${\tt G0}$ and without ${\tt G0}$ (see table).

TRACLG_GO_IS_SPECIAL = 1:

On transition from a motion block with G0 to one without G0, the speed of the regulating wheel is increased during the G0 block to the desired initial speed in the block without G0.

TRACLG GO IS SPECIAL = 0:

The speed of the regulating wheel is controlled only for motion blocks without ${\tt G0}$ (the transitions from a motion block with ${\tt G0}$ to one without ${\tt G0}$ are not taken into account).

2.3.3 Channel auxiliary function settings

22000	AUXFU_ASSIGN_GROUP			C04	H2,S1		
-	Auxiliary function	Auxiliary function group			PowerOn		
-		·					
-		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1	127	2/2		

Description: See MD22010 \$MC AUXFU ASSIGN TYPE [n] (auxiliary function type)

22010	AUXFU_ASSIGN_TYPE			C04	H2,S1		
-	Auxiliary function	Auxiliary function type			PowerOn		
-							
-	64		-	-	2/2		

Description:

Machine data

AUXFU_ASSIGN_TYPE[n] (auxiliary function type),

 ${\tt AUXFU_ASSIGN_EXTENSION[n]} \ \ (auxiliary \ function \ extension) \ \emph{,}$

AUXFU_ASSIGN_VALUE[n] (auxiliary function value) and

AUXFU_ASSIGN_GROUP[n] (auxiliary function group)

assign an auxiliary function type (M,S,H,T,F,D,DL), the associated extension and the auxiliary function value to an auxiliary function group.

Example:

M0 = 100 => Group 5 (corr. M100)

Auxiliary function typeM

Auxiliary function extension 0

Auxiliary function value 100

Auxiliary function group

MD22010 \$MC_AUXFU_ASSIGN_TYPE[0] = "M"

MD22020 \$MC AUXFU ASSIGN EXTENSION[0] = 0

MD22030 \$MC_AUXFU_ASSIGN_VALUE[0] = 100

MD22040 \$MC_AUXFU_ASSIGN_GROUP[0] = 5 ; (5th group)

M00, M01, M02, M17 and M30 are assigned to group 1 as default.

 ${\rm M3,\ M4,\ M5}$ and ${\rm M70}$ of the master spindle are assigned to group 2 as default.

The S functions of the master spindle are assigned to group 3 as $\,$ default.

The four machine data for assigning an auxiliary function to an auxiliary function group must always be given the same index [n]. Special cases:

If the value of an auxiliary function is less than 0, all auxiliary functions of this type and extension are assigned to one group.

Example:

 $S2 = -1 \Rightarrow group 9$

(all S values of the 2nd spindle are assigned to group 9) Related to:

MD11100 \$MN AUXFU MAXNUM GROUP ASSIGN

22020	AUXFU_ASSIGN_EXTENSION			C04	H2,S1	
-	Auxiliary function	Auxiliary function extension			PowerOn	
-		<u> </u>				
-		0, 0	-1	99	2/2	

Description:

See MD22010 \$MC AUXFU ASSIGN TYPE[n] (auxiliary function type) Special cases:

With the spindle functions M3, M4, M5, M19, M70, M40, M41, M42, M43, M44, M45 and S,

the spindle number is output to the PLC in the auxiliary function extension.

22030	AUXFU_ASSIGN_VALUE			C04	H2,S1			
-	Auxiliary function	Auxiliary function value			PowerOn			
-								
-		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	-	-	2/2			

Description:

If the value in this MD is smaller than 0, all help functions of this type and of this address expansion are assigned to this

(see MD22010 \$MC AUXFU ASSIGN TYPE[n] (help function type)

22035	AUXFU_ASSIGN_SPEC			C04	H2		
-	Output specification	Output specification			PowerOn		
-		·					
-		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	-	-	2/2		

Description:

Specification of the output behavior of the user-defined auxiliary functions.

Bit 0 = 1Acknowledgment "normal" after an OB1 cycle

Bit 1 = 1Acknowledgment "quick" with OB40

Bit 2 = 1No predefined auxiliary function

Bit 3 = 1No output to the PLC

Bit 4 = 1Spindle reaction after acknowledgment by the PLC

Bit 5 = 10utput before the motion

Bit 6 = 10utput during the motion

Bit 7 = 10utput at block end

Bit 8 = 1No output after block search types 1, 2, 4

Bit 9 = 1Collection during block search type 5 (SERUPRO)

Bit 10 = 1 No output during block search type 5 (SERUPRO)

Bit 11 = 1Cross-channel auxiliary function (SERUPRO)

Bit 12 = 10utput via synchronized action

Bit 13 = 1 Implicit auxiliary function

Bit 14 = 1 Active M01

Bit 15 = 1 No output during running-in test

Bit 16 = 1 Nibbling off

Bit 17 = 1 Nibbling on

Bit 18 = 1 Nibbling

22040	AUXFU_PREDEF_GROUP			C04	H2		
-	Predefined auxi	Predefined auxiliary function groups			PowerOn		
-		·					
-		1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 3, 1, 1, 1	0	128	2/2		

Description:

Group assignment of predefined auxiliary functions.

The predefined groups cannot be changed for indices 0, 1, 2, 3, 4, 22, 23, 24.

22050	AUXFU_PREDEF_TYPE			C04	H2		
-	Predefined aux	Predefined auxiliary function type			PowerOn		
-							
-		"M", "M", "M", "M", "M", "M", "M", "M", "M", "M",	-	-	2/2		

Description:

The address codes of the predefined auxiliary functions are fix. This setting cannot be changed!

22060	AUXFU_PREDEF_EXTENSION			C04	H2		
-	Predefined aux	Predefined auxiliary function extension			PowerOn		
-		·					
-		0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-1	99	2/2		

Description:

Address extension for predefined auxiliary functions: This setting can be changed only for indices 5 to 17 and 21!

22070	AUXFU_PREDEF_VALUE			C04	H2		
-	Predefined auxiliary function value			DWORD	PowerOn		
-							
-		0, 1, 2, 17, 30, 6, 3, 4, 5, 19, 70, 40, 41, 42, 43, 44, 45, -1	-	-	2/2		

Description:

Value of predefined auxiliary functions.

This setting cannot be changed!

22080	AUXFU_PREDEF_SPEC			C04	H2,K1		
-	Output specification			DWORD	PowerOn		
-							
-		0x81, 0x81, 0x81, 0x81, 0x81, 0x21, 0x21, 0x21, 0x21, 0x21	-	-	1/1		

Description:

Specification of the output behavior of the predefined auxiliary functions.

Bit 0 = 1Acknowledgment "normal" after an OB1 cycle

Bit 1 = 1Acknowledgment "quick" with OB40

Bit 2 = 1No predefined auxiliary function

Bit 3 = 1No output to the PLC

Bit 4 = 1Spindle reaction after acknowledgment by the PLC

Bit 5 = 10utput before the motion

Bit 6 = 10utput during the motion

Bit 7 = 10utput at block end

Bit 8 = 1No output after block search types 1, 2, 4

Bit 9 = 1 Collection during block search type 5 (SERUPRO)

Bit 10 = 1No output during block search type 5 (SERUPRO)

Bit 11 = 1Cross-channel auxiliary function (SERUPRO)

Bit 12 = 10utput via synchronized action

Bit 13 = 1 Implicit auxiliary function

Bit 14 = 1 Active M01

Bit 15 = 1 No output during running-in test

Bit 16 = 1 Nibbling off

Bit 17 = 1 Nibbling on

Bit 18 = 1 Nibbling

22100	AUXFU_	AUXFU_QUICK_BLOCKCHANGE			H2
-	Block ch	ange delay with quick auxiliary	functions.	DWORD	PowerOn
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0

Description:

Block change is not delayed with quick auxiliary functions.

- 0: With the quick auxiliary function output the block change is delayed until acknowledgement by the PLC (OB40).
- 1: With the quick auxiliary function output to the PLC the block change is not delayed.

MD irrelevant for:

Auxiliary functions with normal acknowledgement

References:

/FBSY/, Synchronized Actions

22110	AUXFU_H_TYPE_INT			C11, C04	H2,K1
-	Data format of H auxiliary functions (integer/real)			DWORD	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0

Description:

0: The values of H auxiliary functions are present in floating point format.

The maximum value range is +/-3.4028 ex 38.

1: The value of H auxiliary functions is rounded and changed to an integer.

The basic program in the PLC must interpret the value as an integer.

The maximum value range is -2147483648 to 2147483647.

22200	AUXFU_M_SY	NC_TYPE	C04	H2,K1,2.4	
-	Output time of M functions			BYTE	PowerOn
-					
-	-	1	0	3	0/0

Synchronization of the M auxiliary functions with regard to a simultaneously programmed axis motion.

- 0 = Output before motion
- 1 = Output during motion
- 2 = Output at block end
- 3 = No output to the PLC (therefore no block change delay)

Notice:

An auxiliary function output specification configured by MD22080 \$MC AUXFU PREDEF SPEC[preIndex], MD22035 \$MC_AUXFU_ASSIGN_SPEC[auxIndex] or

A group output specification configured by MD11110 \$MN AUXFU GROUP SPEC[groupIndex], which has a higher priority.

22210	AUXFU_S_SYNC_TYPE			C04	H2,2.4			
-	Output time of S functions (see MD22200 for values)			BYTE	PowerOn			
-		·						
-	-	1	0	4	0/0			

Description:

Synchronization of the S auxiliary functions with regard to a simultaneously programmed axis motion.

- 0 = Output before motion
- 1 = Output during motion
- 2 = Output at block end
- 3 = No output to the PLC (therefore no block change delay)
- 4 = Output in accordance with the predefined output specification Notice:

An auxiliary function output specification configured by MD22080 \$MC AUXFU PREDEF SPEC[preIndex], MD22035 \$MC_AUXFU_ASSIGN_SPEC[auxIndex] or

A group output specification configured by MD11110 \$MN AUXFU_GROUP_SPEC[groupIndex], which has a higher priority.

22220	AUXFU_T_SYNC_TYPE			C11, C04	H2,2.4
-	Output time for T functions (see MD22200 for values)			BYTE	PowerOn
-					
-	-	1	0	4	0/0

Description:

Synchronization of the T auxiliary functions with regard to a simultaneously programmed axis motion.

- 0 = Output before motion
- 1 = Output during motion
- 2 = Output at block end
- 3 = No output to the PLC (therefore no block change delay)
- 4 = Output in accordance with the predefined output specification Notice:

An auxiliary function output specification configured by MD22080 \$MC_AUXFU_PREDEF_SPEC[preIndex], MD22035 \$MC AUXFU ASSIGN SPEC[auxIndex] or

A group output specification configured by MD11110 \$MN_AUXFU_GROUP_SPEC[groupIndex], which has a higher priority.

22250	AUXFU_D_SYNC_TYPE			C04	H2			
-	Output time for	utput time for D functions (see MD22200 for values)			PowerOn			
-								
-	-	1	0	4	0/0			

Description:

Synchronization of the D auxiliary functions with regard to a simultaneously programmed axis motion.

- 0 = Output before motion
- 1 = Output during motion
- 2 = Output at block end
- 3 = No output to the PLC (therefore no block change delay)
- 4 = Output in accordance with the predefined output specification Notice:

An auxiliary function output specification configured by MD22080 \$MC_AUXFU_PREDEF_SPEC[preIndex], MD22035 \$MC_AUXFU_ASSIGN_SPEC[auxIndex] or

A group output specification configured by MD11110 $\MN_AUXFU_GROUP_SPEC[\mbox{groupIndex}], which has a higher priority.$

22252	AUXFU_DL_SYNC_TYPE			C04	H2
-	Output time of DL functions			BYTE	PowerOn
-					
-	-	1	0	4	0/0

Synchronization of the auxiliary function with regard to a simultaneously programmed motion.

- 0 = Output before motion
- 1 = Output during motion
- 2 = Output at block end
- 3 = No output to the PLC (therefore no block change delay)
- 4 = Output in accordance with the predefined output specification Notice:

An auxiliary function output specification configured by MD22080 $MC_AUXFU_PREDEF_SPEC[$ preIndex], MD22035 $MC_AUXFU_ASSIGN_SPEC[$ auxIndex] or

A group output specification configured by MD11110 $MN_AUXFU_GROUP_SPEC[\ groupIndex\], which has a higher priority.$

22254	AUXFU_ASSOC_M0_VALUE			C01, C03, C10	H2,K1
-	Additional M function to stop a program			DWORD	PowerOn
-					
-		-1,-1,-1,-1,-1,-1,-1,- 1,-1,-1,-1,-1	-	-	2/2

Description:

This machine data defines an additional, predefined M function, which behaves in the same way as M0. The value of the machine data corresponds to the number of the auxiliary M function.

Predefined M numbers, such as M0, M1, M2, M3, etc., are not allowed.

Restriction:

See MD10715 \$MN_M_NO_FCT_CYCLE

Related to:

MD10714 \$MN M NO FCT EOP,

MD10715 \$MN_M_NO_FCT_CYCLE,

MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,

MD22254 \$MC_AUXFU_ASSOC_MO_VALUE

For external language mode:

MD10814 \$MN_EXTERN_M_NO_MAC_CYCLE,

MD10804 \$MN_EXTERN_M_NO_SET_INT

MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,

MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,

MD10802 \$MN_EXTERN_CHAN_SYNC_M_NO_MAX

MD20095 \$MC EXTERN RIGID TAPPING M NR

For nibbling:

MD26008 \$MC_NIBBLE_PUNCH_CODE

22256	AUXFU_ASSOC_M1_VALUE			C01, C03, C10	H2			
-	Additional M function for conditional stop			DWORD	PowerOn			
-								
-		-1,-1,-1,-1,-1,-1,-1,- 1,-1,-1,-1,-1	-	-	2/2			

Description:

This machine data defines an additional, predefined M function, which behaves in the same way as M1. The value of the machine data corresponds to the number of the auxiliary M function.

Predefined M numbers, such as M0, M1, M2, M3, etc., are not allowed.

Restriction:

See MD10715 \$MN M NO FCT CYCLE

Related to:

MD10714 \$MN M NO FCT EOP,

MD10715 \$MN M NO FCT CYCLE,

MD20094 \$MC_SPIND_RIGID_TAPPING_M_NR,

MD22254 \$MC AUXFU ASSOC MO VALUE

For external language mode:

MD10814 \$MN EXTERN M NO MAC CYCLE,

MD10804 \$MN EXTERN M NO SET INT

MD10806 \$MN_EXTERN_M_NO_DISABLE_INT,

MD10800 \$MN_EXTERN_CHAN_SYNC_M_NO_MIN,

MD10802 \$MN EXTERN CHAN SYNC M NO MAX

MD20095 \$MC_EXTERN_RIGID_TAPPING M NR

For nibbling:

MD26008 \$MC NIBBLE PUNCH CODE

22400	S_VALUES_ACTIVE_AFTER_RESET			C04, C03, C05	-		
-	S function active beyond RESET			BOOLEAN	PowerOn		
-							
-	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2		

Description:

- 1: The last S values set in the main run are still active after a RESET.
- $0\colon$ $\;$ The various S values are equal to 0 after a RESET and must therefore be reprogrammed.

22410	F_VALUES_ACTIVE_AFTER_RESET			C04, C03, C05	M3,V1		
-	F function active beyond RESET			BOOLEAN	PowerOn		
-							
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2		

Description:

- 1: The last programmed F, FA, OVR and OVRA values are still active after RESET.
- 0: The various values are set to their default values after reset.

Related to:

MD22240 \$MC AUXFU F SYNC TYPE Output time of the F functions

22420	FGROUP_DEFAULT_AXES			C11	-
-	Default setting for FGROUP command			BYTE	PowerOn
-					
-		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	-	-	0/0

Default setting for FGROUP command. You can specify up to 8 channel axes whose resulting velocity is equivalent to the programmed path feed.

If all eight values are zero (default), the geo axis entered in MD20050 $MC_AXCONF_GEOAX_ASSIGN_TAB$ are active as the default setting for the FGROUP command as previously.

22510	GCODE_GROUPS_TO_PLC			C04	K1,P3 pl,P3 sl
-	G codes output change/RESET	o could ball at 11011 = 0 miles and on block		BYTE	PowerOn
-					
-	8	2, 0, 0, 0, 0, 0, 0, 0	-	-	1/1

Description:

Specification of the G code group, the G codes of which are output to the NCK/PLC interface in case of block change/ reset.

The interface is updated after each block change and reset.

Notice:

It is not guaranteed that a PLC user program has at all times a block-synchronous relation between the active NC block and the G codes present. $\,$

Example: Path mode with very short blocks

22512	EXTERN	I_GCODE_GROUPS_TO_PLC	C11, C04	-
-	Send G	codes of an external NC language to PLC	BYTE	PowerOn
-				
802d-cu3	8	18, 0, 0, 0, 0, 0, 0 -	-	1/1
802d-ng2	8	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	-	-1/1
802d-ng3	8	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	-	-1/1
802d-tm1	8	18, 0, 0, 0, 0, 0, 0 -	-	1/1
802d-tm2	8	18, 0, 0, 0, 0, 0, 0 -	-	1/1
802d-tm3	8	18, 0, 0, 0, 0, 0, 0 -	-	1/1

Description:

Specification of the G code group of external languages, the G codes of which are output at the NCK interface on block change/reset.

The interface is updated at each block change and after RESET. Notice:

It is not guaranteed that a PLC user program has at all times a block-synchronous relation between the active NC block and the G codes present. (Example: Path mode with very short blocks).

22515	GCODE_GROUPS_TO_PLC_MODE			C04	-
-	Behavior of G group transfer to PLC			DWORD	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1

Description:

For setting the behavior, i.e. how the G groups are to be interpreted in the PLC with regard to data.

With the current behavior (bit 0 = 0), the G group is the array index of a 64-byte field (DBB 208 - DBB 271).

Maximally the 64th G group can be reached in this way.

With the new behavior (bit 0 = 1), the data storage in the PLC consists of max. 8 bytes (DBB 208 - DBB 215).

With this procedure, the array index of this byte array is identical with the index of the MD22510 \$MC_GCODE_GROUPS_TO_PLC[Index] and MD22512 \$MC EXTERN GCODE GROUPS TO PLC[Index].

Each index (0 - 7) may only be set for one of the two machine data; the value 0 must be entered for the other MD.

Bit 0(LSB) = 0:

Behavior as before, the 64-byte field is used for displaying the ${\tt G}$ codes

Bit 0(LSB) = 1:

The user specifies for which G groups the first 8 bytes are to be used

22530	TOCARR_CHANGE_M_CODE			C04	H2,W1
-	M code at change of tool holder			DWORD	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-99999999	99999999	0/0

Description:

The absolute value of this machine data indicates the number of the M code, which is output at the VDI interface when a tool holder is activated.

- If the MD is positive, the unchanged M code is always output.
- If the MD is negative, the number of the tool holder is added to the absolute value of the machine data and the number is output.

Special cases:

N M code is output, if the number of the M code to be output or the absolute value of this MD is set to one of the values 0 to 6, 17 or 30. It is not monitored whether an M code created in this way will conflict with other functions.

References:

/FB/, H2, Auxiliary Function Output to PLC

22532	GEOAX_CHANGE_M_CODE			C04	H2,K2
-	M code at change of geo axes			DWORD	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	99999999	0/0

Number of the M code, which is output at the VDI interface in the case of a switchover of the geometry axes.

No M code is output if this MD is set to one of the values 0 to 6, 17 or 30.

It is not monitored whether an M code created in this way will conflict with other functions.

22534	TRAFO_CHANGE_M_CODE			C04	M1,H2
-	M code at change of transformation			DWORD	PowerOn
-					
-	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	99999999	2/2

Description:

Number of the M code that is output at the VDI interface in the case of a transformation changeover of the geometry axes.

No M code is output if this MD is set to one of the values 0 to 6, 17 or 30.

It is not monitored whether an M code created in this way will conflict with other functions.

22550	TOOL_CHANGE_MODE			C01, C11, C04, C09	W3,K1,W1
-	New tool comp	New tool compensation for M function		BYTE	PowerOn
-					
-	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2

Description:

The T function is used to select a tool in the program. The setting in this machine data determines whether the new tool is loaded immediately on execution of the T function:

MD22550 \$MC_TOOL_CHANGE_MODE = 0

The new tool is loaded directly with the programming of T or D. This setting is mainly used on lathes. If a D is not programmed in the block by T, then the tool offset defined in MD20270 $MC_UTING_DEGE_DEFAULT$ is active.

In this case, the function "Manual tools" is not enabled. MD22550 MC TOOL CHANGE MODE = 1

The new tool is prepared for loading on execution of the T function. This setting is used mainly on milling machines with a tool magazine in order to bring the new tool into the tool change position without interrupting the machining process. The M function entered in MD22560 \$MC_TOOL_CHANGE_M_CODE is used to remove the old tool from the spindle and load the new tool onto the spindle. According to DIN 66025, this tool change has to be programmed with M function M06.

Related to:

MD22560 \$MC TOOL CHANGE M CODE

22560	TOOL_CHANGE_M_CODE			C01, C04, C09	H2,K1,W1
-	M function for tool change			DWORD	PowerOn
-					
-		6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,	0	99999999	1/1

Description:

If the T function is only used to prepare a new tool for a tool change (this setting is used mainly on milling machines with a tool magazine, in order to bring the new tool into the tool change position without interrupting the machining process), another M function must be used to trigger the tool change.

The M function entered in TOOL_CHANGE_M_CODE triggers the tool change (remove old tool from the spindle and load new tool into the spindle). This tool change is required to be programmed with M function M06, in accordance with DIN 66025.

Related to:

MD22550 \$MC TOOL CHANGE MODE

22562	TOOL_CHANGE_ERROR_MODE			C09	W1
-	Response to tool change errors			DWORD	PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFF	1/1

Description:

Behavior if faults/problems occur during programmed tool change.

Bit 0=0: Standard behavior: Stop on the faulty NC block

Bit 0=1: If a fault is detected in the block with the tool change preparation, the alarm relevant to the preparation command T is delayed until the corresponding tool change command (M06) has been interpreted in the program sequence. Until then, the alarm triggered by the preparation command is not output. The operator can take corrective actions in this block. When the program continues, the faulty NC block is re-interpreted, and the preparation command is automatically executed again internally.

The value = 1 is relevant only if the setting MD22550 \pm MC TOOL CHANGE MODE = 1 is used.

Bit 1 Only relevant with active tool management:

Bit 1=0: Standard behavior: Only tools with data assigned to a magazine are detected during tool change preparation.

Bit 1=1: Manual tools can be loaded.

A tool will also be loaded if its data are known in the NCK but have not been assigned to a magazine. In this case, the tool data is automatically assigned to the programmed tool holder.

The user is prompted to insert tools into or remove tools from the tool holder).

Bit 2 modifies the offset programming

Bit 2=0: active D no. > 0 and active T no.=0 gives offset 0 Active D no. > 0 and active D no.=0 gives total offset 0

Bit 2=1: active D no. > 0 and active T no.=0 lead to an alarm message

Active D no. > 0 and active D no.=0 lead to an alarm message Bits 3 and 4 are only relevant with active tool management. Function:

Control of the behavior of the init. block generation on program start if a disabled tool is on the spindle and this tool is to be activated.

See MD20112 \$MC_START_MODE_MASK, MD20110 \$MC_RESET_MODE_MASK
On RESET, this does not affect the behavior "Keep disabled tool on
the spindle active".

Bit 3=0: Standard: If the tool on the spindle is disabled, generate a tool change command requesting a replacement tool. An alarm will be generated if there is no such replacement tool.

Bit 3=1: The disabled status of the spindle tool is ignored. The tool becomes active. The subsequent part program should be formulated so that no parts are machined with the disabled tool.

Bit 4=0: Standard: The system tries to activate the spindle tool or its replacement tool.

Bit 4=1: If the tool on the spindle is disabled, T0 is programmed in the start init block.

The combination of bits 3 and 4 produces the following statements: 0 / 0: Behavior as before, automatic change on NC start if a disabled tool is in the spindle

1 / 0: No automatic change

0 / 1: A TO is automatically generated if a disabled tool is in the spindle at NC start $\,$

1 / 1: No statement

Bit 5: Reserved

Bit 6=0: Standard: If T0 or D0, only T0 or D0 is exactly programmed. This means that MD20270 $MC_UTTING_DEG_DEFAULT$ and MD20272 $MC_SUMCORR_DEFAULT$ determine the value of D and DL for the programming of T0.

Example: MD20270 \$MC_CUTTING_EDGE_DEFAULT=1, MD20272
\$MC_SUMCORR_DEFAULT=2, MD22550 \$MC_TOOL_CHANGE_MODE=0 (tool change with T programming)

N10 T0 ; T no. 0 has active numbers D1 and DL=2, which results in offset zero. If bit 2 is also set:

Programming of

- a) T0; for tool deselection
- b) ${\tt D0}$; for offset deselection

generates an alarm, if

- a) at least one of MD20270 \$MC_CUTTING_EDGE_DEFAULT and MD20272 \$MC_SUMCORR_DEFAULT is unequal to zero (The correct programming is T0 D0 DL=0).
- b) MD20272 \$MC_SUMCORR_DEFAULT is unequal to zero (The correct programming is D0 DL=0).

Bit 6=1: Controls the NCK behavior when x, y, z are all programmed greater than zero, if at least one of MD20270 $\,$

 $MC_CUTTING_EDGE_DEFAULT$ and MD20272 $MC_SUMCORR_DEFAULT$ is unequal to zero.

a) Tx Dy --> T0:

With T0, D0 or D0 DL=0 is automatically programmed in the NCK; i.e. values in MD20270 $MC_UTTING_DEFAULT$ and $MC_SUMCORR_DEFAULT$ unequal to zero are treated as values equal to zero.

- b) Tx Dy --> T0 Dy, or T0 DL=z, or T0 Dy DL=z, or T0 D0 DL=z, explicitly programmed values of D, DL are not influenced.
- c) Dy DL=z \longrightarrow D0

With D0, DL=0 is automatically programmed in the NCK; i.e. values in MD20272 $MC_SUMCORR_DEFAULT$ unequal to zero are treated as values equal to zero.

d) Dy DL=z \rightarrow D0 DL=z

Explicitly programmed values of DL are not influenced. If bit 2 is also set:

Only T0 $\,$ / D0 have to be programmed for tool/offset deselection, and this does not generate an alarm.

The statements relating to MD20272 $MC_SUMCORR_DEFAULT$ or DL are valid only if the total offset function is active (see MD18080 MN MM TOOL MANAGEMENT MASK, bit 8).

Bit 7=0: When Tx is programmed, a check is made to see whether a tool with T number x is known in the TO unit of the channel. If not, the program is stopped in this block with alarm 17190 Bit 7=1: Only if tool basic functionality is active (MD20310 $MC_{OL}MANAGEMENT_{MASK}$, bit 0,1=0) and (MD18102 $MC_{OL}MANAGEMENT_{MASK}$) bit 0,1=0) and (MD18102

When Tx is programmed, an unknown Tx is intially be ignored, and the alarm relating to the preparation command (Tx) is also ignored until the D selection is interpreted in the program sequence. Only then is alarm 17191, which has been triggered by the preparation command, output. This means that the operator can take corrective actions with the D selection in this block. When the program is continued, the incorrect NC block is re-interpreted, and the preparation command is automatically executed again internally.

(This is of interest for Cutting-Edge-Default=0 or =-2 and D0 programming, otherwise the D of Cutting-Edge-Default is deselected on tool change.)

This variant is justified for programming "Tool number=Location" (revolver as tool holder) without tool management. The revolver can now positioned on a location for which a tool has not (yet) been defined.

This bit has no meaning if bit 0=1 is set.

22600	SERUPRO_SPEED_MODE		EXP	K1	
-	Speed for block search run type 5			DWORD	Immediately
-					
-		1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	-	1/1

Description:

This machine data specifies the search run mode: SERUPRO in more detail.

SERUPRO search run is activated with PI service $_{\rm N_FINDBL}$ mode parameter = 5.

SERUPRO means SEarchRUn by PROgram test, i.e. traversing under program test from beginning of program to search target. Note:

Program test does not move any axes/spindles.

Bit0 and Bit1:

=======

0: Under program test, the axes/spindles are traversed at the following speeds:

Axes: MD22601 \$MC_SERUPRO_SPEED_FACTOR*dry run feed.

Spindles: MD22601 \$MC_SERUPRO_SPEED_FACTOR*programmed speed.

Dynamic axis / spindle limitations are not taken into account.

1: Under program test, the axes/spindles are traversed at the following speeds:

Axes: at the same velocity as dry run feed.

Spindles: at the programmed speed.

Dynamic axis / spindle limitations are taken into account.

2: Under program test, the axes/spindles are traversed at the programmed velocity/speed.

Dynamic axis /spindle limitations are taken into account.

3: Not assigned.

Related to:

SD42100 \$SC DRY RUN FEED, MD22601 \$MC SERUPRO SPEED FACTOR

22601	SERUPRO_SPEED_FACTOR			EXP	K1
-	Speed factor for search run type 5			DOUBLE	Immediately
-					
-		10.0,10.0,10.0,10.0,10 .0,10.0,10.0	1.0	-	1/1

Description:

SERUPRO means SEarch RUn by PROgram test, i.e. traversing under program test from beginning of program to search target.

Note:

Program test does not move any axes / spindles.

The machine data is relevant only if the first two bits of MD22600 $MC_SERUPRO_SPEED_MODE$ are 0. The machine data has the following meaning:

Axes: MD specifies the factor by which the test run feedrate is $\operatorname{multiplied}$.

Spindles: MD specifies the factor by which the programmed speed is multiplied. $\,$

Dynamic limitations of axes $\/$ spindles are always ignored. Related to:

SD42100 \$SC DRY RUN FEED, MD22600 \$MC SERUPRO SPEED MODE

22620	START_MODE_MASK_PRT			EXP, C03	M3,K1
-	Initial setting on	special starts		DWORD	Reset
-					
-		0x400,0x400,0x400,0 x400,0x400,0x400	0	0xFFFF	1/1

Description:

This machine data is activated via MD22621

\$MC_ENABLE_START_MODE_MASK_PRT.

If MD22621 \$MC_ENABLE_START_MODE_MASK_PRT is in its initial setting, MD22620 \$MC START MODE MASK PRT is inactive.

If MD22620 \$MC_START_MODE_MASK_PRT is activated for "search via program test" (abbr. SERUPRO), then MD22620

 $MC_START_MODE_MASK_PRT$ replaces MD20112 $MC_START_MODE_MASK$ when "search via program test" is started.

This enables a behavior deviating from PLC start to be set at the start of the search. The meaning of the bit-by-bit assignment of MD22620 \$MC_START_MODE_MASK_PRT is the same as that in MD20112 \$MC START MODE MASK.

22621	ENABLE_START_MODE_MASK_PRT			EXP, C03	M3,K1
-	Enables MD220	620 \$MC_START_MOD	E_MASK_PRT	DWORD	Reset
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	1/1

Description:

MD22620 $\texttt{$MC_START_MODE_MASK_PRT}$ is activated via MD22621 \$MC ENABLE START MODE MASK PRT.

If MD22621 \$MC_ENABLE_START_MODE_MASK_PRT is in its initial setting, MD22620 \$MC START MODE MASK PRT is inactive.

Bit0 = 1:

If a "search via program test" (English abbr. SERUPRO) is
started from RESET (PI service _N_FINDBL mode paramter == 5),
MD22620 \$MC_START_MODE_MASK_PRT replaces MD20112
\$MC_START_MODE_MASK.

This method can be used to set a start behavior differing from PLC start when the search is started.

22622	DISABLE_PLC_START			EXP	-
-	Enable part pro	ble part program start via PLC			PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	-	-	1/1

Description:

Allow part program start via PLC.

This machine data will ONLY be evaluated, if "Group-Serupro" mode is switched on.

"Group-Serupro" is switched on by means of "\$MC_SERUPRO_MODE BIT2".

BITO = 0

A part program can be started in this channel only via the PLC. Starting via the part program command "START" is interlocked.

BIT0 = 1

A part program can be started in this channel only by means of the part program command "START" from another channel. Starting via the PLC is interlocked.

22680	AUTO_IPTR_LOCK I			EXP, C03	K1
-	Disable interrup	Disable interrupt pointer			Reset
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x3	0/0

Description:

With MD22680 \$MC_AUTO_IPTR_LOCK program areas are defined in which the individually indicated coupling types are active. If a program abort is executed in a program range that is defined as such, it will not be the currently executed part program block that is stored in the interrupt pointer (OPI module Interruption-Search), but the last block prior to activation of the coupling.

22900	STROKE_0	STROKE_CHECK_INSIDE			-
-	Direction (in	nside/outside) in which prot.	zone 3 is effective	BOOLEAN	PowerOn
-					
802d-cu3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	1/1
802d-ng2	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-ng3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-tm1	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-tm2	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-tm3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0

This MD defines whether protection zone 3 is a protection zone inside or outside.

Meaning:

0: Protection zone 3 is a protection zone inside, i.e. the protection zone must not entered inwardly.

1: Protection zone 3 is a protection zone outside

22910	WEIGHT	WEIGHTING_FACTOR_FOR_SCALE			-
-	Input res	olution for scaling factor		BOOLEAN	PowerOn
-					•
802d-cu3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2
802d-ng2	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-ng3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-tm1	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2
802d-tm2	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2
802d-tm3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2

Description:

Definition of the unit for the scaling factor P and for the axial scaling factors I, J, K. $\,$

Meaning:

O Scale factor in 0.001 1 Scale factor in 0.00001

Related to:
SD43120 \$SA_DEFAULT_SCALE_FACTOR_AXIS,
SD42140 \$SC_DEFAULT_SCALE_FACTOR_P

22914	AXES_SC	CALE_ENABLE		EXP, C01, C11	-
-	Activation	for axial scaling factor (G51)	BOOLEAN	PowerOn
-					•
802d-cu3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2
802d-ng2	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-ng3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0
802d-tm1	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2
802d-tm2	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2
802d-tm3	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2

Description:

This MD enables axial scaling.

Meaning:

0: Axial scaling not possible

1: Axial scaling possible -> MD DEFAULT_SCALE_FACTOR_AXIS is

active
Related to:

SD43120 \$SA_DEFAULT_SCALE_FACTOR_AXIS

22920	EXTER	RN_FIXED_FEEDRATE_F1_ON	EXP, C01, C11	-	
-	Activat	tion of fixed feedrates F1 - F9		BOOLEAN	PowerOn
-					
802d-cu3	-	FALSE,FALSE,FALSE - ,FALSE,FALSE		-	2/2
802d-ng2	-	FALSE,FALSE,FALSE - ,FALSE,FALSE		-	0/0
802d-ng3	-	FALSE,FALSE,FALSE - ,FALSE,FALSE		-	0/0
802d-tm1	-	FALSE,FALSE,FALSE - ,FALSE,FALSE		-	2/2
802d-tm2	-	FALSE,FALSE,FALSE - ,FALSE,FALSE		-	2/2
802d-tm3	-	FALSE,FALSE,FALSE - ,FALSE,FALSE		-	2/2

Description:

This MD is used to activate the fixed feedrates set in SD42160 SC_{EXTERN} FIXED_FEEDRATE_F1_F9[].

Meaning:

0: no fixed feedrates with F1 - F9

1: the feedrates set in SD42160

 $SC_EXTERN_FIXED_FEEDRATE_F1_F9[]$ become active when F1 - F9 are programmed.

22930	EXTERN_PAR	ALLEL_GEOAX		EXP, C01, C11	-
-	Assignment of	a parallel channel axis to	the geometry axis	BYTE	PowerOn
-					
802d-cu3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-ng2	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/2
802d-ng3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/2
802d-tm1	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-tm2	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-tm3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2

Assignment table of the axes positioned parallel to the geometry axes. $\hspace{-1.5cm}$

This table can be used to assign channel axes positioned parallel to the geometry axes. The parallel axes can then be activated as geometry axes in ISO mode using the G functions of plane selection (G17 - G19) and the axis name of the parallel axis. The axis is then replaced by the axis defined via MD20050 MC AXCONF GEOAX ASSIGN TAB[].

Prerequisite:

The channel axes used must be active. (list position assigned in AXCONF_MACHAX_USED). Entering zero deactivates the corresponding parallel geometry axis:

24000	FRAME_ADD_COMPONENTS			C03	K2
-	Frame compon	Frame components for G58 and G59			PowerOn
-					
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0

Description:

Additive programmable frame components can be separately programmed and modified.

0: Additive translations which have been programmed with ATRANS are stored in the frame together with the absolute translation (prog. with TRANS).

G58 and G59 are not possible.

1: The sum of the additive translations are stored in the fine offset of the programmable frame. The absolute and the additive translations can be changed independently of one another.

G58 and G59 are possible.

24002	CHBFRAME_RESET_MASK			C03	K2
-	Active channel-	ve channel-specific base frames after reset			Reset
-					
-		0xFFFF,0xFFFF,0xFF FF,0xFFFF,0xFFFF	0	0xFFFF	0/0

Description:

Bit mask for the reset setting of the channel-specific base frames which are included in the channel.

The following apply:

If MD20110 $MC_RESET_MODE_MASK bit0 = 1 and BIT14 = 1$

the entire base frame is determined on reset by chaining the base frame field elements, whose bit is 1 in the bit mask.

If MD20110 $MC_RESET_MODE_MASK\ bit0 = 1\ and\ BIT14 = 0$

the entire base frame is deselected on reset.

24004	CHBFRAME_POWERON_MASK			C03	K2
-	Reset channel-	et channel-specific base frames after power on			PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0xFFFF	0/0

Description:

This machine data defines whether channel-specific base frames are reset in the data management on Power On.

That is

- Offsets and rotations are set to 0,
- Scalings are set to 1.
- Mirror image machining is disabled.

The selection can be made separately for individual base frames.

Bit 0 means base frame 0, bit 1 base frame 1 etc.

Value=0: Base frame is retained on Power On

Value=1: Base frame is reset in the data management on Power On. Related to:

MD10615 \$MN_NCBFRAME_POWERON_MASK

24006	CHSFRAME_RESET_MASK			C03	K2
-	Active system frames after reset			DWORD	Reset
-					
-		0x1,0x1,0x1,0x1,0x1,0 x1,0x1,0x1,0x1	0	0x00000FFF	0/0

Description:

Bit mask used for the reset setting of the channel-specific system frames included in the channel.

Bit 0: System frame for actual value setting and scratching is active after reset.

Bit 1: System frame for external work offset is active after reset.

Bit 2: Reserved, for TCARR and PAROT see MD20150

\$MC GCODE RESET VALUES[].

Bit 3: Reserved, for TOROT and TOFRAME see MD20150

\$MC GCODE RESET VALUES[].

Bit 4: System frame for workpiece reference points is active after reset.

Bit 5: System frame for cycles is active after reset.

Bit 6: Reserved; reset behavior dependent on MD20110 $\mbox{\tt SMC}$ RESET MODE MASK.

Bit 7:System frame P_ISO1FR (ISO G51.1 Mirror) is active after reset.

Bit 8:System frame P_{ISO2FR} (ISO G68 2DROT) is active after reset

Bit 9:System frame P_{ISO3FR} (ISO G68 3DROT) is active after reset.

Bit 10:System frame P_{ISO4FR} (ISO G51 Scale) is active after reset.

Bit 11: System frame P_RELFR is active after reset. Related to:

MD28082 \$MC_MM_SYSTEM_FRAME_MASK

24007	CHSFR	AME_RESET_CLEAR_MASK	C03	K2	
-	Deletion	of system frames after reset		DWORD	Reset
-					
802d-cu3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	1/1
802d-ng2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	1/1
802d-ng3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	1/1
802d-tm1	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	0/0
802d-tm2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	0/0
802d-tm3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	0/0

Description:

Bit mask used to delete channel-specific system frames from the data management on reset.

Bit 0: System frame for actual value setting and scratching is deleted on reset.

Bit 1: System frame for exernal work offset is deleted on reset.

Bit 2: Reserved, for TCARR and PAROT, see MD20150

\$MC_GCODE_RESET_VALUES[].

Bit 3: Reserved, for TOROT and TOFRAME, see MD20150 $\,$

\$MC_GCODE_RESET_VALUES[].

Bit 4: System frame for workpiece reference points is deleted on reset.

Bit 5: System frame for cycles is deleted on reset.

Bit 6: Reserved; reset behavior depends on MD20110

\$MC_RESET_MODE_MASK.

Bit 7:System frame \$P_ISO1FR (ISO G51.1 Mirror) is deleted on reset.

Bit 8:System frame \$P_ISO2FR (ISO G68 2DROT) is deleted on reset.

Bit 9:System frame \$P ISO3FR (ISO G68 3DROT) is deleted on reset.

Bit 10:System frame \$P ISO4FR (ISO G51 Scale) is deleted on reset.

Bit 11: System frame \$P RELFR is deleted on reset.

24008	CHSFRA	AME_POWERON_MASK		C03	K2
-	Reset ch	nannel system frames after pow	er on	DWORD	PowerOn
-				<u> </u>	
802d-cu3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	1/1
802d-ng2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	1/1
802d-ng3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	1/1
802d-tm1	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	0/0
802d-tm2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	0/0
802d-tm3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000FFF	0/0

Description:

This machine data defines whether channel-specific system frames are reset in the data management on Power On. That is offsets and rotations are set to 0, scalings to 1. Mirroring is disabled.

The selection can be made separately for individual system frames. Bit 0:System frame for set actual value and scratching is deleted after Power On.

Bit 1:System frame for external work offset is deleted after Power On.

Bit 2:System frame for TCARR and PAROT is deleted after Power On. Bit 3:System frame for TOROT and TOFRAME is deleted after Power

Bit 4:System frame for work piece reference points deleted after Power On.

Bit 5:System frame for cycles retained after Power On.

Bit 6:System frame for transformations deleted after Power On.

Bit 7:System frame P_{ISO1FR} (ISO G51.1 Mirror) is deleted after power ON.

Bit 8:System frame P_ISO2FR (ISO G68 2DROT) is deleted after power ON.

Bit 9:System frame P_ISO3FR (ISO G68 3DROT) is deleted after power ON.

Bit 10:System frame P_ISO4FR (ISO G51 Scale) is deleted after power ON.

Bit 11:System frame P_RELFR is deleted after power ON. Related to:

MD28082 \$MC_MM_SYSTEM_FRAME_MASK

24010	PFRAME	E_RESET_MODE		C03	K2
-	Reset m	ode for programmable frame		DWORD	PowerOn
-				<u>'</u>	<u>'</u>
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0

Description:

- 0: Programmable frame is deleted at reset.
- 1: Programmable frame remains active at reset.

24020	FRAME_SUPPRESS_MODE			C03	K2
-	Positions for frame suppression			DWORD	PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x0000003	2/2

Description:

Bit mask for configuring the positions for frame suppressions (SUPA, G153, G53).

The following rule applies:

Bit 0: Positions for display (OPI) without frame suppression

Bit 1: Position variables without frame suppression

24030	FRAME_ACS_SET			C03	K2
-	Adjustment of SZS coordinate system			DWORD	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0

Description:

- 0: SZS results from the WCS transformed with $P_CYCFRAME$ and P_PFRAME .
- 1: SZS results from the WCS transformed with the \$P_CYCFRAME.

24040	FRAME_ADAPT_MODE			C03	K2
-	Adaptation of active frames			DWORD	PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x0000007	1/1

Description:

Bit mask for adapting the active frames or axis configuration The following applies:

Bit 0:

Rotations in active frames that rotate coordinate axes for which there are no geometry axes are deleted from the active frames.

Bit 1:

Shear angles in active frames are orthogonalized.

Bit 2:

Scalings of all geometry axes in the active frames are set to value $1. \ \ \,$

24050	FRAME_SAA_MODE			C03	-
-	Saving and activating of data management frames			DWORD	PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x0000003	1/1

Description:

Bit mask for saving and activating data handling frames.

The following applies:

Bit 0:

Data handling frames are only activated by programming the bit masks $P_CHBFRMASK$, $P_NCBFRMASK$ and $P_CHSFRMASK$. G500..G599 only activate the relevant settable frame. The reset behavior is independent of this.

Bit 1:

Data handling frames are not written implicitly by system functions such as TOROT, PAROT, ext. work offset, transformations.

24080	USER_FRAME_POWERON_MASK			N01	-
-	Parameterize properties for settable frame			DWORD	PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	7/2

Description:

Setting the following bits activates certain properties of the settable frame:

Bit 0 = 0: default behavior.

Bit 0 = 1: if MD20152 $MC_GCODE_RESET_MODE[7] = 1$, the last active settable frame is selected again according to G code group 8 after power up of the control.

2.3.4 Transformation definitions in channel

24100	TRAFO_	_TYPE_1	C07	F2,TE4,M1,K1,W1
-	Definitio	n of transformation 1 in channel	DWORD	NEW CONF
-				·
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2

Description:

This MD specifies the first available transformation in each channel.

The 4 low-value bits identify the specific transformation of a specific transformation group. The transformation group is identified by a number starting with the $5 \mathrm{th}$ bit.

Meaning:

- 0 No transformation
- 16 and higher

5-axis transformation with turnable tool

32 and higher

5-axis transformation with turnable workpiece

48 and higher

5-axis transformation with turnable tool and turnable workpiece 72

Generic 5-axis transformation. Type and kinematic data are determined by an associated, orientable tool carrier, see MD24582 \$MC_TRAFO5_TCARR_NO_1 and MD24682 \$MC_TRAFO5_TCARR_NO_2 The 4 low-value bits have the following meaning for a 5-axis transformation:

- 0 Axis sequence AB
- 1 Axis sequence AC
- 2 Axis sequence BA
- 3 Axis sequence BC
- 4 Axis sequence CA
- 5 Axis sequence CB
- 8 Generic orientation transformation (3- 5 axes)

256 and higher

TRANSMIT transformation

512 and higher

TRACYL transformation

1024 and higher

TRAANG transformation

2048

Machine Data 06/2009

Channel-specific machine data

TRACLG: centerless transformation

From 4096 to 4098

OEM transformation

8192 and higher

TRACON: cascaded transformations

Example:

A 5-axis transformation with turnable tool and axis sequence CA (i.e. C axis turns A axis) has number 20 (= 16 + 4)

Notice:

Not all combinations of group numbers and axis sequence numbers are allowed. An error message is output if a number for a non-existent transformation is entered.

Related to:

MD24200 \$MC_TRAFO_TYPE_2, MD24300 \$MC_TRAFO_TYPE_3, ... MD24460 \$MC_TRAFO_TYPE_8

References:

/FB/, F2, "5-Axis Transformation"

24110	TRAFO_	AXES_IN_1	C07	F2,TE4,M1,K1,W1
-	Axis ass	ignment for the 1st transformation in the channel	BYTE	NEW CONF
-			-	•
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	20	2/2
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	20	2/2
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	20	2/2
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	20	0/0
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	20	2/2
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	20	2/2

Description:

Axis assignment at input point of 1st transformation

Example for Transmit:

Index i adopts the values 0, 1, 2 with TRANSMIT.

 $MC_TRAFO_AXES_IN_1[0]=$ channel axis number of the axis vertical to rotary axis

\$MC_TRAFO_AXES_IN_1[1]=channel axis number of rotary axis

 $\C_TRAFO_AXES_IN_1[2] = channel axis number of the axis parallel to rotary axis$

Example for TRACYL: see TRACYL Section

Not relevant:
 no transformation
Releated to:

MD24200 \$MC_TRAFO_TYPE_2

24120	TRAFO_	TRAFO_GEOAX_ASSIGN_TAB_1			F2,TE4,TE4,M1,K 1,W1
-	Assignm transforr	ent of the geometry axes to ch nation 1	annel axes for	BYTE	NEW CONF
-					·
802d-cu3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-ng2	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-ng3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-tm1	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	0/0
802d-tm2	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-tm3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 1.

Index i adopts the values 0, 1, 2 for TRANSMIT. It refers to the first, second and third geometry axis.

Not relevant:

No transformation

Application example:

MD20050 \$MC_TRAFO_GEOAX_ASSIGN_TAB_1[0]= 2 ; 2nd channel axis Related to:

MD20050 $\texttt{$MC_AXCONF_GEOAX_ASSIGN_TAB},$ if no transformation is active.

24130	TRAFO_II	NCLUDES_TOOL_1		C07	-
-	Tool hand	Tool handling with 1st active transformation		BOOLEAN	NEW CONF
-					
802d-cu3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-ng2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-ng3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-tm1	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-tm2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-tm3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2

Description:

This machine data states for each channel whether the tool is handled during the 1st transformation or externally.

This machine data is evaluated only with specific transformations. It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only the "inclined-axis transformation" fulfills this condition. If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24200	TRAFO_	_TYPE_2	C07	F2,M1
-	Definitio	Definition of the 2nd transformation in the channel		NEW CONF
-				
802d-cu3	-	0,	-	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2

This MD states the second available transformation in each channel.

Same as ${\tt TRAFO_TYPE_1}$, but for the second available transformation in the channel.

References:

/FB/, F2, "5-Axis Transformation"

24210	TRAFO_	AXES_IN_2	C07	F2,M1	
-	Axis ass	xis assignment for transformation 2		BYTE	NEW CONF
-				<u>.</u>	
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	2/2
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	2/2
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	2/2
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	0/0
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	2/2
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	2/2

Description: TRAFO_AXES_IN_2 (n)

Axis assignment at input of 2nd to 8th transformation.

Same meaning as for ${\tt TRAFO_AXES_IN_1}$.

24220	TRAFO_	TRAFO_GEOAX_ASSIGN_TAB_2			F2,M1
-	Assignm transforr	ent of geometry axes to chann nation 2	el axes for	BYTE	NEW CONF
-					
802d-cu3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-ng2	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-ng3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-tm1	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	0/0
802d-tm2	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2
802d-tm3	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	2/2

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 2.

Otherwise the meaning corresponds to TRAFO GEOAX ASSIGN TAB 1.

24230	TRAFO_	INCLUDES_TOOL_2		C07	-
-	Tool han	handling with active 2nd transformation		BOOLEAN	NEW CONF
-					
802d-cu3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-ng2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-ng3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-tm1	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-tm2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-tm3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2

Description:

This machine data states for each channel whether the tool is handled during the 2nd transformation or externally.

This machine data is evaluated only with specific transformations. It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition.

If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24300	TRAFO_TYPE_3			C07	M1
-	Definition of the 3rd transformation in the channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

This MD states the third available transformation in each channel. Same as TRAFO_TYPE_1, but for the third available transformation in the channel.

References:

/FB/, F2, "5-Axis Transformation"

24310	TRAFO_	TRAFO_AXES_IN_3		C07	M1
-	Axis ass	ignment for transformation 3		BYTE	NEW CONF
-					
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7

Description:

Axis assignment at the input point of the 3rd transformation in the channel.

Meaning is the same as TRAFO_AXES_IN_1, but for the third available transformation in the channel.

24320	TRAFO_GEOAX_ASSIGN_TAB_3			C07	M1		
-	Assignment of geometry axes to channel axes for transformation 3			BYTE	NEW CONF		
-							
-	3	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7		

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 3.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24330	TRAFO_INCLUDES_TOOL_3			C07	-	
-	Tool handling with active 3rd transformation			BOOLEAN	NEW CONF	
-						
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7	

Description:

This machine data states for each channel whether the tool is handled during the 3rd transformation or externally.

This machine data is evaluated only with specific transformations. It is evaluated on the condition that the orientation of the tool with reference to to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition.

If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24400	TRAFO_TYPE_4			C07	M1
-	Definition of the 4th transformation in the channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

This MD states the fourth available transformation in each channel.

Same as $TRAFO_TYPE_1$, but for the fourth available transformation in the channel.

References:

/FB/, F2, "5-Axis Transformation"

24410	TRAFO_	AXES_IN_4	C07	F2,M1				
-	Axis ass	ignment for the 4th transformation ir	the channel BYTE	NEW CONF				
-								
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	20	-1/7				
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	20	-1/7				
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0	20	-1/7				
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	20	-1/7				
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	20	-1/7				
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	20	-1/7				

Axis assignment at the input point of the $4 \, \mathrm{th}$ transformation in the channel.

Meaning is the same as TRAFO_AXES_IN_1, but for the fourth available transformation in the channel.

24420	TRAFO_GEOAX_ASSIGN_TAB_4			C07	M1
-	Assignment of geometry axes to channel axes for transformation 4			BYTE	NEW CONF
-					
-		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 4. Otherwise the meaning corresponds to TRAFO GEOAX ASSIGN TAB 1.

24426	TRAFO_INCLUDES_TOOL_4			C07	-
-	Tool handling with active 4th transformation			BOOLEAN	NEW CONF
-					
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7

Description:

This machine data states for each channel whether the tool is handled during the 4th transformation or externally.

This machine data is evaluated only with specific transformations. It is evaluated on the condition that the orientation of the tool with reference to to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition.

If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24430	TRAFO_TYPE_5			C07	M1
-	Type of transformation 5 in the channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

Type of transformation available as the fifth in the channel. See MD24100 $MC_{TRAFO_{TYPE_1}$ for explanation.

24432	TRAFO_	AXES_IN_5		C07	F2
-	Axis ass	ignment for transformation 5		BYTE	NEW CONF
-				-	
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Description:

Axis assignment at the input point of the 5th transformation. See ${\tt TRAFO_AXES_IN_1}$ for explanation.

24434	TRAFO_	GEOAX_ASSIGN_TAB_5	C07	M1
-	Assignm transforr	ent of geometry axes to channel axes for nation 5	BYTE	NEW CONF
-				·
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0 0, 0	20	-1/7

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 5. Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24436	TRAFO_INCLUDES_TOOL_5			C07	-
-	Tool handling with active 5th transformation			BOOLEAN	NEW CONF
-					
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7

This machine data states for each channel whether the tool is handled during the $5 \, \mathrm{th}$ transformation or externally.

This machine data is evaluated only with specific transformations. It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition.

If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24440	TRAFO_TYPE_6			C07	-
-	Type of transfo	Type of transformation 6 in the channel			NEW CONF
-					
-	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

Type of transformation available as the sixth in the channel. See MD24100 $\$ TRAFO TYPE 1 for explanation.

24442	TRAFO_	TRAFO_AXES_IN_6			-
-	Axis ass	Axis assignment for transformation 6		BYTE	NEW CONF
-				<u>.</u>	
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7

Description:

Axis assignment at the input point of the 6th transformation. See ${\tt TRAFO_AXES_IN_1}$ for explanation.

24444	TRAFO_GEOAX_ASSIGN_TAB_6			C07	-
	Assignment of geometry axes to channel axes for transformation 6			BYTE	NEW CONF
-					
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 6.

Otherwise the meaning corresponds to TRAFO GEOAX ASSIGN TAB 1.

24446	TRAFO_INCLUDES_TOOL_6	C07	-
-	Tool handling with active 6th transformation	BOOLEAN	NEW CONF
-			
-	- TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TRUE,TRUE	-	-1/7

Description:

This machine data states for each channel whether the tool is handled during the 6th transformation or externally.

This machine data is evaluated only with specific transformations. It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition.

If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24450	TRAFO_TYPE_7			C07	-
-	Type of transformation 7 in the channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

Type of transformation available as the seventh in the channel. See MD24100 $MC_{TRAFO_{TYPE_{1}}$ for explanation.

24452	TRAFO_	_AXES_IN_7	C07	-	
-	Axis ass	ignment for transformation 7		BYTE	NEW CONF
-					
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Axis assignment at the input point of the 7th transformation. See ${\tt TRAFO_AXES_IN_1}$ for explanation.

24454	TRAFO_GEOAX_ASSIGN_TAB_7			C07	-
-	Assignment of geometry axes to channel axes for transformation 7			BYTE	NEW CONF
-					
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 7. Otherwise the meaning corresponds to TRAFO GEOAX ASSIGN TAB 1.

24456	TRAFO_INCLUDES_TOOL_7			C07	-		
-	Tool handling with active 7th transformation			BOOLEAN	NEW CONF		
-							
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7		

Description:

This machine data states for each channel whether the tool is handled during the 7th transformation or externally.

This machine data is evaluated only with specific transformations. It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition.

If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24460	TRAFO_TYPE_8			C07	F2,TE4,M1
-	Type of transfor	Type of transformation 8 in the channel			NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

Type of transformation available as the eighth in the channel. See MD24100 $MC_{TRAFO_{TYPE_1}$ for explanation.

24462	TRAFO_	AXES_IN_8	C07	F2	
-	Axis ass	ignment for transformation 8		BYTE	NEW CONF
-				<u>.</u>	<u>.</u>
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7

Description:

Axis assignment at the input point of the 8th transformation. See ${\tt TRAFO_AXES_IN_1}$ for explanation.

24464	TRAFO_	GEOAX_ASSIGN_TAB_8	C07	-
-	Assignm transforr	ent of geometry axes to channel axes for nation 8	r BYTE	NEW CONF
-				
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0 0, 0	20	-1/7

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 8. Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

24466	TRAFO_INCLUDES_TOOL_8			C07	-	
-	Tool handling with 8th active transformation			BOOLEAN	NEW CONF	
-						
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7	

This machine data states for each channel whether the tool is handled during the 8th transformation or externally.

This machine data is evaluated only with specific transformations. It is evaluated on the condition that the orientation of the tool with reference to the Basic Coordinate System cannot be changed by the transformation. In standard transformations, only "inclined-axis transformation" fulfills this condition.

If this machine data is set, the Basic Coordinate System (BCS) refers to the tool reference point even with active transformations. Otherwise, it refers to the tool tip (Tool Center Point - TCP).

The method of operation of protection zones and working area limitations varies correspondingly.

24470	TRAFO_TYPE_9			C07	M1
-	Type of transformation 9 in the channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

Type of transformation available as the ninth in the channel. See MD24100 $\$ TRAFO TYPE 1 for explanation.

24472	TRAFO_	AXES_IN_9	C07	-	
-	Axis ass	ignment for transformation 9		BYTE	NEW CONF
-				<u>.</u>	
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7

Description:

Axis assignment at the input point of the 9th transformation. See ${\tt TRAFO_AXES_IN_1}$ for explanation.

24474	TRAFO_GEOAX_ASSIGN_TAB_9			C07	-			
-	Assignment of geometry axes to channel axes for transformation 9			BYTE	NEW CONF			
-		·						
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7			

 $\begin{array}{ll} \textbf{Description:} & \textbf{This MD states the channel axes on which the axes of the cartesian} \\ & \textbf{coordinate system are mapped for active transformation 9.} \\ \end{array}$

24476	TRAFO_INCLUDES_TOOL_9			C07	-		
-	Treatment of tool with active 9th transformation			BOOLEAN	NEW CONF		
-		·					
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7		

Description: Same as TRAFO_INCLUDES_TOOL_1, but for the 9th transformation.

24480	TRAFO_TYPE_10			C07	F2,M1
-	Fransformation 10 in channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description: Same as TRAFO_TYPE_1, but for the tenth available transformation in the channel.

24482	TRAFO_	AXES_IN_10	C07	F2,M1	
-	Axis ass	ignment for transformation 10		BYTE	NEW CONF
-				<u>.</u>	
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

 $\begin{array}{ll} \textbf{Description:} & \text{Axis assignment at the input of the 10th transformation. See} \\ & \text{TRAFO_AXES_IN_1 for explanation.} \\ \end{array}$

24484	TRAFO_GEOAX_ASSIGN_TAB_10			C07	M1
	Assignment of geometry axes to channel axes f. transformation 10			BYTE	NEW CONF
-					
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7

Assignment table of geometry axes with transformation 10 Same as AXCONF_GEOAX_ASSIGN_TAB, but only effective when transformation 10 is active.

24486	TRAFO_INCLUDES_TOOL_10			C07	-
-	Treatment of to	ol with active 10th transf	ormation	BOOLEAN	NEW CONF
-					
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7

 $\textbf{Description:} \qquad \text{Same as TRAFO_INCLUDES_TOOL_1, but for the 10th transformation.}$

24561	TRAFO6_JOINT_OFFSET_2_3_1			C07	F2
mm	Vector of kinematic offset			DOUBLE	NEW CONF
-					
-		0.0, 0.0 , 0.0,0.0, 0.0 , 0.0	-	-	-1/7

Description:

In the case of 6-axis transformations, defines the offset between the 2nd and third rotary axes for the 1st transformation of each channel.

24573	TRAFO5_AXIS3_1			C07	F2
-	Direction of the	Direction of the 3rd rotary axis			NEW CONF
-					
-	3	0.0, 0.0 , 0.0,0.0, 0.0 , 0.0	-	-	-1/7

Description:

Indicates the vector which defines the direction of the third rotary axis in the case of the general 6-axis transformation (TRAFO_TYPE_ \star = 24, 40, 56, 57).

The vector may have any value except zero.

Example:

The same axis is defined with both (0, 1, 0) and (0, 7.21, 0) (in the direction of the 2nd geometry axis, that is as a rule Y). Valid for the first orientation transformation of a channel.

24576	TRAFO6_BASE_ORIENT_NORMAL_1			C07	F2
-	Normal tool ved	lormal tool vector in 6-axis transformation			NEW CONF
-					
-	3	0.0, 1.0 , 0.0,0.0, 1.0 , 0.0	-	-	-1/7

Description:

Indicates a vector that is perpendicular to the tool orientation (TRAFO5_BASE_ORIENTATION_1) in the case of the general 6-axis transformation (TRAFO TYPE * = 24, 40, 56, 57).

If TRAFO6_BASE_ORIENT_NORMAL_1 and TRAFO5_BASE_ORIENTATION_1 are neither orthogonal nor parallel, then the two vectors are orthogonalized by modifying the normal vector. The two vectors must not be parallel.

The vector may have any value other than zero.

Valid for the first orientation transformation of a channel.

24661	TRAFO6_JOINT_OFFSET_2_3_2			C07	-
mm	Vector of kinem	Vector of kinematic offset			NEW CONF
-					
-		0.0, 0.0 , 0.0,0.0, 0.0 , 0.0	-	-	-1/7

Description: As TRAFO6_JOINT_OFFSET_2_3_1 but for the second transformation.

24673	TRAFO5_AXIS3_2			C07	-		
-	Direction of the	Direction of the 3rd rotary axis			NEW CONF		
-							
-	3	0.0, 0.0 , 0.0,0.0, 0.0 , 0.0	-	-	-1/7		

Description: As TRAFO5_AXIS3_1 but for the second orientation transformation of a channel.

24676	TRAFO6_BASI	FRAFO6_BASE_ORIENT_NORMAL_2			-
-	Normal tool ved	lormal tool vector			NEW CONF
-					
-	3	0.0, 1.0 , 0.0,0.0, 1.0 , 0.0	-	-	-1/7

Description:

As TRAFO6_BASE_ORIENT_NORMAL_1 but for the second orientation transformation

24700	TRAANG	G_ANGLE_1	C07	M1
degrees	Angle be	tween Cartesian axis and real (inclined) axis	s DOUBLE	NEW CONF
-				
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	-1/7
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	-1/7
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	-1/7

Indicates for the first agreed TRAANG transformation of the channel the angle of the inclined axis in degrees between the 1st machine axis and the 1st basic axis while TRAANG is active. The angle is measured positively clockwise.

Related to:

MD24750 \$MC TRAANG ANGLE 2

24710	TRAANO	G_BASE_TOOL_1	C07	M1
mm	Vector o	f base tool for 1st TRAANG transformation	DOUBLE	NEW CONF
-				•
802d-cu3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-ng2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-ng3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-tm1	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7
802d-tm2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7
802d-tm3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7

Description:

Indicates a basic offset of the tools zero for the 1st TRAANG transformation. The offset is referenced to the geometry axes valid when TRAANG is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool.

The index i takes the values 0, 1, 2 for the 1st to 3rd geometry axes.

Related to:

MD24760 \$MC TRAANG BASE TOOL 2

24720	TRAANG	G_PARALLEL_VELO_RES_1		C07	M1
-	Velocity	margin for 1st TRAANG transfo	ormation	DOUBLE	NEW CONF
-					
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7

Description:

Indicates the axis velocity reserve for jog, positioning and oscillating movements for each channel for the first TRAANG transformation which is held ready on the parallel axis (see MD2.... \$MC_TRAFO_AXES_IN_...[1]) for the compensating movement.

Velocity reserve to be provided for jog, positioning and oscillating movements on the parallel axis to handle the compensating movement as a consequence of the inclined axis.

0.0 means that the control or the transformation itself determines the reserve according to the angle of the inclined axis and the velocity capacity of the inclined and parallel axes. - The criterion for this is that the same velocity limit has to be maintained in the direction of the parallel axis and the (virtual) axis at right-angles to it.

>0.0 means that a fixed reserve has been set (MD24720 $MC_TRAANG_PARALLEL_VELO_RES_1 * MD32000 <math display="inline">MA_MAX_AX_VELO$ of the parallel axis). The velocity capacity in the virtual axis is determined by this. The lower MD24720

 $\Mathered SMC_TRAANG_PARALLEL_VELO_RES_1$ has been set, the lower it is Related to:

MD24771 \$MC_TRAANG_PARALLEL_ACCEL_RES_2

24721	TRAANG	TRAANG_PARALLEL_ACCEL_RES_1			M1
-	Accelera transf.	tion margin of parallel axis for	DOUBLE	NEW CONF	
-					
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7

Indicates the acceleration margin for jog, positioning and oscillating movements for each channel for the first TRAANG transformation which is held ready on the parallel axis (see MD2.... \$MC_TRAFO_AXES_IN_...[1]) for the compensating movement. Related to:

MD24720 \$MC_TRAANG_PARALLEL_VELO_RES_1

24750	TRAANO	G_ANGLE_2	C07	M1
degrees	Angle be	tween Cartesian axis and real (inclined) axi	s DOUBLE	NEW CONF
-				
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	-1/7
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	-1/7
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	-1/7

Description:

Indicates for the second agreed TRAANG transformation of the channel the angle of the inclined axis in degrees between the 1st machine axis and the 1st basic axis while TRAANG is active. The angle is measured positively clockwise.

Related to:

MD24700 \$MC_TRAANG_ANGLE_1

24760	TRAANO	TRAANG_BASE_TOOL_2		M1
mm	Vector o	f base tool for 2nd TRAANG transformation	n DOUBLE	NEW CONF
-				
802d-cu3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-ng2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-ng3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-tm1	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7
802d-tm2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7
802d-tm3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7

Description:

Indicates a basic offset of the tools zero for the 2nd TRAANG transformation. The offset is referenced to the geometry axes valid when TRAANG is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool.

The index i takes the values 0, 1, 2 for the 1st to 3rd geometry axes.

Related to:

MD24710 \$MC_TRAANG_BASE_TOOL_1

24770	TRAANG	TRAANG_PARALLEL_VELO_RES_2			M1
-	Velocity	margin for 2nd TRAANG transf	formation	DOUBLE	NEW CONF
-					
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7

Description:

Indicates the axis velocity reserve for jog, positioning and oscillating movements for each channel for the second TRAANG transformation which is held ready on the parallel axis (see MD2.... \$MC_TRAFO_AXES_IN_...[1]) for the compensating movement. Related to:

MD24771 \$MC TRAANG PARALLEL ACCEL RES 2

24771	TRAANG	TRAANG_PARALLEL_ACCEL_RES_2			M1
-	Acceler. transforr	margin of parallel axis for the 2 n.	2nd TRAANG	DOUBLE	NEW CONF
-					
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	2/2
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	0.0	1.0	-1/7

Indicates the axis acceleration margin for jog, positioning and oscillating movements which is held ready on the parallel axis (see MD2.... \$MC_TRAFO_AXES_IN_...[1]) for the compensatory movement; MD setting applies to the second TRAANG transformation for each channel.

Related to:

\$MC_TRAANG_PARALLEL_RES_1

24800	TRACYL	_ROT_AX_OFFSET_1	C07	M1,K2
degrees	Offset of	rotary axis for the 1st TRACYL transformation	ion DOUBLE	NEW CONF
-				
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	-1/7
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	-1/7
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	0/0
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-	2/2

Description:

Indicates the offset of the rotary axis for the first agreed TRA-CYL transformation in degrees in relation to the neutral position while TRACYL is active.

Related to:

MD24850 \$MC_TRACYL_ROT_AX_OFFSET_2

24805	TRACYI	TRACYL_ROT_AX_FRAME_1			M1
-	Rotary a	xis offset TRACYL 1		BYTE	NEW CONF
-					<u>.</u>
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	-1/7
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	-1/7
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2

Description:

- 0: axial rotary axis offset is not considered.
- 1: axial rotary axis offset is considered.
- 2: axial rotary axis offset is considered until SZS.

SZS frames include transformed axial rotary axis offsets.

24808	TRACYL_DEFAULT_MODE_1			C07	M1
-	TRACYL	_ mode selection		BYTE	NEW CONF
-				•	
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	-1/7
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	-1/7
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2

Description:

Default setting of TRACYL type 514:

- 0: without groove side offset (i.e. TRACYL type 514 equals 512)
- 1: with groove side offset (i.e. TRACYL type 514 equals 513) MD2.... \$MC_TRAFO_TYPE_... = 514 can be used to decide, via the selection parameters, whether calculation is made with or without groove side offset. The parameter defines the variable to be selected if no selection is made in the call parameters. If MD24808 \$MC_TRACYL_DEFAULT_MODE_1 = 1, it is sufficient to program TRACYL(30) in the part program instead of TRACYL(30,1,1).

24810	TRACYL_	ROT_SIGN_IS_PLUS_1	C07	M1
-	Sign of rot	ary axis for 1st TRACYL transformat	ion BOOLEAN	NEW CONF
-				
802d-cu3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	2/2
802d-ng2	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	-1/7
802d-ng3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	-1/7
802d-tm1	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	0/0
802d-tm2	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	2/2
802d-tm3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	2/2

Indicates the sign with which the rotary axis is taken into account in the TRACYL transformation for the first agreed TRACYL transformation.

Related to:

MD24860 \$MC_TRACYL_ROT_SIGN_IS_PLUS_2

24820	TRACYL	_BASE_TOOL_1	C07	M1
mm	Vector of	f base tool for 1st TRACYL transformati	ion DOUBLE	NEW CONF
-				
802d-cu3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-ng2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7
802d-ng3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7
802d-tm1	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	0/0
802d-tm2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-tm3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2

Description:

Indicates a basic offset of the tools zero for the 1st TRACYL transformation. The offset is referenced to the geometry axes valid when TRACYL is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool.

The index i takes the values 0, 1, 2 for the 1st to 3rd geometry axes.

Related to:

MD24870 \$MC_TRACYL_BASE_TOOL_2

24850	TRACYL	TRACYL_ROT_AX_OFFSET_2			M1
degrees	Offset of	rotary axis for the 2nd TRACYL transf	ormation DC	OUBLE	NEW CONF
-					
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-		2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-		-1/7
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-		-1/7
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-		0/0
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-		2/2
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, - 0.0,0.0,0.0	-		2/2

Description:

Indicates the offset of the rotary axis in degrees in relation to the neutral position for the 2nd agreed TRACYL transformation for each channel.

MD irrelevant:

If no TRACYL is active

Related to:

MD24800 \$MC_TRACYL_ROT_AX_OFFSET_1

24855	TRACYL_ROT_AX_FRAME_2			C07	M1,K2
-	Rotary a	axis offset TRACYL 2		BYTE	NEW CONF
-				<u> </u>	
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	-1/7
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	-1/7
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2

Description:

- 0: axial rotary axis offset is not considered.
- 1: axial rotary axis offset is considered.
- 2: axial rotary axis offset is considered until SZS.

SZS frames include transformed axial rotary axis offsets.

24858	TRACYL	TRACYL_DEFAULT_MODE_2		C07	M1
-	TRACYL	mode selection		BYTE	NEW CONF
-				•	
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	-1/7
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	-1/7
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2

Default setting of TRACYL type 514 for the 2nd TRACYL:

0: without groove side offset (i.e. TRACYL type 514 - equals 512)

1: with groove side offset (i.e. TRACYL type 514 - equals 513) MD2.... \$MC_TRAFO_TYPE_... = 514 can be used to decide, via the selection parameters, whether calculation is made with or without groove side offset. The parameter defines the variable to be selected if no selection is made in the call parameters. If MD24858 \$MC_TRACYL_DEFAULT_MODE_2 = 1, it is sufficient to program TRACYL(30,2) in the part program instead of TRACYL(30,2,1).

24860	TRACYL	_ROT_SIGN_IS_PLUS_2	C07	-
-	Sign of ro	otary axis for 2nd TRACYL transform	nation BOOLEAN	NEW CONF
-				1
802d-cu3	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	2/2
802d-ng2	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	-1/7
802d-ng3	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	-1/7
802d-tm1	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	0/0
802d-tm2	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	2/2
802d-tm3	-	TRUE,TRUE,TRUE,TR RUE,TRUE,TRUE,TR UE	-	2/2

Description:

Indicates the sign with which the rotary axis is taken into account in the TRACYL transformation for the 2nd agreed TRACYL transformation for each channel.

Related to:

MD24810 \$MC_TRACYL_ROT_SIGN_IS_PLUS_1

24870	TRACYL	_BASE_TOOL_2	C07	M1
mm	Vector of	base tool for 2nd TRACYL transform	nation DOUBLE	NEW CONF
-				•
802d-cu3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-ng2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7
802d-ng3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	-1/7
802d-tm1	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	0/0
802d-tm2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-tm3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2

Description:

Indicates a basic offset of the tools zero for the 2ndTRACYL transformation. The offset is referenced to the geometry axes valid when TRACYL is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool.

The index i takes the values 0, 1, 2 for the 1st to 3rd geometry axes.

Related to:

MD24820 \$MC_TRACYL_BASE_TOOL_1

24900	TRANS	TRANSMIT_ROT_AX_OFFSET_1			M1
degrees	Offset of	rotary axis for the 1st TRANSN	MIT transformation	DOUBLE	NEW CONF
-				•	·
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	0/0
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	0/0
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	0/0
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	2/2
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	2/2

Description:

Indicates the offset of the rotary axis for the first agreed ${\tt TRANSMIT}$ transformation in degrees in relation to the neutral position while ${\tt TRANSMIT}$ is active.

Related to:

MD24950 \$MC_TRANSMIT_ROT_AX_OFFSET_2

24905	TRANSI	TRANSMIT_ROT_AX_FRAME_1		C07	M1,K2
-	Rotary a	xis offset TRANSMIT 1		BYTE	NEW CONF
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2

- 0: axial rotary axis offset is not considered.
- 1: axial rotary axis offset is considered.
- 2: axial rotary axis offset is considered until SZS.

 ${\tt SZS}$ frames include transformed rotations around the rotary axis.

24910	TRANSM	TRANSMIT_ROT_SIGN_IS_PLUS_1		M1
-	Sign of ro	otary axis for 1st TRANSMIT transforma	ition BOOLEAN	NEW CONF
-				
802d-cu3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	2/2
802d-ng2	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	0/0
802d-ng3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	0/0
802d-tm1	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	0/0
802d-tm2	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	2/2
802d-tm3	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	2/2

Description:

Indicates the sign with which the rotary axis is taken into account in the TRANSMIT transformation for the first agreed TRANS-MIT transformation for each channel.

Related to:

MD24960 \$MC_TRANSMIT_ROT_SIGN_IS_PLUS_2

24911	TRANSI	MIT_POLE_SIDE_FIX_1		C07	M1
-	Restr. w	working range before/behind the pole, 1.		BYTE	NEW CONF
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2

Description:

Restriction of the working area in front of/behind pole or no restriction, i.e. traversal through the pole.

The assigned values have the following meanings:

1: Working area of linear axis for positions >=0,

(if tool length compensation parallel to linear axis equals 0)

2: Working area of linear axis for positions <=0,

(if tool length compensation parallel to linear axis equals 0)

0: No restriction of working area. Traversal through pole.

24920	TRANSI	TRANSMIT_BASE_TOOL_1		M1
mm	Vector of	f base tool for 1st TRANSMIT transformation	n DOUBLE	NEW CONF
-				·
802d-cu3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-ng2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	0/0
802d-ng3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	0/0
802d-tm1	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	0/0
802d-tm2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2
802d-tm3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2

Description:

Indicates a basic offset of the tools zero for the 1st TRANSMIT transformation. The offset is referenced to the geometry axes valid when TRANSMIT is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool.

The index i takes the values 0, 1, 2 for the 1st to 3rd geometry axes.

Related to:

MD24970 \$MC_TRANSMIT_BASE_TOOL_2

24950	TRANSI	TRANSMIT_ROT_AX_OFFSET_2			M1
degrees	Offset of	rotary axis for the 2nd TRANS	MIT transformation	DOUBLE	NEW CONF
-					
802d-cu3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	2/2
802d-ng2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	0/0
802d-ng3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	0/0
802d-tm1	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	0/0
802d-tm2	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	2/2
802d-tm3	-	0.0,0.0,0.0,0.0,0.0,0.0, 0.0,0.0,0.0	-	-	2/2

Indicates the offset of the rotary axis for the second agreed TRANSMIT transformation in degrees in relation to the neutral position while TRANSMIT is active.

Related to:

MD24900 \$MC_TRANSMIT_ROT_AX_OFFSET_1

24955	TRANSI	MIT_ROT_AX_FRAME_2		C07	M1
-	Rotary a	xis offset TRANSMIT 2		BYTE	NEW CONF
-				<u>.</u>	<u>.</u>
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	2	2/2

Description:

- 0: axial rotary axis offset is not considered.
- 1: axial rotary axis offset is considered.
- 2: axial rotary axis offset is considered until SZS.

SZS frames include transformed rotations around the rotary axis.

24960	TRANSMI	TRANSMIT_ROT_SIGN_IS_PLUS_2		C07	M1
-	Sign of rot	tary axis for 2nd TRANSMIT to	ransformation	BOOLEAN	NEW CONF
-				•	
802d-cu3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-ng2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-ng3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-tm1	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	0/0
802d-tm2	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2
802d-tm3	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	2/2

Description:

Indicates the sign with which the rotary axis is taken into account in the TRANSMIT transformation for the second agreed TRANSMIT transformation for each channel.

Related to:

MD24910 \$MC_TRANSMIT_ROT_SIGN_IS_PLUS_1

24961	TRANSI	MIT_POLE_SIDE_FIX_2	C07	M1
-	Restr. of TRANSI	f working range before/behind the p MIT	ole, 2. BYTE	NEW CONF
-			·	
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2	0/0
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2	0/0
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2	2/2

Description:

Restriction of working area in front of/behind pole or no restriction, i.e. traversal through pole.

The assigned values have the following meanings:

- 1: Working area of linear axis for positions >=0,
 - (if tool length compensation parallel to linear axis equals 0)
- 2: Working area of linear axis for positions ≤ 0 ,
 - (if tool length compensation parallel to linear axis equals 0) $\,$
- 0: No restriction of working area. Traversal through pole.

24970	TRANSI	/IIT_BASE_TOOL_2	C07	M1				
mm	Vector of	f base tool for 2nd TRANSMIT transformati	on DOUBLE	NEW CONF				
-								
802d-cu3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2				
802d-ng2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	0/0				
802d-ng3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	0/0				
802d-tm1	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	0/0				
802d-tm2	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2				
802d-tm3	3	0.0, 0.0 , 0.0,0.0, 0.0 , - 0.0	-	2/2				

Indicates a basic offset of the tools zero for the 2nd TRANSMIT transformation. The offset is referenced to the geometry axes valid when TRANSMIT is active. The basic offset is included with and without selection of the tool length compensation. Programmed length corrections have an additive effect with respect to the basic tool.

The index i takes the values 0, 1, 2 for the 1st to 3rd geometry axes.

Related to:

MD24920 \$MC_TRANSMIT_BASE_TOOL_1

24997	TRACON_CHAIN_3			C07	M1
-	Transformation grouping			DWORD	NEW CONF
-					
-		0, 0, 0 ,0,0, 0, 0, 0,0, 0, 0, 0	0	20	-1/7

Description:

Transformation chain of the third concatenated transformation. See ${\tt TRACON_CHAIN_1}$ for documentation.

24998	TRACON_CHAIN_4			C07	M1		
-	Transformation grouping			DWORD	NEW CONF		
-		·					
-		0, 0, 0 ,0,0, 0, 0, 0,0, 0, 0, 0	0	20	-1/7		

Description:

Transformation chain of the fourth concatenated transformation. See TRACON CHAIN 1 for documentation.

25100	TRAFO_	TRAFO_TYPE_11			F2
-	Definitio	Definition of the 11th transformation in the channel			NEW CONF
-				<u>.</u>	<u>.</u>
-	-	0,0,0,0,0,0,0,0,0,0,0 0,0,0,0	,0, -	-	-1/7

Description:

This MD defines for each channel, which transformation is available as 11th transformation in the channel.

Other than that it has the same meaning as TRAFO TYPE 1.

25102	TRAFO_	TRAFO_AXES_IN_11		C07	F2
-	Axis ass	assignment for transformation 11		BYTE	NEW CONF
-					
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Description: Axis assignment at the input of the 11th transformation. See TRAFO_AXES_IN_1 for explanation.

25104	TRAFO_GEOAX_ASSIGN_TAB_11			C07	F2			
-	Assignment of geometry axes to channel axes for transformation 11			BYTE	NEW CONF			
-								
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7			

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 11.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25106	TRAFO_	NCLUDES_TOOL_11	C07	M1,F2
-	Tool hand	dling with 11th active transformation	BOOLEAN	NEW CONF
-				
-	-	TRUE,TRUE,TRUE,T - RUE,TRUE,TRUE,TR UE	-	-1/7

Description:

This MD defines for each channel, whether the tool is treated in the 11th transformation or externally. $\,$

Other than that it has the same meaning as ${\tt TRAFO_INCLUDES_TOOL_1}$.

25110	TRAFO_TYPE_12			C07	F2
-	Definition of transformation 12 in channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

This MD defines for each channel, which transformation is available as 12th transformation in the channel.

25112	TRAFO_	AXES_IN_12	C07	F2	
-	Axis ass	Axis assignment for transformation 12		BYTE	NEW CONF
-					
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Description: Axis assignment at the input of the 12th transformation. See TRAFO_AXES_IN_1 for explanation.

25114	TRAFO_GEOA	X_ASSIGN_TAB_12	C07	F2				
-	Assignment of geometry axes to channel axes for transformation 12			BYTE	NEW CONF			
-								
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7			

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 12.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25116	TRAFO_INC	TRAFO_INCLUDES_TOOL_12			M1,F2
-	Tool handling	Tool handling with 12th active transformation			NEW CONF
-					
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7

Description:

Other than that it has the same meaning as ${\tt TRAFO_INCLUDES_TOOL_1}$.

25120	TRAFO_TYPE_13			C07	F2
-	Definition of transformation 13 in channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

This MD defines for each channel, which transformation is available as 13th transformation in the channel.

25122	TRAFO_	AXES_IN_13	C07	F2				
-	Axis ass	ignment for transformation 13	BYTE	NEW CONF				
-								
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			

Description: Axis assignment at the input of the 13th transformation. See TRAFO_AXES_IN_1 for explanation.

25124	TRAFO_GEOA	X_ASSIGN_TAB_13	C07	F2				
-	Assignment of geometry axes to channel axes for transformation 13			BYTE	NEW CONF			
-		<u> </u>						
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7			

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 13.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25126	TRAFO_INCLU	TRAFO_INCLUDES_TOOL_13			M1,F2		
-	Tool handling v	Tool handling with 13th active transformation			NEW CONF		
-							
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7		

Description:

This MD defines for each channel, whether the tool is treated in the 13th transformation or externally.

Other than that it has the same meaning as ${\tt TRAFO_INCLUDES_TOOL_1}$.

25130	TRAFO_TYPE_14			C07	F2		
-	Definition of transformation 14 in channel			DWORD	NEW CONF		
-							
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7		

Description:

This MD defines for each channel, which transformation is available as 14th transformation in the channel.

25132	TRAFO_	AXES_IN_14	C07	F2	
-	Axis ass	ignment for transformation 14	ignment for transformation 14		NEW CONF
-					
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Description: Axis assignment at the input of the 14th transformation. See TRAFO_AXES_IN_1 for explanation.

25134	TRAFO_GEOA	X_ASSIGN_TAB_14	C07	F2				
-	Assignment of geometry axes to channel axes for transformation 14			BYTE	NEW CONF			
-								
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7			

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 14.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25136	TRAFO_INCLUDES_TOOL_14			C07	M1,F2
-	Tool handling with 14th active transformation			BOOLEAN	NEW CONF
-	·				
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7

Description:

This MD defines for each channel, whether the tool is treated in the 14th transformation or externally. $\,$

Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25140	TRAFO_TYPE_15			C07	F2			
-	Definition of transformation 15 in channel			DWORD	NEW CONF			
-		•						
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7			

Description:

This MD defines for each channel, which transformation is available as 15th transformation in the channel.

25142	TRAFO_	AXES_IN_15		C07	F2			
-	Axis ass	Axis assignment for transformation 15		BYTE	NEW CONF			
-								
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7			
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7			

Description: Axis assignment at the input of the 15th transformation. See TRAFO_AXES_IN_1 for explanation.

25144	TRAFO_GEOAX_ASSIGN_TAB_15			C07	F2			
-	Assignment of geometry axes to channel axes for transformation 15			BYTE	NEW CONF			
-								
-	3	0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0			-1/7			

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 15.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25146	TRAFO_INCLU	TRAFO_INCLUDES_TOOL_15			M1,F2		
-	Tool handling v	Tool handling with 15th active transformation			NEW CONF		
-							
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7		

Description:

This MD defines for each channel, whether the tool is treated in the 15th transformation or externally.

Other than that it has the same meaning as ${\tt TRAFO_INCLUDES_TOOL_1}$.

25150	TRAFO_TYPE_16			C07	F2		
-	Definition of transformation 16 in channel			DWORD	NEW CONF		
-		<u> </u>					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7		

Description:

This MD defines for each channel, which transformation is available as 16th transformation in the channel.

25152	TRAFO_	_AXES_IN_16	C07	F2				
-	Axis ass	Axis assignment for transformation 16		BYTE	NEW CONF			
-								
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7			

Description: Axis assignment at the input of the 16th transformation. See TRAFO_AXES_IN_1 for explanation.

25154	TRAFO_GEOAX_ASSIGN_TAB_16			C07	F2			
-	Assignment of geometry axes to channel axes for transformation 16			BYTE	NEW CONF			
-								
-	3	0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0			-1/7			

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 16. Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25156	TRAFO_INCLUDES_TOOL_16			C07	M1,F2	
-	Tool handling with 16th active transformation			BOOLEAN	NEW CONF	
-						
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7	

Description:

This MD defines for each channel, whether the tool is treated in the 16th transformation or externally.

Other than that it has the same meaning as ${\tt TRAFO_INCLUDES_TOOL_1}.$

25160	TRAFO_TYPE_17			C07	F2
-	Definition of transformation 17 in channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

This MD defines for each channel, which transformation is available as 17th transformation in the channel.

25162	TRAFO_	AXES_IN_17	C07	F2	
-	Axis ass	ignment for transformation 17		BYTE	NEW CONF
-			- I	'	
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Description: Axis assignment at the input of the 17th transformation. See TRAFO_AXES_IN_1 for explanation.

25164	TRAFO_GEOA	X_ASSIGN_TAB_17	C07	F2				
-	Assignment of geometry axes to channel axes for transformation 17			BYTE	NEW CONF			
-								
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7			

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 17.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25166	TRAFO_INCLUDES_TOOL_17			C07	M1,F2			
-	Tool handling with 17th active transformation			BOOLEAN	NEW CONF			
-								
-		TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7			

Description:

This MD defines for each channel, whether the tool is treated in the 17th transformation or externally.

Other than that it has the same meaning as ${\tt TRAFO_INCLUDES_TOOL_1}$.

25170	TRAFO_TYPE_18			C07	F2			
-	Definition of transformation 18 in channel			DWORD	NEW CONF			
-		·						
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7			

Description:

This MD defines for each channel, which transformation is available as 18th transformation in the channel.

25172	TRAFO_	AXES_IN_18	C07	F2	
-	Axis ass	Axis assignment for transformation 18		BYTE	NEW CONF
-					
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Description: Axis assignment at the input of the 18th transformation. See TRAFO_AXES_IN_1 for explanation.

25174	TRAFO_GEOAX_ASSIGN_TAB_18			C07	F2			
-	Assignment of geometry axes to channel axes for transformation 18			BYTE	NEW CONF			
-								
-	3	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0			-1/7			

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 18.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25176	TRAFO_INCLUDES_TOOL_18			C07	M1,F2			
-	Tool handling with 18th active transformation			BOOLEAN	NEW CONF			
-		·						
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7			

Description:

This MD defines for each channel, whether the tool is treated in the 18th transformation or externally.

Other than that it has the same meaning as ${\tt TRAFO_INCLUDES_TOOL_1}$.

25180	TRAFO_TYPE_19			C07	F2
-	Definition of transformation 19 in channel			DWORD	NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

This MD defines for each channel, which transformation is available as 19th transformation in the channel.

25182	TRAFO_	AXES_IN_19	•	C07	F2
-	Axis ass	ignment for transformation 19	BYTE	NEW CONF	
-					
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Description: Axis assignment at the input of the 19th transformation. See TRAFO_AXES_IN_1 for explanation.

25184	TRAFO_GEOAX_ASSIGN_TAB_19			C07	F2
-	Assignment of geometry axes to channel axes for transformation 19			BYTE	NEW CONF
-					
-	3	0, 0, 0,0, 0, 0,0, 0, 0,0, 0, 0	0	20	-1/7

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 19.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25186	TRAFO_INCLUDES_TOOL_19			C07	M1,F2		
-	Tool handling with 19th active transformation			BOOLEAN	NEW CONF		
-		·					
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7		

Description:

This MD defines for each channel, whether the tool is treated in the 19th transformation or externally.

Other than that it has the same meaning as TRAFO_INCLUDES_TOOL_1.

25190	TRAFO_TYPE_20			C07	F2
-	Definition of tra	Definition of transformation 20 in channel			NEW CONF
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	-1/7

Description:

This MD defines for each channel, which transformation is available as 20th transformation in the channel.

25192	TRAFO_	AXES_IN_20	C07	F2	
-	Axis ass	ignment for transformation 20		BYTE	NEW CONF
-					
802d-cu3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-ng3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7
802d-tm1	4	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm2	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7
802d-tm3	6	1, 2, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	0	20	-1/7

Description: Axis assignment at the input of the 20th transformation. See TRAFO_AXES_IN_1 for explanation.

25194	TRAFO_GEOAX_ASSIGN_TAB_20			C07	F2
-	Assignment of geometry axes to channel axes for transformation 20			BYTE	NEW CONF
-					
-	3	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0	20	-1/7

Description:

This MD states the channel axes on which the axes of the cartesian coordinate system are mapped for active transformation 20.

Otherwise the meaning corresponds to TRAFO_GEOAX_ASSIGN_TAB_1.

25196	TRAFO_INCLU	TRAFO_INCLUDES_TOOL_20			M1,F2			
-	Tool handling v	Tool handling with 20th active transformation			NEW CONF			
-		<u>'</u>						
-	-	TRUE,TRUE,TRUE,T RUE,TRUE,TRUE,TR UE	-	-	-1/7			

Description:

Other than that it has the same meaning as ${\tt TRAFO_INCLUDES_TOOL_1}$.

25261	TRAFO6_JOINT_OFFSET_2_3_3			C07	-			
mm	Vector of kinem	/ector of kinematic offset			NEW CONF			
-		·						
-	3	0.0, 0.0 , 0.0,0.0, 0.0 , 0.0	-	-	-1/7			

Description:

In the case of 6-axis transformations, defines the offset between the 2nd and third rotary axes for the 3rd transformation of each channel.

25273	TRAFO5_AXIS3_3			C07	-				
-	Direction of the	Direction of the 3rd rotary axis			NEW CONF				
-									
-		0.0, 0.0 , 0.0,0.0, 0.0 , 0.0	-	-	-1/7				

Description:

The MD designates the vector that describes the direction of the third rotary axis with the general 6-axis transformation (TRAFO TYPE \star = 24, 40, 56, 57).

Other than that it has the same meaning as TRAFO5_AXIS3_1.

25276	TRAFO6_BASE_ORIENT_NORMAL_3			C07	-			
-	Normal tool ved	lormal tool vector in 6-axis transformation			NEW CONF			
-								
-		0.0, 1.0 , 0.0,0.0, 1.0 , 0.0	-	-	-1/7			

Description:

Indicates the vector that stands vertically on the tool orientation (TRAFO5_BASE_ORIENTATION_1) in general 6-axis transformation (TRAFO TYPE \star = 24, 40, 56, 57).

Other than that it has the same meaning as ${\tt TRAFO6_BASE_ORIENT_NORMAL_1.}$

25361	TRAFO6_JOIN	T_OFFSET_2_3_4	C07	-					
mm	Vector of kinem	atic offset	DOUBLE	NEW CONF					
-									
-	3	0.0, 0.0 , 0.0,0.0, 0.0 , 0.0	-	-	-1/7				

Description:

In the case of 6-axis transformations, defines the offset between the 2nd and third rotary axes for the 4th transformation of each channel.

25373	TRAFO5_AXIS3_4			C07	-			
-	Direction of the	Direction of the 3rd rotary axis			NEW CONF			
-								
-	3	0.0, 0.0 , 0.0,0.0, 0.0 , 0.0	-	-	-1/7			

Description:

The MD designates the vector that describes the direction of the third rotary axis with the general 6-axis transformation (TRAFO_TYPE_* = 24, 40, 56, 57).

Other than that it has the same meaning as TRAFO5 AXIS3 1.

25376	TRAFO6_BASE_ORIENT_NORMAL_4			C07	-
-	Normal tool vector in 6-axis transformation			DOUBLE	NEW CONF
-					
-	3	0.0, 1.0 , 0.0,0.0, 1.0 , 0.0	-	-	-1/7

Description:

Indicates the vector that stands vertically on the tool orientation (TRAFO5_BASE_ORIENTATION_1) in general 6-axis transformation (TRAFO TYPE_* = 24, 40, 56, 57).

Other than that it has the same meaning as ${\tt TRAFO6_BASE_ORIENT_NORMAL_1.}$

25495	TRACON_CHAIN_5			C07	M1
-	Transformation grouping			DWORD	NEW CONF
-					
-		0, 0, 0 ,0,0, 0, 0, 0,0, 0, 0, 0	0	20	-1/7

Description:

Transformation chain of the 5th concatenated transformation. See TRACON_CHAIN_1 for documentation.

25496	TRACON_CHAIN_6			C07	M1
-	Fransformation grouping			DWORD	NEW CONF
-					
-		0, 0, 0 ,0,0, 0, 0, 0,0, 0, 0, 0	0	20	-1/7

Description:

Transformation chain of the 6th concatenated transformation. See ${\tt TRACON_CHAIN_1}$ for documentation.

25497	TRACON_CHAIN_7			C07	M1
-	Transformation grouping			DWORD	NEW CONF
-					
-		0, 0, 0 ,0,0, 0, 0, 0,0, 0, 0, 0	0	20	-1/7

Description:

Transformation chain of the 7th concatenated transformation. See ${\tt TRACON_CHAIN_1}$ for documentation.

25498	TRACON_CHAIN_8			C07	M1
-	Transformation grouping			DWORD	NEW CONF
-					
-		0, 0, 0 ,0,0, 0, 0, 0,0, 0, 0, 0	0	20	-1/7

Description:

Transformation chain of the 8th concatenated transformation. See ${\tt TRACON_CHAIN_1}$ for documentation.

2.3.5 Punching and nibbling

26000	PUNCH	NIB_ASSIGN_FASTIN		C01, C09	N4
-	Hardwar	e assignment for input byte for stro	oke control	DWORD	PowerOn
-					
802d-cu3	-	0,		-	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	2/2
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	2/2
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	-1/2
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	-1/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	-1/2

Description:

Bit 0-7: Number of the input byte used

Bit 8-15: Free

Bit 16-23: Inversion mask for writing the hardware byte

Bit 24-31: Free

This data defines which input byte is to be used for the signal "travel active".

= 1:

On-board inputs (4 high-speed NCK outputs) are used.

2, 3, 4, 5

The external digital NCK inputs are used 128-129:

Comparator byte (results from high-speed analog inputs or VDI specification)

Related to:

MD26006 \$MC NIBBLE PUNCH INMASK[n]

References:

/FB/, A4, Digital and Analog NCK I/Os

The signal is high active as default from software 3.2. That is there is wire break monitoring. If the signal is low active then, e.g., the MD must be set to the value MD ="H 0001 0001" for the outboard inputs.

26002	PUNCHI	NIB_ASSIGN_FASTOUT		C01, C09	N4			
-	Hardwar	e assignment for output byte for stro	ke control	DWORD	PowerOn			
-								
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	2/2			
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	2/2			
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	2/2			
802d-tm1	-	0,		-	-1/2			
802d-tm2	-	0,		-	-1/2			
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	-1/2			

This data defines which output byte is to be used for the stroke

Number of the high-speed output byte for "punching and nibbling"

Bit 0-7: Number of the output byte used

Bit 8-15: Free

Bit 16-23: Inversion mask for writing the hardware byte

Bit 24-31: Free Possible inputs:

840D on-board outputs (4 high-speed + 4 bits via VDI specification)

2, 3, 4, 5

External digital outputs (high-speed NCK O/I or VDI specification)

Related to:

MD26004 \$MC NIBBLE PUNCH OUTMASK[n]

References:

/FB/, A4, Digital and Analog NCK I/Os

26004	NIBBLE	_PUNCH_OUTMASK	C01, C0	9 N4
-	Mask for	fast output bits	BYTE	PowerOn
-			•	
802d-cu3	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	2/2
802d-ng2	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	2/2
802d-ng3	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	2/2
802d-tm1	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	-1/2
802d-tm2	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	-1/2
802d-tm3	8	1, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0	-	-1/2

Description:

Mask for high-speed output bits for punching and nibbling.

Contains the bit for stroke release

Bytes 2-8: Currently free

Machine Data 06/2009

Channel-specific machine data

```
Special cases:
   Only NIBBLE_PUNCH_OUTMASK[0] is significant.
   This is used to define the output bit for the signal "Release stroke".

Related to:
   MD26002 $MC_PUNCHNIB_ASSIGN_FASTOUT
```

26006	NIBBLE_	_PUNCH_INMASK	C01, C09	N4
-	Mask for	fast input bits	BYTE	PowerOn
-				
802d-cu3	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	2/2
802d-ng2	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	2/2
802d-ng3	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	2/2
802d-tm1	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	-1/2
802d-tm2	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	-1/2
802d-tm3	8	1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	-	-1/2

Description:

This data can define up to $8\ \mathrm{byte}\ \mathrm{masks}$ for the output of the high-speed bits.

The standard assignment of this data is as follows:

NIBBLE PUNCH INMASK[0]=1:

 2° = first bit for the first punch interface (SPIF1)

NIBBLE_PUNCH_INMASK[1]=4:

Second punch interface (SPIF2), not available as standard

NIBBLE_PUNCH_INMASK[2]=0

. . .

NIBBLE_PUNCH_INMASK[7]=0

Note:

-

Special cases:

Only NIBBLE_PUNCH_INMASK[0] is relevant. This is used to define the input bit for the signal "Stroke active".

Related to:

MD26000 \$MC PUNCHNIB ASSIGN FASTIN

26008	NIBBLE_	NIBBLE_PUNCH_CODE		H2,K1
-	Definition	n of M functions	DWORD	PowerOn
-			<u>.</u>	
802d-cu3	8	0,23,22, 25, 26, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0	-	2/2
802d-ng2	8	0,23,22, 25, 26, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0	-	2/2
802d-ng3	8	0,23,22, 25, 26, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0	-	2/2
802d-tm1	8	0,23,22, 25, 26, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0	-	-1/2
802d-tm2	8	0,23,22, 25, 26, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0	-	-1/2
802d-tm3	8	0,23,22, 25, 26, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0	-	-1/2

This data defines the special M functions for punching and nibbling.

		Standard value	e Example
NIBBLE_PUNCH_CODE[0] with M20	= 0	20	End punching, nibbling
NIBBLE_PUNCH_CODE[1] with M23	= 23	23	End punching, nibbling
NIBBLE_PUNCH_CODE[2]	= 22	22	Start nibbling
NIBBLE_PUNCH_CODE[3]	= 25	25	Start punching
NIBBLE_PUNCH_CODE[4]	= 26	26	Activate dwell time
NIBBLE_PUNCH_CODE[5]	=122	122	Start nibbling with pre-
tension,			
			stroke control at servo
level			
<pre>NIBBLE_PUNCH_CODE[6] tension,</pre>	=125	125	Start punching with pre-
			stroke control at servo
level			
NIBBLE_PUNCH_CODE[7]	= 0	0	Not used (in preparation)

Special cases:

If MD26012 \$MC_PUNCHNIB_ACTIVATION = 2 (M functions are interpreted directly by the software), then MD26008 \$MC_NIBBLE_PUNCH_CODE[0] = 20 has to be set. Related to:

MD26012 \$MC_PUNCHNIB_ACTIVATION

26010	PUNCH	NIB_AXIS_MASK	C09	N4				
-	Definitio	n of punching and nibbling axes	DWORD	PowerOn				
-								
802d-cu3	-	7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	2/2				
802d-ng2	-	7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	2/2				
802d-ng3	-	7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	2/2				
802d-tm1	-	7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	-1/2				
802d-tm2	-	7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	-1/2				
802d-tm3	-	7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	-1/2				

Description:

Defines the axes involved in punching and nibbling. That is all the axes defined here must be at rest during punching and nibbling.

Related to:

MD26016 \$MC_PUNCH_PARTITION_TYPE

26012	PUNCH	NIB_ACTIVATION	C09	K1
-	Activation	n of punching and nibbling functions	DWORD	PowerOn
-			·	
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	2/2
802d-ng3	-	0,	-	2/2
802d-tm1	-	0,	-	-1/2
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-1/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-1/2

Description:

This MD defines the ways in which punching and nibbling functions can be activated:

PUNCHNIB ACTIVATION = 0

None of the punching or nibbling functions can be activated. The automatic path segmentation is the only exception – if it is enabled via MD26014 $MC_PUNCH_PATH_SPLITTING$.

 $PUNCHNIB_ACTIVATION = 1$

The functions are activated via language commands. If M functions are to be used, then they must be programmed using macros.

PUNCHNIB ACTIVATION = 2

The M functions are interpreted directly by the software. Language commands can still be used.

Note:

This option is intended only as a temporary solution.

Related to:

MD26014 \$MC_PUNCH_PATH_SPLITTING MD26008 \$MC_NIBBLE_PUNCH_CODE[n]

26014	PUNCH	_PATH_SPLITTING	C09	N4			
-	Activatio	n of automatic path segmentation	DWORD	PowerOn			
-							
802d-cu3	-	2,2,2,2,2,2,2,2,2,2,2, - 2,2,2,2	-	2/2			
802d-ng2	-	2,2,2,2,2,2,2,2,2,2, - 2,2,2,2	-	2/2			
802d-ng3	-	2,2,2,2,2,2,2,2,2,2, - 2,2,2,2	-	2/2			
802d-tm1	-	2,2,2,2,2,2,2,2,2,2, - 2,2,2,2	-	-1/2			
802d-tm2	-	2,2,2,2,2,2,2,2,2,2, - 2,2,2,2	-	-1/2			
802d-tm3	-	2,2,2,2,2,2,2,2,2,2,2, - 2,2,2,2	-	-1/2			

Activation data for automatic path segmentation.

Value Significance

-

0 =

Automatic path segmentation only active with punching and nib-bling.

1 =

Automatic path segmentation can also be activated without punching and nibbling functions;

that is, it is programmable and be used NC internally

2 =

Automatic path segmentation can only be used NC internally; that is it cannot be programmed.

26016	PUNCH	_PARTITION_TYPE	C09	N4
-	Behavio segmen	r of individual axes with automatic path tation	DWORD	PowerOn
-				
802d-cu3	-	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	2/2
802d-ng2	-	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	2/2
802d-ng3	-	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	2/2
802d-tm1	-	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	-1/2
802d-tm2	-	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	-1/2
802d-tm3	-	1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0	-	-1/2

Description:

This machine data defines how single axes that are also nibbling axes within the meaning of MD26010 $MC_PUNCHNIB_AXIS_MASK$ are to behave.

In this case, there are the following options for the behavior of the single axes during automatic path segmentation and stroke control:

PUNCH PARTITION TYPE = 0

No special behavior during automatic path segmentation. If the single axes are programmed together with path axes in one block, then their total traversing path is split up corresponding to the path axes. That is the pure geometric relationship between the single axes and path axes is identical to the undivided motion. If the single axes are programmed without the path axes but with SPN=<value>, then the path is divided according to the programmed SPN value.

PUNCH_PARTITION_TYPE = 1

In this case, the path of the single axes, if they are programmed together with path axes, are generally traversed in the first section (that is independently of the currently active type of interpolation).

PUNCH PARTITION TYPE = 2

In this case, the single axes behave with linear interpolation in the same way as with $PUNCH_PARTITION_TYPE = 1$, and with all other types of interpolation in the same way as with

 $PUNCH_PARTITION_TYPE = 0.$

Related to:

MD26010 \$MC_PUNCHNIB_AXIS_MASK

26018	NIBBLE	NIBBLE_PRE_START_TIME		N4
s	Delay tir	me for nibbling/punching with G603	DOUBLE	PowerOn
-				
802d-cu3	-	0.,0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	2/2
802d-ng2	-	0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	2/2
802d-ng3	-	0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	2/2
802d-tm1	-	0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	-1/2
802d-tm2	-	0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	-1/2
802d-tm3	-	0.,0.,0.,0.,0.,0.,0.,0., - 0.,0.,0.,0	-	-1/2

To minimize any dead times due to the reaction time of the punching unit, it is possible to release the stroke before reaching the in-position window of the axes. The reference time for this is the interpolation end. Since there is normally a delay of some interpolation cycles after reaching the interpolation end (depending on the machine dynamics) until the axes actually come into position, the prestart time is a delay time with respect to reaching the interpolation end.

The function is therefore coupled to G603 (block change at the end of interpolation).

The time can be set via the machine data NIBBLE_PRE_START_TIME). Example:

With an interpolation cycle of 5 ms, a stroke shall be released 2 cycles after reaching the interpolation end. In this case, the value 0.010 s must be selected for NIBBLE_PRE_START_TIME. If a value that is not integrally divisible by the set interpolation time is selected, then the stroke is initiated in the interpolation cycle following the set time.

26020	NIBBLE	NIBBLE_SIGNAL_CHECK			N4
-	Alarm o	n chattering punching signal		DWORD	PowerOn
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	2/2
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	2/2
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	-1/2
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	-1/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		-	-1/2

Description:

When stroke active signal is set, for example by punch overshoots between the strokes, then the interpolation is stopped. It is also possible to generate the message "unclean punch signal" as a function of machine data NIBBLE_SIGNAL_CHECK.

- 0: No error message when the punching signal is irregular
- 1: Alarm, when the punching signal is irregular between strokes

27100	ABSBLC	OCK_FUNCTION_MASK		N01	K1,P1		
-	Paramet	erize the block display with abs	solute values	DWORD	PowerOn		
-							
802d-cu3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	2/2		
802d-ng2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	2/2		
802d-ng3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	2/2		
802d-tm1	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	0/0		
802d-tm2	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	2/2		
802d-tm3	-	0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x1	2/2		

Description:

Parameterization of the "block display with absolute values" function

Bit 0 = 1 :

The position values of the transverse axis are always displayed as diameter values.

27200	MMC_INFO_NO_UNIT			EXP, -	-	
-	HMI info (without physical unit)			DOUBLE	PowerOn	
-		·				
-		45., 2., 0., 1., 0., -1., 0., 1., 100., 1., 1., 0., 0., 0., 0	-	-	-1/2	

Description: -

27201	MMC_INF	O_NO_UNIT_STATUS	EXP, -	-
-	HMI statu	s info (without physical unit)	BYTE	PowerOn
-				
-	80	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	-	-1/2
Description:	_			
27202	MMC_INF	FO_POSN_LIN	EXP, -	-
mm		linear positions)	DOUBLE	PowerOn
-				
-	50	0., 0., 1., 1., 0., 0., 100., 0., 0., 1000., 1., 1	-	-1/2
Description:	-			
27203	MMC_INF	FO_POSN_LIN_STATUS	EXP, -	-
-		s info (linear positions)	BYTE	PowerOn
-			l	l
-	50	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	-	-1/2
Description:	_	·	•	•
27204	MMC_INF	FO_VELO_LIN	EXP, -	-
mm/min	HMI info (linear velocities)	DOUBLE	PowerOn
-			"	'
-	16	10., 10., 2000., 10000., 300., 1000., 1000., 10., 0.,0.,0.,0	-	-1/2
Description:	_	'	•	
27205	MMC INF	O_VELO_LIN_STATUS	EXP, -	-
_		s info (linear velocities)	BYTE	PowerOn
-		,	I	
-	16	1,1,1,1,1,1,1,0,0,0,0, - 0,0,0,0	-	-1/2
Description:	-			
27206	MMC_INF	O_CUT_SPEED	EXP, -	-
m/min		cutting speed)	DOUBLE	PowerOn
-			l	l
-	5	100.,0.,0.,0.,0.,100.,0., - 0.,0.,0	-	-1/2
Description:	_			
27207	MMC_INF	FO_CUT_SPEED_STATUS	EXP, -	-
-		s info (cutting speed)	BYTE	PowerOn
-			L	
-	5	1,0,0,0,0,1,0,0,0,0,1,0, - 0,0,0	-	-1/2
	•	•	•	

27208	MMC_INFO_REV_FEED			EXP, -	-		
mm/rev	HMI info (feed)			DOUBLE	PowerOn		
-							
-	10	1.,0.100,1.,1.,0.,0.,0.,0 .,0.,0	-	-	-1/2		

Description: -

27209	MMC_INFO_REV_FEED_STATUS			EXP, -	-
-	HMI status info (feed)			BYTE	PowerOn
-					
-		1,1,1,1,0,0,0,0,0,0,1,1, 1,1,0,0,0,0,0,0	-	-	-1/2

Description: -

27400	OEM_CHAN_INFO			A01, A11	-
-	OEM version information			STRING	PowerOn
-					
-	3	, , ,, , ,,	-	-	2/2

Description: A version information freely available to the user (is indicated in the version screen)

27800	TECHNO	TECHNOLOGY_MODE			A2,K1
-	Mode of	technology in channel		BYTE	NEW CONF
-				<u>.</u>	<u>.</u>
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	2/2
802d-ng2	-	21	-	-	2/2
802d-ng3	-	21	-	-	2/2
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	2/2
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	2/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	-	2/2

Description:

Technology selection for display and operational purposes (HMI) This information is used, among other things, for evaluating HMI. Meaning:

MD = 0:Milling
MD = 1:Turning
MD = 2:Grinding

21:Cylindrical grinding
22:Surface grinding

MD = 3:Nibbling

Technology-related screens and softkeys are supplied in the ${\tt HMI}\:.$

27860	PROCESSTIMER_MODE			C09	K1		
-	Activation of program runtime measurement			DWORD	Reset		
-		·					
-	-	0x07	0	0x3FF	2/2		

Timers are provided as system variables under the function program runtime. While the NCK-specific timers are always activated (for time measurements since the last control power on), the channelspecific timers have to be started via this machine data. Meaning:

Bit 0 = 0

No measurement of total operating time for any part program

Measurement of total operating time is active for all part programs (\$AC OPERATING TIME)

Bit 1 = 0

No measurement of current program runtime

Bit 1 = 1

Measurement of current program runtime is active (\$AC CYCLE TIME)

Bit 2 = 0

No measurement of tool operating time

Measurement of tool operating time is active (\$AC CUTTING TIME) Bit 3

Reserved

Bits 4,5 only when bit 0, 1, 2 = 1:

Bit 4 = 0 No measurement with active dry run feed

Bit 4 = 1 Measurement also with active dry run feed

Bit 5 = 0 No measurement with program test

Bit 5 = 1 Measurement also with program test

Bit 6 only when Bit 1 = 1:

Bit 6 = 0

Delete \$AC CYCLE TIME also with start by ASUB and PROG EVENTs Bit 6 = 1

\$AC CYCLE TIME is not deleted on start by ASUB and PROG EVENTs. Bit 7 only when bit 2 = 1:

Bit 7 = 0 \$AC CUTTING TIME counts only with active tool

Bit 7 = 1 \$AC CUTTING TIME counts irrespective of tool

Bits 8 only when bit 1 = 1

Bit 8 = 0

\$AC CYCLE TIME is not deleted on jumping to program start with GOTOS

Bit. 8 = 1

\$AC CYCLE TIME is deleted on jumping to program start with GOTOS.

Bit 9 only when bits 0, 1 = 1:

\$AC OPERATING TIME, \$AC CYCLE TIME: No measurement with override = 0.

Bit 9 = 1

\$AC OPERATING TIME, \$AC CYCLE TIME: Measurement also with over-

Machine Data 06/2009

Channel-specific machine data

ride = 0.
Bits 10 to 31
Reserved

27880	PART_COUNTER			C09	K1		
-	Activation of wo	orkpiece counter	DWORD	Reset			
-							
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x0FFFF	3/2		

Description:

The part counters can be configured with this machine data.

Note: with bit 0 = 1 and $AC_{PEQUIRED_{PARTS}}$ smaller than 0 all workpiece counts

activated in this MD are frozen at the status reached.

Meaning of the individual bits:

Bits 0 - 3:Activating \$AC_REQUIRED_PARTS

Bit 0 = 1:Counter \$AC_REQUIRED_PARTS is activated

Further significance of bits 1-3 only when bit 0 =1 and $\frac{1}{2}$

\$AC_REQUIRED_PARTS > 0:

Bit 1 = 0:Alarm/VDI output if AC_ACTUAL_PARTS corresponds to $AC_BEQUIRED_PARTS$

Bit 1 = 1:Alarm/VDI output if $AC_SPECIAL_PARTS$ corresponds to $AC_REQUIRED_PARTS$

Bit 2Reserved!

Bit 3Reserved!

Bits 4 - 7:Activating \$AC_TOTAL_PARTS

Bit 4 = 1:Counter \$AC_TOTAL_PARTS is active

Further meaning of bits 5-7 only when bit 4=1 and

\$AC_REQUIRED_PARTS > 0:

Bit 5 = 0:Counter \$AC_TOTAL_PARTS is incremented by 1 with a VDI output of M02/M30

Bit 5 = 1:Counter \$AC_TOTAL_PARTS is incremented by 1 with output of the M command from MD PART COUNTER MCODE[0]

Bit 6 = 0:\$AC_TOTAL_PARTS also active with program test/block
search

Bit 7 = 1:counter AC_TOTAL_PARTS is incremented by 1 when jumping back with GOTOS

Bits 8 - 11:Activating \$AC ACTUAL PARTS

Bit 8 = 1:Counter \$AC_ACTUAL_PARTS is active

Further significance of bits 9-11 only when bit 8 =1 and \$AC REQUIRED PARTS > 0:

Bit 9 = 0:Counter AC_ACTUAL_PARTS is incremented by 1 with a VDI output of M02/M30

Bit 9 = 1:Counter AC_ACTUAL_PARTS is incremented by 1 with output of the M command from MD PART COUNTER MCODE[1]

Bit 10 = 0:\$AC_ACTUAL_PARTS also active with program test/block
search

Bit 10 = 1:No machining AC_ACTUAL_PARTS with program test/block search

Bit 11 = 1:counter \$AC_ACTUAL_PARTS is incremented by 1 when jumping bake with GOTOS

Bit 12 - 15:Activating \$AC_SPECIAL_PARTS

Bit 12 = 1:Counter \$AC_SPECIAL_PARTS is active

Further significance of bits 13-15 only when bit 12 =1 and $AC_REQUIRED_PARTS > 0$:

Bit 13 = 0:Counter $AC_SPECIAL_PARTS$ is incremented by 1 with a VDI output of M02/M30

Bit 13 = 1:Counter \$AC_SPECIAL_PARTS is incremented by 1 with output of the M command from MD PART COUNTER MCODE[2]

Bit 14 = 0:SAC_SPECIAL_PARTS also active with program test/block search

Bit 14 = 1:No machining $AC_SPECIAL_PARTS$ with program test/block search

Bit 15 = 1:counter \$AC_SPECIAL_PARTS is incremented by 1 when jumping back with GOTOS

Related to:

MD27882 \$MC_PART_COUNTER_MCODE

27882	PART_COUNTER_MCODE			C09	K1
-	Workpiece cour	Vorkpiece counting with user-defined M command			PowerOn
-					
-	3	2, 2, 2,2, 2, 2,2, 2, 2,2, 2, 2	0	99	3/2

Description:

If part counting is activated via MD27880 \$MC_PART_COUNTER, the count pulse can be triggered by a special M command.

Only then are the values defined here taken into account: Meaning:

The part counters are incremented by 1 in the NST signal output of the M command described, where:

MD27882 \$MC_PART_COUNTER_MCODE[0] for \$AC_TOTAL_PARTS

MD27882 \$MC_PART_COUNTER_MCODE[1] for \$AC_ACTUAL_PARTS

MD27882 \$MC_PART_COUNTER_MCODE[2] for \$AC_SPECIAL_PARTS

27900	REORG_LOG_LIMIT			EXP, C02	-
-	Percentage of I	ercentage of IPO buffer for enabling log file			PowerOn
-					
-		1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	-	0/0

Description:

The machine data defines the percentage of the IPO buffer above which data in the REORG LOG memory can be released in stages, if the block preparation has been interrupted due to an overflow of the REORG LOG data memory.

The released data are no longer available to the REORG function (References: /FB /, K1, "Mode Groups, Channels, Program Operation Mode").

A consequence of this status is that a further REORG command is cancelled with an error message.

If the status of "non-reorganizability" occurs, warning 15110 is output. The output of the warning can be suppressed by enabling the highest significant bit. The bit is set by adding the value 128 to the input value in REORG LOG LIMIT.

In addition to the instructions of the NC blocks, the size of the IPO buffer and the REORG data memory also affect the frequency of data release. $\,$

Related to:

MD28000 \$MC_MM_REORG_LOG_FILE_MEM (memory size for REORG)
MD28060 \$MC_MM_IPO_BUFFER_SIZE (number of blocks in the IPO buffer)

27920	TIME_LIMIT_NETTO_INT_TASK			EXP, C01	-			
s	Runtime limit of	interpreter subtask	DOUBLE	PowerOn				
-		<u> </u>						
-		0.005,0.005,0.005,0.0 05,0.005,0.005	0.001	0.100	7/0			

Description:

With MD27920 \$MC_TIME_LIMIT_NETTO_INT_TASK, the maximum runtime of the interpreter subtask is set. The interpreter subtask is started from the preprocessing task. If the interpreter task does not end on its own within the time set with MD27920 $\,$

\$MC_TIME_LIMIT_NETTO_INT_TASK, it will be stopped and continued after a preprocessing cycle.

2.3.6 Channel-specific memory settings

28000	MM_REORG_L	MM_REORG_LOG_FILE_MEM			V2,K1			
-	Memory space	for REORG (DRAM)	DWORD	PowerOn				
-								
-		100,100,100,100,100, 100,100,100,100	1	500	0/0			

Description:

Definition of the size (in kbyte) of the dynamic memory for the REORG-LOG data. The size of the memory determines the quantity of the data available for the function REORG.

References:

/FB/, K1, "Mode Groups, Channel, Program Operation"

28010	MM_NUM_REG	ORG_LUD_MODULES	EXP, C02	V2,K1	
-	Number of bloc (DRAM)	lumber of blocks for local user variables in REORG DRAM)			PowerOn
-					
-	-	8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	0	SLMAXNUMBER OF_USERMODU LES	1/1

Description:

Defines the number of additional LUD data blocks available for the function REORG (see Description of Functions, Channels, Mode Groups, Program Operation (K1)).

This value can be 0 if the function REORG is not used. The CNC always opens 12 LUD data blocks, of which 8 are used for NC programs and 4 for the ASUBs.

An LUD data block is needed for each NC program and ASUB in which a local user variable is defined. This value may have to be increased for the function REORG if a large IPO buffer is present and a large number of short NC programs in which LUD variables are defined are active (prepared NC blocks of the programs are located in the IPO buffer).

An LUD data block is needed for each of these programs. The size of the reserved memory is affected by the number of LUDs per NC program and their individual memory requirements. The LUD data blocks are stored in the dynamic memory.

The memory requirement for managing the blocks for local user variables with REORG can be determined as follows:

The size of the LUD blocks depends on the number of active LUDs and their data type. The memory for the LUD blocks is limited by the MD28000 $MC_MREORG_LOG_FILE_MEM$ (memory size for REORG).

28020	MM_NUM_LUD_NAMES_TOTAL			C02	V2,K1			
-	Number of loca	l user variables (DRAM)	DWORD	PowerOn				
-								
-		400,400,400,400,400, 400,400,400,400	0	32000	1/1			

Description:

Defines the number of variables for the local user data (LUD) which are permitted to exist in the active sections of the program. Approximately 150 bytes of memory per variable are reserved for the names of the variables and the variable values. The memory required for the variable value is equal to the size of the data type. If the total of the local user variables from the active main program and the related subprograms is larger than the defined limit, the variables which are over the limit are not accepted during execution of the program. Dynamic memory is used for the variable names and variable values.

Overview of the memory used by the data types:

Data type Memory used
REAL 8 bytes
INT 4 bytes
BOOL 1 byte
CHAR 1 byte

STRING 1 byte per character, 200 characters per

string are possible

AXIS 4 bytes FRAME 400 bytes

28040	MM_LUD_VALUES_MEM			C02	V2,K1
-	Memory space	for local user variables	DWORD	PowerOn	
-					
-		50,50,50,50,50,50,50, 50,50,50,50,50,50	0	32000	1/1

Description:

This MD defines the amount of memory space available for LUD variables.

The maximum number of available LUDs is given by one of the limit values of MD28020 $MC_MM_NUM_LUD_NAMES_TOTAL$ or MD28040 $MC_MM_LUD_NAMES_TOTAL$ or MD28040

The memory defined here is subdivided into (MD28040

\$MC MM LUD VALUES MEM * 1024) / MD18242

\$MN_MM_MAX_SIZE_OF_LUD_VALUE blocks, and allocated to part programs which request memory. Each part program that contains at least one definition of an LUD variable or call parameters uses at least one such block.

It should be remembered that several part programs requiring memory can be open simultaneously in the NCK. The number depends on the type of programming, the program length, and the size of the internal NCK block memory upwards of (MD28060

\$MC_MM_IPO_BUFFER_SIZE, MD28070 \$MC_MM_NUM_BLOCKS_IN_PREP).
Related to:

MD28020 \$MC_MM_NUM_LUD_NAMES_TOTAL
(number of local user variables (DRAM))

28050	MM_NUM_R_PARAM			C02	K1		
-	Number of channel-specific R parameters (SRAM)			DWORD	PowerOn		
-		·					
-	-	300 0 3			0/0		

Defines the number of R parameters available in the channel. A maximum of 32535 R parameters are available per channel. This machine data reserves 8 bytes of buffered user memory per R parameter.

R parameters $% \left(1\right) =\left(1\right) +\left(1\right$

Attention:

The buffered data are lost when this machine data is changed!

28060	MM_IPC	MM_IPO_BUFFER_SIZE			B1,K1		
-	Number	of NC blocks in IPO b	uffer (DRAM)	DWORD	PowerOn		
-							
802d-cu3	-	100	2	100	0/0		
802d-ng2	-	50	2	50	0/0		
802d-ng3	-	100	2	100	0/0		
802d-tm1	-	20	2	20	0/0		
802d-tm2	-	50	2	50	0/0		
802d-tm3	-	100	2	100	0/0		

Description:

Defines the number of blocks for the interpolation buffer. This buffer contains prepared NC blocks available for the interpolation. A number of kbytes of the dynamic user memory are reserved for each NC block. The data also limits the number of blocks for look ahead consideration of speed limitation for the LookAhead function.

 ${\tt MD28060~\$MC_MM_IPO_BUFFER_SIZE}$ is set by the system. Related to:

MD28070 \$MC_MM_NUM_BLOCKS_IN_PREP
(number of blocks for block preparation)

28070	MM_NU	MM_NUM_BLOCKS_IN_PREP			B1,K1		
-	Number	of blocks for block preparation	(DRAM)	DWORD	PowerOn		
-							
802d-cu3	-	65	50	500	1/1		
802d-ng2	-	50,50,50,50,50,50,50, 50,50,50,50,50,50	20	500	0/0		
802d-ng3	-	50,50,50,50,50,50,50, 50,50,50,50,50,50	20	500	0/0		
802d-tm1	-	50,50,50,50,50,50,50, 50,50,50,50,50,50	20	500	0/0		
802d-tm2	-	50,50,50,50,50,50,50, 50,50,50,50,50,50	20	500	0/0		
802d-tm3	-	65	50	500	1/1		

Description:

Defines the number of NC blocks available for NC block preparation. This figure is determined mainly by the system software and is used largely for optimization. Approximately 10 Kbytes of dynamic memory is reserved per NC block.

Related to:

MD28060 \$MC_MM_IPO_BUFFER_SIZE

(number of NC blocks with IPO buffer)

28080	MM_NU	MM_NUM_USER_FRAMES			K1,K2
-	Number	of settable frames (S	able frames (SRAM)		PowerOn
-					
802d-cu3	-	7	5	100	1/1
802d-ng2	-	7	5	100	1/1
802d-ng3	-	7	5	100	1/1
802d-tm1	-	7	5	100	0/0
802d-tm2	-	7	5		0/0
802d-tm3	-	7	5	100	0/0

Description:

Defines the number of predefined user frames. Approximately 400 bytes of backup memory are reserved per frame.

The standard system configuration provides four frames for $\ensuremath{\mathsf{G54}}$ to $\ensuremath{\mathsf{G57}}$ and one frame for $\ensuremath{\mathsf{G500}}$.

Special cases:

The backup data are lost if this machine data is altered!

28081	MM_NUM_BASE_FRAMES			C02	M5,K2
-	Number of base	Number of base frames (SRAM)			PowerOn
-					
-	-	3	0	16	1/1

Description:

Number of channel-specific base frames per channel.

The value corresponds to the number of field elements for the predefined field $P \ CHBFR[]$.

Buffered memory is reserved for this.

28082	MM_SY	STEM_FRAME_MASK		C02	M5,K2,W1
-	System	frames (SRAM)		DWORD	PowerOn
-				<u> </u>	•
802d-cu3	-	0x7A1,0x7A1,0x7A1,0 x7A1,0x7A1,0x7A1	0	0x00000FFF	1/1
802d-ng2	-	0x21,0x21,0x21,0x21, 0x21,0x21,0x21	0	0x00000FFF	1/1
802d-ng3	-	0x21,0x21,0x21,0x21, 0x21,0x21,0x21	0	0x00000FFF	1/1
802d-tm1	-	0x7A1,0x7A1,0x7A1,0 x7A1,0x7A1,0x7A1	0	0x00000FFF	1/1
802d-tm2	-	0x7A1,0x7A1,0x7A1,0 x7A1,0x7A1,0x7A1	0	0x00000FFF	1/1
802d-tm3	-	0x7A1,0x7A1,0x7A1,0 x7A1,0x7A1,0x7A1	0	0x00000FFF	1/1

Bit mask for configuring channel-specific system frames included in the channel.

Bit 0: System frame for setting actual value and scratching

Bit 1: System frame for external work offset

Bit 2: System frame for TCARR aund PAROT

Bit 3: System frame for TOROT and TOFRAME

Bit 4: System frame for workpiece reference points

Bit 5: System frame for cycles

Bit 6: System frame for transformations

Bit 7:System frame \$P_ISO1FR for ISO G51.1 Mirror

Bit 8:System frame \$P ISO2FR for ISO G68 2DROT

Bit 9:System frame \$P ISO3FR for ISO G68 3DROT

Bit 10:System frame \$P ISO4FR for ISO G51 Scale

Bit 11: System frame \$P RELFR for relative coordinate systems

28083	MM_SYSTEM_DATAFRAME_MASK			C02	-
-	System frames	m frames (SRAM)			PowerOn
-					
-		0xF9F,0xF9F,0xF9F,0 xF9F,0xF9F,0xF9F	0	0x00000FFF	1/1

Description:

Bit mask for configuring channel-specific system frames in the data storage (SRAM).

Bit 0: System frame for setting actual value and scratching

Bit 1: System frame for external work offset

Bit 2: System frame for TCARR aund PAROT $\,$

Bit 3: System frame for TOROT and TOFRAME

Bit 4: System frame for workpiece reference points

Bit 5: System frame for cycles

Bit 6: System frame for transformations

Bit 7:System frame \$P_ISO1FR for ISO G51.1 Mirror

Bit 8:System frame \$P_ISO2FR for ISO G68 2DROT

Bit 9:System frame \$P ISO3FR for ISO G68 3DROT

Bit 10:System frame \$P ISO4FR for ISO G51 Scale

Bit 11: System frame \$P_RELFR for relative coordinate systems

28150	MM_NUM_VDIVAR_ELEMENTS			C02	A2,P3 pl,P3 sl
-	Number of elements for writing PLC variables			DWORD	PowerOn
-					
-	-	3	0	32000	0/0

Description:

The MD defines the number of elements which the user has available for writing PLC variables ($A_DBx=...$). This number also applies to block search, but not to synchronized actions.

The memory requirement is ca. 24 bytes per element.

One element is needed for each write action when writing PLC variables in quick succession.

If more writing actions are to be performed than elements are available, block transport must be guaranteed (trigger preprocessing stop, if required)

However, the number of elements can be reduced if the accessing actions are made separately (block transport has already been accomplished). Writing accesses (var=\$A DBx) are unlimited.

28200	MM_NU	M_PROTECT_AREA_CHAN	C02, C06, C09	A3	
-	Number (SRAM)	of files for channel-specific pro	tection zones	DWORD	PowerOn
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	1/1
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	1/1
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	-1/2
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	-1/2
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	-1/2

Description:

This machine data defines how many blocks are set up for channel-specific protection zones.

Related to:

MD28210 \$MC_MM_NUM_PROTECT_AREA_ACTIVE

(number of simultaneously active protection zones)

MD18190 \$MN_MM_NUM_PROTECT_AREA_NCK

(number of files for machine-related protection zones (SRAM))

References:

/FB/, A3, "Axis/Contour Tunnel Monitoring, Protection Zones"

28210	MM_NU	MM_NUM_PROTECT_AREA_ACTIVE			I_NUM_PROTECT_AREA_ACTIVE C11, C02, C C09	C11, C02, C06, C09	6, A3	
-	Number channel	of simultaneously active protec	ction zones in one	DWORD	PowerOn			
-					·			
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	1/1			
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	1/1			
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	1/1			
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	-1/2			
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	-1/2			
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	-1/2			

Description:

This machine data defines the number of protection zones that may be activated simultaneously for each channel.

It is not practical to enter a numerical value higher than MD18190 $MN_MM_NUM_PROTECT_AREA_NCK + MD28200 \\MC_MM_NUM_PROTECT_AREA_CHAN.$

Related to:

MD28200 \$MC_MM_NUM_PROTECT_AREA_CHAN

(Number of blocks for channel-specific protection zones)

MD18190 \$MN_MM_NUM_PROTECT_AREA_NCK

(Number of files for machine-related protection zones (SRAM))

${\tt References:}$

/FB1/ Function Manual Basic Functions; Axis Monitoring, Protection Zones (A3)

28212	MM_NU	M_PROTECT_AREA_CONTO	C11, C02, C06, C09	A3	
-	Element	s for active protection zones (D	RAM)	DWORD	PowerOn
-					
802d-cu3	-	30,30,30,30,30,30,30, 30,30,30,30,30,30	0	50	1/1
802d-ng2	-	30,30,30,30,30,30,30, 30,30,30,30,30,30	0	50	1/1
802d-ng3	-	30,30,30,30,30,30,30, 30,30,30,30,30,30	0	50	1/1
802d-tm1	-	30,30,30,30,30,30,30, 30,30,30,30,30,30	0	50	-1/2
802d-tm2	-	30,30,30,30,30,30,30, 30,30,30,30,30,30	0	50	-1/2
802d-tm3	-	30,30,30,30,30,30,30, 30,30,30,30,30,30	0	50	-1/2

Description:

This machine data defines for each channel how many internal contour elements in total are held available for active protection zones.

Dynamic memory is used.

The MD affects the memory requirements for the activated protection zones.

This machine data is active only if MD28210 $\mbox{$MC_MM_NUM_PROTECT_AREA_ACTIVE}$ is not equal to 0.

28254	MM_NU	M_AC_PARAM		C02	-
-	Dimensi	on of \$AC_PARAM.		DWORD	PowerOn
-					
802d-cu3	-	50,50,50,50,50,50,50, 50,50,50,50,50,50	0	20000	2/2
802d-ng2	-	50,50,50,50,50,50,50, 50,50,50,50,50,50	0	20000	1/1
802d-ng3	-	50,50,50,50,50,50,50, 50,50,50,50,50,50	0	20000	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0	0	20000	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0	0	20000	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0	0	20000	0/0

Description: Panel size of \$AC_PARAM.

28255	MM_BUI	FFERED_AC_PARAM		C02	2.3,6.1
-	\$AC_PA	RAM[] is stored in SRAM.		DWORD	PowerOn
-				•	•
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0

 $\begin{tabular}{lll} \textbf{Description:} & $AC_PARAM[]$ is stored in SRAM. \\ \end{tabular}$

28256	MM_NU	M_AC_MARKER		C02	2.3,6.1
-	Dimensi	on of \$AC_MARKER		DWORD	PowerOn
-					
802d-cu3	-	8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	0	20000	2/2
802d-ng2	-	8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	0	20000	1/1
802d-ng3	-	8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,	0	20000	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0	0	20000	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0	0	20000	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0	0	20000	0/0

Description:

Number of channel-specific markers AC_MARKER for motion-synchronous actions.

DRAM or SRAM is required depending on MD28257 $\mbox{MC_MM_BUFFERED_AC_MARKER.}$

28257	MM_BU	FFERED_AC_MARKER		C02	2.3,6.1
-	\$AC_MA	ARKER[] is stored in SRAM.		DWORD	PowerOn
-					•
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	1	0/0

Description: \$AC_MARKER[] is stored in SRAM.

28274	MM_NU	MM_NUM_AC_SYSTEM_PARAM			-
-		of \$AC_SYSTEM_ PARAM for motion- nous actions		DWORD	PowerOn
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20000	2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20000	1/1
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20000	1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20000	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20000	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	20000	0/0

Description:

Number of $AC_SYSTEM_$ PARAM parameters for motion-synchronous actions.

Depending on MD28255 $MC_MM_BUFFERED_AC_PARAM$, DRAM or SRAM is required.

Reserved for SIEMENS applications.

28276	MM_NU	M_AC_SYSTEM_MARKER	EXP	P, C02 -
-		of \$AC_SYSTEM_MARKER for r	motion- DW0	ORD PowerOn
-			<u>.</u>	<u>.</u>
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2000	00 2/2
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2000	00 1/1
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2000	00 1/1
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2000	00 0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2000	00 0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	2000	00 0/0

Description:

Number of AC_{SYSTEM_MARKER} markers for motion-synchronous actions.

Depending on MD28257 $MC_MM_BUFFERED_AC_MARKER, DRAM or SRAM is required.$

Reserved for SIEMENS applications.

28290	MM_SHAPED_TOOLS_ENABLE			C01, C08, C02	-	
-	Enable tool radius compensation for contour tools			BOOLEAN	PowerOn	
-		·				
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	0/0	

Description:

The function "Tool radius compensation for contour tools" is enabled with this tool.

Modification of this machine data will cause a reconfiguration of the memory. $\,$

28400	MM_ABSBLOCK			EXP, C02	K1
-	activate block display w. absolute values			DWORD	PowerOn
-					
-	-	0,0,0,0,0,0,0,0,0	0	512	2/2

Description: Value:

0: Block display with absolute values deactivated

1: Block display with absolute values activated;
A display buffer of the following size is created:
(MD28257 \$MC_MM_BUFFERED_AC_MARKER + MD28070
\$MC_MM_NUM_BLOCKS_IN_PREP) * 256 bytes

>= 128:Block display with absolute values activated;
A display buffer of the following size is created:
(MD28060 \$MC_MM_IPO_BUFFER_SIZE + MD28070
\$MC MM NUM BLOCKS IN PREP) * <value>

28402	MM_ABSBLOCK_BUFFER_CONF			EXP, C02	K1
-	Setting of upload buffer size			DWORD	PowerOn
-					
-		0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0	0	32000	2/2

Description:

Dimensioning the size of the upload buffer:

 $\texttt{MD28402}\ \texttt{\$MC_MM_ABSBLOCK_BUFFER_CONF[0]}$: Number of blocks before the current block

 $\texttt{MD28402} \ \texttt{$MC_MM_ABSBLOCK_BUFFER_CONF[1]}$: Number of blocks after the current block

The machine data is tested for the following upper $\/$ lower limits during startup:

0 <= MD28402 \$MC MM ABSBLOCK BUFFER CONF[0] <= 8

0 <= MD28402 \$MC_MM_ABSBLOCK_BUFFER_CONF[1] <= (MD28060 \$MC MM IPO BUFFER SIZE + MD28070 \$MC MM NUM BLOCKS IN PREP)

Alarm 4152 is issued when the limits are violated.

28500	MM_PR	MM_PREP_TASK_STACK_SIZE			K1
-	Stack siz	Stack size of preparation task (DRAM)			PowerOn
-					
-	-	70,70,70,70,70,70,70, 70,70,70,70,70,70	70	500	0/0

Description:

Defines the stack size in kbytes for the preparation task. The stack is stored in the dynamic memory.

Note:

This machine data is assigned internally by the control and must not be altered by the user.

28502	MM_INT_TASK_STACK_SIZE			EXP, C02	-
-	Stack size for interpreter subtask (kB).			DWORD	PowerOn
-					
-		20,20,20,20,20,20,20, 20,20,20,20,20,20	20	40	0/0

Description: Definition of the stack size (kByte) for the interpreter subtask.

28520	MM_MAX_AXISPOLY_PER_BLOCK	C02	B1
-	maximal number of axial polynomials per block	DWORD	PowerOn
-			
-	- 1,1,1,1,1,1,1,1 1	5	0/0

Description:

Maximum number of axis polynomials which can be contained in a block.

In the standard case, each block only contains one polynomial per axis, i.e. this data can immediately be set to one.

Currently, more polynomials are only needed for the new ADIS function with ${\tt G643}$.

In this case, this data must have a minimum value of three.

28530	MM_PA	TH_VELO_SEGMENTS		C02	A2,B1
-	Number	of memory elements for path v	elocity limitation	DWORD	PowerOn
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	1/1
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	0/0
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	0/0
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	1/1

Description:

Number of memory elements available for limiting the path velocity and changing it in the block. $\,$

- 0 : Each block is limited by a maximum path velocity.
- > 0 : If required, a profile of the permissible path velocity
 - ; and its modification options is generated and monitored
 - ; in the block.
 - ; This results in a smoother axis velocity progression and $% \left(1\right) =\left(1\right) \left(1\right)$
 - ; a shorter travel time.
 - ; MD28530 \$MC MM PATH VELO SEGMENTS defines the average
 - ; number of segments available in the block.
 - ; The necessary setting essentially depends
 - ; on the requirements.

The following values are recommended:

- 3: for G643, if only geometry axes are traversed
- 5: for G643, if geometry and rotary axes are traversed
- 5: for COMPCAD
- 5: for dyn. transformation

A value that is too low this may lead to additional velocity limitations if a sufficient number of blocks cannot be made available for interpolation.

 ${\tt MD28530~\mbox{MC_MM_PATH_VELO_SEGMENTS}}$ additionally increases the memory requirement of dyn. Look Ahead. Values higher than 5 are only practical in exceptional cases.

3 ... 5 :

Recommended setting.

28533	MM_LOOKAH_FFORM_UNITS			C02	-
-	Memory for extended LookAhead			DWORD	PowerOn
-					
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100000	0/0

The machine data is used to configure the work memory for extended LookAhead.

The MD scales the value defined internally through MD28060 \$MC_MM_IPO_BUFFER_SIZE, MD28520 \$MC_MM_MAX_AXISPOLY_PER_BLOCK, MD28530 \$MC_MM_PATH_VELO_SEGMENTS, MD28535

\$MC_MM_FEED_PROFILE_SEGMENTS, MD28540 \$MC_MM_ARCLENGTH_SEGMENTS).

Its practical size depends on the part program, the block lengths, the axis dynamics, and an active kinematic transformation.

The MD should only be set for those channels in which free-form surfaces are also machined. $\,$

0 : default LookAhead is active.

> 0 : extended LookAhead is active if switched on by MD20443 $MC_LOOKAH_FFORM.$

The guide value for free-form surface applications is: 18..20

28540	MM_AR	CLENGTH_SEGMENTS		C02	B1
-	Number represer	of memory elements for arc ler	ngth function	DWORD	PowerOn
-					
802d-cu3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	1/1
802d-ng2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	0/0
802d-ng3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	0/0
802d-tm1	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	0/0
802d-tm2	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	0/0
802d-tm3	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	100	1/1

Description:

Number of memory elements available for the arc length function for parameterizing polynomials.

If this machine data is equal to zero, a fixed interval division is used to represent the arc length function. In this case, the calculated function is only tangent-continuous. This can lead to discontinuities in the axis accelerations.

If the function G643 is used for smoothing and/or COMPCAD, this MD should be assigned a value of at least 10. In this case, the calculated function also has a constant curvature which results in a smoother progression of the path velocity, as well as the axis velocities and accelerations.

Values substantially larger than 10 are only practical in exceptional cases.

Not only the value of MD28540 $MC_MM_ARCLENGTH_SEGMENTS$ but also that of MD20262 $MC_SPLINE_FEED_PRECISION$ are crucial for the accuracy.

28560	MM_SEARCH_RUN_RESTORE_MODE			C02	K2
-	Data restore after simulation			DWORD	PowerOn
-					
-		0x0,0x0,0x0,0x0,0x0,0 x0,0x0,0x0,0x0	0	0x00000001	1/1

Description:

Bit mask to restore data after abort of a simulated program execution. The following applies:

Bit 0: All frames in the data storage are restored.

28600	MM_NUM_WORKAREA_CS_GROUPS			C02	-
-	Number of coordinate system-specific operating range limits			DWORD	PowerOn
-					
-	-	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0	10	0/0

Description:

Number of data blocks in the channel that are created for coordinate system-specific operating range limits.

It indicates the maximum value of the 1st index of system variable \$P_WORKAREA_CS...[WALimNo, Ax]. It furthermore defines the number of the programmable G functions "WALCS1, WALCS2, ... WALCS10" as well as the maximum value in system variable \$AC WORKAREA CS GROUP".

= 0: Function "Monitoring of coordinate system-specific operating range limits" cannot be activated.

2.4 Axis-specific machine data

Number	Identifier			Display filters	Reference
Unit	Name	ame			Active
Attributes					
System	Dimension	Default value	Minimum value	Maximum value	Protection

Description: Description

2.4.1 Configuration

30100	CTRLOUT_SEGMENT_NR			EXP, A01	G2,S9			
-	Setpoint assign	Setpoint assignment: bus segment number			PowerOn			
-								
-	1	5	0	5	2/2			

Description:

In this MD enter the number of the bus segment through which the output is addressed. $\,$

- 0: Local bus (for 802D MCPA)
- 1: SIMODRIVE611D drive bus for SINUMERIK 840D/810D (1st DCM)
- 2: reserved (previously local P bus)
- 3: reserved (previously 611D bus, 2nd DCM)
- 4: reserved (virtual buses)
- 5: PROFIBUS/PROFINET (e.g. SINUMERIK 840Di)
- 6: reserved (same effect as 5)

30110	CTRLOU	CTRLOUT_MODULE_NR			G2,S9
-	Setpoint	assignment: module number		BYTE	PowerOn
-			<u>.</u>		
802d-cu3	1	1,2,3,4,5,6,7,8,9,10,11 ,12,13,14,15,16,17,18.		31	2/2
802d-ng2	1	3,2,4,1	1	31	2/2
802d-ng3	1	3,2,4,1	1	31	2/2
802d-tm1	1	2,3,4,1	1	31	2/2
802d-tm2	1	2,3,4,1	1	31	2/2
802d-tm3	1	2,3,4,1	1	31	2/2

Description:

Enter in this MD the number of the module within a bus segment through which the output is addressed.

For axes on the PROFIBUS/PROFINET, the number of the drive assigned with MD13050 $MN_DRIVE_LOGIC_ADDRESS$ must be entered here (MD30110 $MA_CTRLOUT_MODULE_NR=n$ consequently points to MD13050 $MN_DRIVE_LOGIC_ADDRESS[n]$).

Axis-specific machine data

30120	CTRLOUT_NR			EXP, A01, -	G2
-		Setpoint assignment: Setpoint output on drive submodule/module			PowerOn
-					
-	1	1	1	3	2/2

Description:

Number of the output on a module, through which the setpoint output is addressed.

Index [n] of the machine date has the following coding: [setpoint branch]: 0

30130	CTRLOUT_TYPE			A01, A11	G2,M3,S9
-	Output type of setpoint			BYTE	PowerOn
-					
-	1	0	0	3	2/2

Description:

The type of speed setpoint output is entered in this MD:

0: Simulation (no hardware required)

1: Setpoint output active (differentiated by hardware configuration)

Index [n] of the machine date has the following coding: [setpoint branch]: 0.

30132	IS_VIRTUAL_AX			A01	M3,TE1,TE3
-	Axis is a virtual axis			BOOLEAN	PowerOn
CTEQ					
-	1	FALSE	-	-	1/1

Description:

Virtual axis. An axis that is also interpolated in follow-up mode. (Electronic transfer technology; virtual and real master values.) This MD is the successor to MD30130 \$MA_CTRLOUT_TYPE=4. MD30130 \$MA_CTRLOUT_TYPE=0 and MD30132 \$MA_IS_VIRTUAL_AX=1 must now be used instead of MD30130 \$MA CTRLOUT TYPE=4.

Related to:

MD30130 \$MA_CTRLOUT_TYPE

30134	IS_UNIPOLAR_OUTPUT			A01	G2		
-	Setpoint output	point output is unipolar			PowerOn		
-							
-	1	0	0	2	2/2		

Description:

Only for PROFIdrive, special application of analog additional drives:

Unipolar output driver (for unipolar analog drive actuator): Only positive set speeds are supplied to the drive, the sign of the set speed is separately output in its own digital control signal.

Input value "0":

Bipolar output with pos./neg. set speed (this is the normal case) Input value "1":

0. Digital bit = servo enable

1. Digital bit = neg. direction of travel

Input value "2": (linking of enable and direction of travel signals):

0. Digital bit = servo enable pos. direction of travel

1. Digital bit = servo enable neg. direction of travel

30200	NUM_ENCS			A01, A02, -	G2,R1,Z1		
-	Number of encoders			BYTE	PowerOn		
-							
-	-	1	0	1	2/2		

0: without measuring system (possible with spindle)

1: spindle / axis with measuring system (in motor or directly)

30210	ENC_SEGMENT_NR			EXP, A01, A02	G2			
-	Actual value assignment: bus segment number.			BYTE	PowerOn			
-								
-	1	5, 5	5	5	-1/2			

Description:

Number of the bus segment, through which the encoder is addressed. The bus segments must be firmly assigned to the control systems.

- 0: reserved (previously local bus)
- 1: SIMODRIVE611D drive bus for SINUMERIK 840D/810D (1st DCM)
- 2: reserved (previously local P bus)
- 3: reserved (previously 611D bus, 2nd DCM)
- 4: reserved (virtual buses)
- 5: PROFIBUS/PROFINET (e.g. SINUMERIK 840Di)
- 6: reserved (same effect as 5)

Index [n] has the following coding [Encodernr.]: 0 or 1

30220	ENC_M	ENC_MODULE_NR			G2
-	Actual v	alue assignment: Drive numb	er/measuring circuit	BYTE	PowerOn
-					
802d-cu3	1	1, 1,2, 2,3, 3,4, 4,5, 5,6, 6,7, 7	1	31	2/2
802d-ng2	1	3, 3,2, 2,4, 4,1, 1	1	31	2/2
802d-ng3	1	3, 3,2, 2,4, 4,1, 1	1	31	2/2
802d-tm1	1	2, 2,3, 3,4, 4,1, 1	1	31	2/2
802d-tm2	1	2, 2,3, 3,4, 4,1, 1	2, 2,3, 3,4, 4,1, 1		2/2
802d-tm3	1	2, 2,3, 3,4, 4,1, 1	1	31	2/2

Description:

The number of the module within a bus segment (MD30210 $MA_ENC_SEGMENT_NR[n]$) through which the encoder is addressed must be entered in the MD.

For axes on PROFIBUS/PROFINET, the number of the drive assigned via MD13050 $MN_DRIVE_LOGIC_ADDRESS$ must be entered here (MD30220 $MA_ENC_MODULE_NR=n$ consequently points to MD13050 $MN_DRIVE_LOGIC_ADDRESS[n]$).

The index[n] of the machine data has the following coding: [Encoder no.]: 0 or 1

Related to:

MD30110 \$MA CTRLOUT MODULE NR[n]

(setpoint assignment: drive number/module number)

Axis-specific machine data

30230	ENC_INPUT_N	ENC_INPUT_NR			G2,S9
-	Actual value as board	Actual value assignm.: Input on drive module/meas. circuit board			PowerOn
-					
-	1	1, 2	1	2	2/2

Description:

For PROFIdrive:

Number of the encoder within the PROFIdrive message frame through which the encoder is addressed.

For example telegram 103: 1 (=G1_ZSW etc.) or 2 (=G2_ZSW etc.).

The index[n] of the machine data has the following coding:

[Encodernr.]: 0 or 1

If an input is selected, to which no encoder is connected, alarm 300008 "Measuring circuit not available on drive" is output.

30240	ENC_TYPE			A01, A02, A11, -	A3,,G2,R1		
-	Encoder type o value).	ncoder type of actual value sensing (actual position alue).			PowerOn		
-							
-	1	0, 0	0	5	2/2		

Description:

Encoder type:

0: simulation

1: raw signal generator (high resolution)

2, 3, 5: reserved

Index [n] of the machine date has the following coding: [encoder number]: 0

4: general absolute encoder (e.g. with EnDat interface)

30242	ENC_IS_INDEPENDENT			A02, A11, -	G2,R1
-	Encoder is independent			BYTE	NEW CONF
-					
-	1	0, 0	0	3	1/1

Description:

If actual value corrections performed by the NC on the encoder selected for position control are not to influence the actual value of any other encoder defined in the same axis, then the position control encoder must be declared to be "independent".

Actual value corrections include the following:

- Modulo treatment,
- Reference point approach,
- Measuring system calibration,
- PRESET

Example:

 $MD30200 $MA_NUM_ENCS[AX1] = 2$

MD30242 $MA_ENC_IS_INDEPENDENT[0, AX1] = 0$

MD30242 \$MA ENC IS INDEPENDENT[1, AX1] = 1

When the VDI interface has selected the first encoder for position control, the above mentioned actual value corrections will be executed on this encoder only.

When the VDI interface has selected the second encoder for position control, the above mentioned actual value corrections will be executed on both encoders.

The machine data is therefore only valid for encoders that have not been selected by the VDI interface for positon control (passive encoders).

decentralized

As from SW5, the scope of functions has been extended: MD30242 MD30242 MA ENC IS INDEPENDENT = 2

The passive encoder is dependent. The active encoder changes the actual encoder value. In combination with MD35102

\$MA_REFP_SYNC_ENCS = 1, the passive encoder is adjusted to the
active encoder during reference point approach, but is NOT referenced.

In reference mode MD34200 $MA_ENC_REFP_MODE = 3$ (distance-coded reference marks), the passive encoder is automatically referenced with the next traversing movement after zero mark distance overtravel. This is done independently of the current mode setting. MD30242 ME = 3

In contrast to MD30242 $MA_ENC_IS_INDEPENDENT = 1$, modulo actual value corrections are executed in the passive encoder of modulo rotary axes.

30244	ENC_MEAS_TYPE			A01, A02, A11	-
-	Encoder measurement type			BYTE	PowerOn
-					
-	1	1, 1	0	1	0/0

Description:

For PROFIdrive only:

1

In combination with the MD13210 $MN_{EAS_TYPE} = 1$ (decentralized measurement), this MD can be used to set the type of axial measuring function for drives.

Encoder measurement type:

30250	ACT_POS_ABS			EXP, A02, A08	R1
-	Internal encoder position			DOUBLE	PowerOn
ODLD, -, -					
-	1	0.0, 0.0	-	-	1/1

1

Description:

The actual position (hardware counter status only without machine reference) is stored (in internal format display) in this MD. At power ON (or encoder activation), it acts with:

• Absolute encoders:

To restore the current position (in combination with the position, possibly with several meanings, buffered in the encoder).

• Incremental encoders:

To buffer the actual value beyond power OFF when the functionality is activated MD34210 $MA_ENC_REFP_STATE = 1$ or. 2 (i.e. as a reference point replacement).

To buffer the actual value beyond power OFF when the functionality is activated MD34210 $MA_ENC_REFP_STATE = 3$ (i.e. as a restored position value).

Axis-specific machine data

Note:

This MD is changed internally by the control during traversing movements. Loading a previously saved MD data block can therefore destroy the encoder calibration (machine position reference) of absolute encoders.

For software conversions, we recommend removing the MD data block from the old software release prior to conversion and reloading it into the new software release without moving any axis in the meantime. Protection level 1 should be set for SW 3.6; protection level 2 suffices for SW 4 and higher. The encoder calibration must be explicitly verified (controlled, calibrated) after the software conversion.

30260	ABS_INC_RATIO			EXP, A01, A02	-	
	Absolute encoder: Ratio of absolute to incremental resolution			DWORD	PowerOn	
-						
-	1	4, 4	-	-	1/1	

Description:

Absolute track resolution in relation to the incremental signal resolution.

This MD only applies for absolute encoders:

- PROFIBUS drives:

Absolute information XIST2 related to incremental information $\ensuremath{\mathtt{XIST1}}$.

With plausible drive parameters (e.g. for SIMODRIVE 611U: P1042/P1043 or P1044/P1045 or the relevant entries in PROFIdrive parameter p979) the value of this MD is automatically calculated and updated from drive parameters (if parameter readout has not been deactivated by \$MN DRIVE FUNCTION MASK, bit2).

With plausible drive parameters (e.g. for SIMODRIVE 611U: P1042/P1043 or P1044/P1045 or the relevant entries in PROFIdrive parameter p979) the value of this MD is calculated and updated automatically from the drive parameters (provided that parameter read-out has not been disabled by MD13070 $MN_DRIVE_FUNCTION_MASK$, bit2).

Unplausible drive parameters (e.g. multiplication of absolute track higher than that of the incremental signal) are rejected and replaced by the value entered in the current MD.

Unplausible input values in the current MD (e.g. value=0) are reset to the default value. In addition, alarm 26025 or 26002 is output in order to inform the user.

30270	ENC_ABS_BUFFERING			EXP, A01, A02	R1
-	Absolute encod	lute encoder: Traversing range extension			PowerOn
-					
-	1	0, 0	0	1	2/2

This MD defines the way in which the absolute encoder position is buffered, and whether a traversing range extension is active on software side (exceeding the limits of the absolute value encoder range that can be displayed on the hardware).

"0" = standard = traversing range extension (compare ACT_POS_ABS) is active.

"1" = traversing range extension on software side is inactive. When using an absolute linear scale, there will not be a traversing range overflow for mechanical reasons. This MD is therefore only valid for rotary absolute value encoders.

For rotary absolute value encoders, the traversing range that can be clearly displayed on the encoder side, is stored in MD34220 $MA_ENC_ABS_TURNS_MODULO$. You can do without a traversing range extension without any problems (a hardware counter overflow that might be within the traversing range is concealed in the software via shortest-path decision):

- a. in linear axes or limited rotary axes, if the actual traversing range on the load side is smaller than the traversing range on the load side that corresponds to MD34220 \$MA ENC ABS TURNS MODULO.
- b. in endlessly turning rotary axes (ROT_IS_MODULO = TRUE), if the absolute encoder is connected on the load side (no gear to be considered) or if "without remainder" can be calculated:

Number of rotations on the load side = $ENC_ABS_TURNS_MODULO$ * gear ratio

(Example: ENC_ABS_TURNS_MODULO = 4096 encoder rotations, gear 25:32, i.e. number of rotations on load side = 4096*(25/32)=3200). Notice:

If you do not meet the conditions under a. or b., you run the risk of getting a wrong absolute encoder position at next Power ON or encoder activation after parking without prewarning if the traversing range extension is not working. Therefore, the traversing range extension remains active in the standard version.

Related to:

MD30240 \$MA_ENC_TYPE

MD30300 \$MA IS ROT AX

MD30310 \$MA ROT IS MODULO

MD30250 \$MA_ACT_POS_ABS

MD34220 \$MA_ENC_ABS_TURNS_MODULO

MD34090 \$MA_REFP_MOVE_DIST_CORR

30300	IS_ROT_AX	IS_ROT_AX A			G1,K3,R2,T1,G2, K2,R1,S1,V1
-	Rotary axis	/ spindle		BOOLEAN	PowerOn
SCAL, CTEQ					
-	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2

Description:

- 1: Axis: The axis is defined as a "rotary axis".
- The special functions of the rotary axis are active or can be activated by means of additional machine data according to the type of machine required (see below).
- The unit of measurement is degrees.
- The units of the axis-specific machine and setting data are interpreted as follows with the standard control setting:
 - Positions in "degrees"
 - Speedsin "rev/minute"
 - Accelerationin "rev/second2"
 - Jerk limitationin "rev/second3"

Spindle:

The machine data should always be set to "1" for a spindle, otherwise alarm 4210 "Rotary axis declaration missing" is output.

0: The axis is defined as a "linear axis".

Special cases:

- For an axis: Alarm 4200 if the axis is already defined as a geometry axis.
- For a spindle: Alarm 4210

Related to:

The following machine data are active only after activation of MD30300 $MA \ IS \ ROT \ AX = "1":$

- MD30310 \$MA ROT IS MODULO "Modulo conversion for rotary axis"
- MD30320 \$MA DISPLAY IS MODULO "Position display is modulo"
- MD10210 \$MN_INT_INCR_PER_DEG "Calculation precision for angular positions"

30310	ROT_IS_	ROT_IS_MODULO A			TE3,K3,R2,T1,A3, R1,R2,S1
-	Modulo o	conversion for rotary axis / spindle	Э	BOOLEAN	PowerOn
CTEQ					
-	-	FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE		-	2/2

1: A modulo conversion is performed on the setpoints for the rotary axis. The software limit switches and the working area limitations are inactive; the traversing range is therefore unlimited in both directions. MD30300 \$MA IS ROT AX must be set to "1"

0: No modulo conversion

MD irrelevant for:

MD30300 \$MA IS ROT AX = "0" (linear axes)

Related to:

MD30320 \$MA_DISPLAY_IS_MODULO "Position display is modulo

360°"

MD30300 \$MA_IS_ROT_AX = 1 "Rotary axis"

MD36100 \$MA_POS_LIMIT_MINUS

"Software limit switch

minus"

MD36110 \$MA_POS_LIMIT_PLUS "Software limit switch

plus"

SD43430 \$SA_WORKAREA_LIMIT_MINUS "Working area limitation minus"

SD43420 \$SA_WORKAREA_LIMIT_PLUS "Working area limitation plus"

30320	DISPLAY_IS_MODULO			A01, A06, A11	R2,T1,K2
-	Modulo 360 de	Modulo 360 degrees displayed for rotary axis or spindle.			PowerOn
CTEQ					
-		FALSE,FALSE,FALS E,FALSE,FALSE,FAL SE	-	-	2/2

Description:

1: "Modulo 360 degrees" position display is active:

The position display of the rotary axis or spindle (for basic or machine coordinate system) is defined as "Modulo 360 degrees". In the case of a positive direction of rotation, the control resets the position display internally to 0.000 degrees following each cycle of 359.999 degrees. The display range is always positive and lies between 0 and 359.999 degrees.

0: Absolute position display is active:

In contrast to the modulo 360 degrees position display, absolute positions are indicated by the absolute position display, e.g. +360 degrees after 1 rotation, and +720 degrees after 2 rotations, etc in the positive direction. In this case, the display range is limited by the control in accordance with the linear axes.

MD irrelevant for:

Linear axes MD30300 \$MA_IS_ROT_AX = "0"

Related to:

MD30300 \$MA IS ROT AX = 1 "Axis is rotary axis"

30330	MODULO_RANGE			EXP, A01, -	R2,T1,R1
degrees	Size of modulo	ize of modulo range.			Reset
CTEQ					
-	-	360.0	1.0	360000000.0	1/1

Description:

Defines the size of the modulo range. Default positions are accepted and displayed within this range. Useful modulo ranges are n * 360 degrees with integer n. Other settings are equally possible in principle. Attention should be paid to having a useful relationship between the positions in the NC and the mechanics (ambiguity). Velocity definitions are not affected by settings in this MD.

30340	MODULO_RANGE_START I			EXP, A01	R1,R2		
degrees	Modulo range s	Modulo range start position			Reset		
CTEQ							
-	-	0.0	-	1/1			

Description:

Defines the start position for the modulo range.

Example:

Start = 0 degree -> modulo range 0 < -> 360 degrees

Start = 180 degrees \rightarrow modulo range 180 $<\rightarrow$ 540 degrees Start = -180 degrees \rightarrow modulo range \rightarrow 180 $<\rightarrow$ 180 degrees

30350	SIMU_A	SIMU_AX_VDI_OUTPUT			A01, A06	A2,G2,Z1
-	Axis sign	xis signals output for simulation axes			BOOLEAN	PowerOn
CTEQ						
_	_	FALSE		_	2/2	

Description:

This machine data defines whether axis-specific interface signals are output to the PLC during simulation of an axis.

1: The axis-specific interface signals of a simulated axis are output to the PLC.

In this way the user PLC program can be tested without the drives.

0: The axis-specific interface signals of a simulated axis are not output to the PLC.

All axis-specific interface signals are set to "0".

MD irrelevant for:

MD30130 \$MA_CTRLOUT_TYPE (output type of setpoint value) = 1

30450	IS_CONCURRENT_POS_AX E			EXP, A01	G1		
-	Default for rese	t: neutral/channel axis		BOOLEAN	Reset		
CTEQ							
802d-cu3	-	FALSE	-	-	1/1		
802d-ng2	-	FALSE	-	-	1/1		
802d-ng3	-	FALSE	-	-	1/1		
802d-tm1	-	FALSE	-	-	0/0		
802d-tm2	-	FALSE	-	-	1/1		
802d-tm3	-	FALSE	-	-	1/1		

For SW4.3:

If FALSE: On RESET, a neutral axis is reassigned to the NC program.

If TRUE: On RESET, a neutral axis remains in the neutral axis state and an axis assigned to the NC program becomes a neutral axis $\frac{1}{2}$

30465	AXIS_LANG_SUB_MASK			N01	K1
-	Substitution of I	Substitution of NC language commands			PowerOn
-		<u> </u>			
-	-	0x0 0x0 0x		0x3	2/2

Description:

MD30465 \$MA_AXIS_LANG_SUB_MASK defines for the leading spindle(s) of a coupling (synchronous spindle coupling, ELG, tangential tracking, coupled motion, master value coupling, master/slave) which language constructs/functions are to be substituted by the user program set by MD15700 \$MN_LANG_SUB_NAME / MD15702 \$MN_LANG_SUB_PATH (default: /_N_CMA_DIR/_N_LANG_SUB_SPF). The substitution is executed only if a coupling is active for the relevant spindle and, in the case of a gear stage change, only if a gear stage change is actually pending. Bit 0 = 1:

Automatic (M40) and direct (M41-M45) gear stage change Bit 1 = 1:

Spindle positioning with SPOS/SPOSA/M19

30500	INDEX_AX_AS	SIGN_POS_TAB		A01, A10	T1,H1
-	Axis is an index	king axis		BYTE	Reset
-					
802d-cu3	-	0	0	3	2/2
802d-ng2	-	0	0	3	2/2
802d-ng3	-	0	0	3	2/2
802d-tm1	-	0	0	3	-1/2
802d-tm2	-	0	0	3	2/2
802d-tm3	-	0	0	3	2/2

Description:

The axis is declared as an indexing axis by assignment of indexing position table 1 or 2.

- 0: The axis is not declared as an indexing axis
- 1: The axis is an indexing axis. The associated indexing positions are stored in table 1 (MD10910 \$MN INDEX AX POS TAB 1).
- 2: The axis is an indexing axis. The associated indexing positions are stored in table 2 (MD10930 \$MN INDEX AX POS TAB 2).
- 3: Equidistant indexing with SW 4.3 and higher (840D) and SW 2.3 and higher (810D) $\,$
- >3: Alarm 17090 "Value violates upper limit" Special cases:

Several axes can be assigned to an indexing position table on the condition that all these indexing axes are of the same type (linear axis, rotary axis, modulo 360° function). If they are not, alarm 4000 is output during power-up.

Alarm 17500 "Axis is not an indexing axis"

Alarm 17090 "Value violates upper limit"

Related to:

MD10910 \$MN INDEX AX POS TAB 1 (indexing position table 1)

MD10900 \$MN INDEX AX LENGTH POS TAB 1

(no. of indexing positions used in table 1)

MD10930 \$MN INDEX AX POS TAB 2 (indexing position table 2)

MD10920 \$MN_INDEX_AX_LENGTH_POS_TAB_2

(no. of indexing positions used in table 2)

For equidistant indexings with value 3:

MD30501 \$MA_INDEX_AX_NUMERATOR Numerator

MD30502 \$MA_INDEX_AX_DENOMINATOR Denominator

MD30503 \$MA_INDEX_AX_OFFSET First indexing position

MD30505 \$MA HIRTH IS ACTIVE Hirth tooth system

30501	INDEX_AX_NU	INDEX_AX_NUMERATOR			T1			
mm, degrees	Indexing axis e	quidistant positions num	erator	DOUBLE	Reset			
-								
802d-cu3	-	0.0	-	-	1/1			
802d-ng2	-	0.0	-	-	1/1			
802d-ng3	-	0.0	-	-	1/1			
802d-tm1	-	0.0	-	-	-1/2			
802d-tm2	-	0.0	-	-	1/1			
802d-tm3	-	0.0	-	-	1/1			

Defines the value of the numerator for calculating the distances between two indexing positions when the positions are equidistant. Modulo axes ignore this value and use MD30330 \$MA_MODULO_RANGE instead.

 $\ensuremath{\mathsf{MD}}$ irrelevant for non-equidistant indexes in accordance with tables.

Related to:

MD30502 \$MA_INDEX_AX_DENOMINATOR,
MD30503 \$MA_INDEX_AX_OFFSET;
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB

30502	INDEX_/	AX_DENOMINATOR		A01, A10	T1
-	Indexing	axis equidistant pos	itions denominator	DWORD	Reset
-				'	<u> </u>
802d-cu3	-	1	1	-	1/1
802d-ng2	-	1	1	-	1/1
802d-ng3	-	1	1	-	1/1
802d-tm1	-	1	1	-	-1/2
802d-tm2	-	1	1	-	1/1
802d-tm3	-	1	1	-	1/1

Description:

Defines the value of the denominator for calculating the distances between two indexing positions when the positions are equidistant. For modulo axes it therefore specifies the number of indexing positions.

 $\ensuremath{\mathsf{MD}}$ irrelevant for non-equidistant indexes in accordance with tables.

Related to:

MD30501 \$MA_INDEX_AX_NUMERATOR,
MD30503 \$MA_INDEX_AX_OFFSET,
MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB

Machine Data 06/2009

Axis-specific machine data

INDEX_AX_OFFSET			A01, A10	T1,R2			
Indexing axis v	vith equidistant positions	first index position	DOUBLE	Reset			
-	0.0	-	-	1/1			
-	0.0	-	-	1/1			
-	0.0	-	-	1/1			
-	0.0	-	-	-1/2			
-	0.0	-	-	1/1			
-	0.0	-	-	1/1			
		- 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0 - 0.0	Indexing axis with equidistant positions first index position	Indexing axis with equidistant positions first index position DOUBLE			

Description:

Defines the position of the first indexing position from zero for an indexing axis with equidistant positions.

 $\ensuremath{\mathsf{MD}}$ irrelevant for non-equidistant indexes in accordance with tables.

Related to:

MD30501 \$MA_INDEX_AX_NUMERATOR, MD30502 \$MA_INDEX_AX_DENOMINATOR, MD30500 \$MA_INDEX_AX_ASSIGN_POS_TAB

30505	HIRTH_	IS_ACTIVE	A01, A10	T1	
-	Axis is a	n indexing axis with Hir	th tooth system	BOOLEAN	Reset
CTEQ				<u> </u>	•
802d-cu3	-	FALSE	-	-	1/1
802d-ng2	-	FALSE	-	-	1/1
802d-ng3	-	FALSE	-	-	1/1
802d-tm1	-	FALSE	-	-	-1/2
802d-tm2	-	FALSE	-	-	1/1
802d-tm3	-	FALSE	-	-	1/1

Description:

Hirth tooth system is active when value 1 is set.

MD irrelevant if axis is not an indexing axis.

Related to:

MD30500 \$MA INDEX AX ASSIGN POS TAB, MD30501

\$MA_INDEX_AX_NUMERATOR, MD30502 \$MA_INDEX_AX_DENOMINATOR,

MD30503 \$MA_INDEX_AX_OFFSET

30550	AXCONF_ASS	AXCONF_ASSIGN_MASTER_CHAN			K5,TE3,B3,S3,K1, R1
-	Initial setting of channel for change of axis			BYTE	PowerOn
-					
-	-	0	0	10	0/0

Description:

Definition of the channel to which the axis is assigned after

Power ON.

Related to:

MD20070 \$MC_AXCONF_MACHAX_USED

30552	AUTO_GET_T\	/PE		EXP, A06, A10	K5,M3,TE6,P2,P5 ,2.4
-	Automatic GET for get axis			BYTE	PowerOn
-					
-	-	1	0	2	0/0

Description:

- 0 = No automatically created GET \rightarrow Alarm in response to incorrect programming.
- 1 = GET is output when GET is generated automatically.
- 2 = GETD is output when GET is generated automatically.

30600	FIX_POINT_POS			A03, A10	K1,W3			
mm, degrees	Fixed-value positions of axis with G75			DOUBLE	PowerOn			
-								
-	4	0.0, 0.0, 0.0, 0.0	-	-	2/2			

Description:

The fixed-point positions (4 max.) for each axis which can be approached when ${\tt G75}$ is programmed or via JOG are entered in these machine data.

References:

/PA/, "Programming Guide: Fundamentals"

30610	NUM_FIX_POINT_POS			A03, A10	K1
-	Number of fixed-value positions of an axis			DWORD	PowerOn
-					
-	-	0	0	4	2/2

Description:

Number of fixed point positions set, i.e. the number of valid entries in MD30600 $MA_FIX_POINT_POS$.

For G75, two (2) fixed point positions are assumed in MD30600 $MA_FIX_POINT_POS$ for reasons of compatibility, even if '0' has been entered in this machine data.

30800	WORKAREA_CHECK_TYPE			-	A3
-	Type of check of working area limitations.			BOOLEAN	NEW CONF
CTEQ					
-	-	FALSE	-	-	0/0

Description:

With this machine data you can specify whether only the working area limitations of traversing axes are to be checked (0)

or

whether the stationary axes in a traversing block are also to be checked $\ (1)$.

The value 0 corresponds to the behavior up to SW5.

2.4.2 Encoder matching

31000	ENC_IS_LINEAR			A02, A11, -	G2
-	Linear scale			BOOLEAN	PowerOn
-					
-	1	FALSE, FALSE	-	-	2/2

Description:

 $\ensuremath{\mathsf{MD}} = 1 \colon \mathsf{Encoder}$ for position actual-value acquisition is linear (linear scale).

MD = 0: Encoder for position actual-value acquisition is rotary. The index [n] of the machine data has the following coding: $[encoder\ no.]$: 0 or 1

31010	ENC_GRID_PC	DINT_DIST	A02, A11, -	G2	
mm	Division period for linear scales			DOUBLE	PowerOn
-					
-	1	0.01, 0.01	-	-	2/2

Description:

For linear measuring system only:

The distance between the reference marks on the linear scale must be entered in this $\ensuremath{\mathsf{MD}}.$

Index [n] of the machine data has the following coding:

[encoder no.]: 0 or 1

31020	ENC_RESOL			A02, A11, -	G2,R1
-	Encoder lines per revolution			DWORD	PowerOn
-					
-	1	2048, 2048	-	-	2/2

Description:

For rotary measuring system only:

The number of encoder lines per encoder revolution must be entered in this $\ensuremath{\mathsf{MD}}$.

Index [n] of the machine data has the following coding: [encoder no.]: 0

31025	ENC_PULSE_MULT			EXP, A01, A02	-	
-	Encoder multiplication (high-resolution)			DWORD	PowerOn	
-						
-	1	2048, 2048	-		-	2/2

Description:

For PROFIdrive only:

This MD describes the measuring system multiplication on PROFIBUS/PROFINET.

Default value 2048 means: changing by just one encoder line can be seen in bit11 of the actual PROFIdrive value XIST1, that is, the actual encoder value is multiplied by 2 to the power of 11=2048.

31030	LEADSCREW_PITCH			A02, A11, -	G2,A3
mm	Pitch of leadscrew			DOUBLE	PowerOn
-					
-	-	10.0	-	-	2/2

The ball screw lead must be entered in the MD (see data sheet: mm/rev or inch/rev).

Special meaning for hydraulic linear drives:

If a hydraulic linear drive (HLA) is configured as rotary axis, it must be specified in this MD, which drive feedrate in mm corresponds to a programmed revolution (360 degrees).

31040	ENC_IS_DIRECT	A02, A11, -	G2,S1
-	Direct measuring system (no compilation to load position) BOOLEAN	PowerOn
-			
-	1 FALSE, FALSE -	-	2/2

Description:

MD = 1:

Encoder for actual position value sensing is attached directly to the machine (without an intermediate gear unit).

MD = 0:

Encoder for actual position value sensing is attached to the motor (MD31060 $MA_DRIVE_AX_RATIO_NUMERA$ and MD31050 $MA_DRIVE_AX_RATIO_DENOM$ are included in the encoder valuation).

The index[n] of the machine data has the following coding: [encoder no.]: 0 or 1

Special cases:

An incorrect entry may result in an incorrect encoder resolution, as, for example, the gear ratios would be calculated incorrectly.

31044	ENC_IS_DIRECT2			A02, -	G2,S1
-	Encoder mounted on the additional gearbox			BOOLEAN	NEW CONF
-					
-	1	FALSE, FALSE	-	-	2/2

Description:

When using a load intermediate gearbox (for example for rotating tools, compare MD31066 \$MA_DRIVE_AX_RATIO2_NUMERA and MD31064 \$MA_DRIVE_AX_RATIO2_DENOM), the encoder installation location can be defined as "on the output" of this load intermediate gearbox: Encoder installation "on the output of the load intermediate gearbox" is configured by MD31040 \$MA_ENC_IS_DIRECT=1 and MD31044 \$MA_ENC_IS_DIRECT=1 at the same time.

Encoder installation "on the input of the load intermediate gearbox" is configured by MD31040 $MA_ENC_IS_DIRECT=1$ together with MD31044 $MA_ENC_IS_DIRECT=0$.

A parameterization alarm will be output if MD31044 $MA_ENC_IS_DIRECT2=1$ is set without MD31040 $MA_ENC_IS_DIRECT=1$ (this combination has not been defined).

31050	DRIVE_AX_RATIO_DENOM			A02, A11, -	A2,A3,G2,S1,V1
-	Denominator load gearbox			DWORD	PowerOn
-					
-	6	1, 1, 1, 1, 1	1	2147000000	2/2

Description:

The load gearbox denominator is entered in this MD.

The index [n] of the machine data has the following coding:

[control parameter set no.]: 0-5

31060	DRIVE_AX_RATIO_NUMERA			A02, A11, -	A2,A3,G2,S1,V1
-	Numerator load gearbox			DWORD	PowerOn
-					
-	6	1, 1, 1, 1, 1	-2147000000	2147000000	2/2

Description:

The load gearbox numerator is entered in this MD.

The index [n] of the machine data has the following coding:

[control parameter set no.]: 0-5

31064	DRIVE_AX_RATIO2_DENOM			A02, -	G2,S1
-	Denominator additional gearbox I			DWORD	NEW CONF
-					
-	-	1	1	2147000000	2/2

Description:

Intermediate gearbox denominator

This MD together with MD31066 $MA_DRIVE_AX_RATIO2_NUMERA$ defines an intermediate gearbox that acts as a multiplier to the motor/load gearbox (described by MD31060 $MA_DRIVE_AX_RATIO_NUMERA$ and MD31050 $MA_DRIVE_AX_RATIO_DENOM$).

The load intermediate gearbox is inactive with the default values 1:1.

Please consider MD31044 $MA_ENC_IS_DIRECT2$ for encoder installation.

When the Safety Integrated functionality (see MD36901 $MA_SAFE_FUNCTION_ENABLE$) is active, the intermediate gearbox can be used, if

- the effectively active gear ratio from the motor to the tool is considered in the safety-relevant machine data and if
- the safety-relevant supplementary conditions for gear ratios are considered.

For more detailed information see the Safety Integrated Description of Functions.

31066	DRIVE_AX_RATIO2_NUMERA			A02, -	G2,S1
-	Numerator additional gearbox			DWORD	NEW CONF
-					
-	-	1	-2147000000	2147000000	2/2

Description:

Intermediate gearbox numerator

Related to:

MD31064 \$MA DRIVE AX RATIO2 DENOM

31070	DRIVE_ENC_RATIO_DENOM			A02, A11, -	A3,G2,S1
-	Denominator measuring gearbox			DWORD	PowerOn
-					
-	1	1, 1	1	2147000000	2/2

The measuring gearbox denominator is entered in this MD. The index [n] of the machine data has the following coding: $[encoder\ no.]$: 0

31080	DRIVE_ENC_RATIO_NUMERA			A02, A11, -	A3,G2,S1
-	Numerator measuring gearbox			DWORD	PowerOn
-					
-	1	1, 1	1	2147000000	2/2

Description:

The measuring gearbox numerator is entered in this MD. The index [n] of the machine data has the following coding: $[encoder\ no.]$: 0

31090	JOG_INCR_WEIGHT			A01, A12	H1,G2	
mm, degrees	Evaluation of a	Evaluation of an increment with INC/handwheel			DOUBLE	Reset
CTEQ						
-	2	0.001, 0.00254	-		-	2/2

Description:

The value entered in this MD defines the path of an increment which applies when an axis is traversed with the JOG keys in incremental mode or with the handwheel.

The path traveled by the axis on each increment each time the traversing key is pressed or for each handwheel detent position is defined by the following parameters:

• MD31090 \$MA_JOG_INCR_WEIGHT
(Weighting of an increment of a machi

(Weighting of an increment of a machine axis for INC/handwheel)

• Selected increment size (INC1, ..., INCvar)

The possible increment stages are defined globally for all axes in MD11330 $MN_JOG_INCR_SIZE_TAB~[n]$ and in SD41010 $SN_JOG_VAR_INCR_SIZE$.

Entering a negative value reverses the direction of evaluation of the traverse keys and the handwheel rotation.

Related to:

MD11330 \$MN_JOG_INCR_SIZE_TAB SD41010 \$SN JOG VAR INCR SIZE

31122	BERO_DELAY_TIME_PLUS			A02, A06	S1,R1
S	BERO delay time Plus			DOUBLE	NEW CONF
-					
-	1	0.000110, 0.000110	-	-	2/2

Description:

This machine data in combination with the setting in MD34200 $MA_ENC_REFP_MODE$ (referencing mode) = 7 causes a signal runtime compensation in the positive direction of movement at a position determined by a BERO (zero mark).

The typical total delay time of the BERO message path for over-travel in the positive direction of movement is entered.

This time includes:

- the BERO edge delay time
- the time for digitizing the signal
- the time for processing the measured value, etc.

The periods of time depend on the hardware used. The default value is typical for SIEMENS products. Adjustment by the customer is only required in exceptional cases.

Input of the minimum value "0.0" deactivates the compensation (only active in combination with MD34200 $MA_ENC_REFP_MODE = 7$). The machine data is available for all encoders.

Related to:

MD34200 \$MA_ENC_REFP_MODE (referencing mode) MD34040 \$MA REFP VELO SEARCH MARKER[n]

(reference point creep velocity [Enc. no.])

31123	BERO_DELAY_TIME_MINUS	A02, A06	S1,R1
S	BERO delay time minus	DOUBLE	NEW CONF
-			
-	1 0.000078, 0.000078 -	-	2/2

Description:

This machine data in combination with the setting in MD34200 $MA_ENC_REFP_MODE$ (referencing mode) = 7 causes a signal runtime compensation in the negative direction of movement at a position determined by a BERO (zero mark).

The typical total delay time of the BERO message path for overtravel in the negative direction of movement is entered. $\,$

The time includes:

- the BERO edge delay time
- the time for digitizing the signal
- the time for processing the measured value, etc.

The periods of time depend on the hardware used. The default value is typical for SIEMENS products. Adjustment by the customer is only required in exceptional cases.

Input of the minimum value "0.0" deactivates the compensation (only active in combination with MD34200 $MA_ENC_REFP_MODE = 7$).

The machine data is available for all encoders.

Related to:

MD34200 \$MA_ENC_REFP_MODE (referencing mode)
MD34040 \$MA_REFP_VELO_SEARCH_MARKER[n]
(creep velocity [Enc. no.])

31200	SCALING_FACTOR_G70_G71			EXP, A01	G2
-	Factor for converting values while G70/G71 is active			DOUBLE	PowerOn
CTEQ					
-	-	25.4	1.e-9	-	0/0

The inch/metric conversion factor by which the programmed geometry of an axis (position, polynomial coefficients, radius for circular programming,...) is multiplied when the programmed value for G code group G70/G71 differs from the initial setting value (set in MD20150 $MC_GCODE_RESET_VALUES[n]$) is entered in this MD.

The factor can be set for each axis individually, so that pure positioning axes are not dependent on G70/G71. The factors within the three geometry axes should not be different.

The data influenced by ${\rm G70/G71}$ are described in the Programming Guide.

Related to:

MD20150 \$MC GCODE RESET VALUES[n] (G group initial setting).

2.4.3 Closed-loop control

32000	MAX_AX_VELO			A11, A04	M3,TE1,TE3,W6, Z3,H1,K3,M1,P2, A3,B2,G2,H2,S1, V1,W1
mm/min, rev/min	maximum axis	velocity		DOUBLE	NEW CONF
CTEQ					
-	-	10000.,10000.,10000., 10000.,10000	1.e-9	-	7/2

Description:

Maximum velocity at which the axis can permanently travel. The value limits both the positive and the negative axis velocity. The axis traverses at this velocity, if rapid traverse has been programmed.

Depending on the MD30300 $MA_IS_ROT_AX$, the maximum rotary or linear axis velocity has to be entered.

In the machine data, the dynamic behavior of the machine and drive and the limit frequency of the actual value acquisition must be taken into account.

32010	JOG_VELO_RAPID			A11, A04, -	H1
mm/min, rev/min	Rapid traverse	apid traverse in jog mode			Reset
CTEQ					
-		10000.,10000.,10000., 10000.,10000	-	-	7/2

Description:

The axis velocity entered applies when the rapid traverse override key is pressed in JOG mode and when the axial feedrate override is set to 100%.

The value entered must not exceed the maximum permissible axis velocity (MD32000 MA MAX AX VELO).

This machine data is not used for the programmed rapid traverse ${\tt G0.}$

Machine Data 06/2009

Axis-specific machine data

MD irrelevant to:
Operating modes AUTOMATIC and MDI
Related to:
MD32000 \$MA_MAX_AX_VELO (maximum axis velocity)
MD32040 \$MA_JOG_REV_VELO_RAPID
(revolutional feedrate for JOG with rapid traverse override)
NC/PLC interface signal V3200 1000.5,1004.5,1008.5 (Rapid traverse override)
NC/PLC interface signal V3200 0004 (Feedrate override A-H)

32020	JOG_VELO			A11, A04, -	H1
mm/min, rev/min	Jog axis velocit	og axis velocity			Reset
CTEQ					
-		2000.,2000.,2000.,200 0.,2000.,2000	-	-	7/2

Description:

The velocity entered applies to traversing in JOG mode when the axial feedrate override switch position is 100%.

This velocity is only used when general SD41110 $SN_JOG_SET_VELO = 0$ for linear axes, and linear feedrate is selected (SD41100 $SN_JOG_REV_IS_ACTIVE = 0$) or SD41130 $SN_JOG_ROT_AX_SET_VELO = 0$ for rotary axes.

If this is the case, the axis velocity is active for

- continuous jogging
- incremental jogging (INC1, ... INCvar)
- handwheel jogging

The value entered must not exceed the maximum permissible axis velocity (MD32000 \$MA MAX AX VELO).

If DRF is active, the axis velocity for JOG must be reduced with MD32090 $MA \ ANDWH \ VELO \ OVERLAY \ FACTOR.$

Spindles in JOG mode:

This machine data can also be used to define the JOG mode speed for specific spindles (if SD41200 $SN_JOG_SPIND_SET_VELO = 0$). However, the speed can be modified with the spindle override switch. Related to:

MD32000 \$MA MAX AX VELO

(maximum axis velocity)

MD32050 \$MA_JOG_REV_VELO

(revolutional feedrate for JOG)

MD32090 \$MA_HANDWH_VELO_OVERLAY_FACTOR

(ratio of JOG velocity to handwheel velocity (DRF))

SD41110 \$SN JOG SET VELO

(JOG velocity for G94)

SD41130 \$SN JOG ROT AX SET VELO

(JOG velocity for rotary axes)

NC/PLC interface signal V3200 0004 (Feedrate override A-H)

32040	JOG_REV_VELO_RAPID			A11, A04	H1,P2,R2,T1,V1,Z 1
mm/rev	Revolutional fe	volutional feedrate in JOG with rapid traverse override			Reset
CTEQ					
-	-	2.5,2.5,2.5,2.5,2.5, 2.5,2.5,2.5	-	-	1/1

The value entered defines the revolutional feedrate of the axis in JOG mode with rapid traverse override in relation to the revolutions of the master spindle. This feedrate is active when SD41100 \$SN_JOG_REV_IS_ACTIVE = 1. (Revolutional feedrate active with JOG) MD irrelevant for:

SD41100 \$SN_JOG_REV_IS_ACTIVE = "0"

Related to:

 ${\tt SD41100~\$SN_JOG_REV_IS_ACTIVE}$ (revolutional feedrate with JOG active)

MD32050 \$MA_JOG_REV_VELO (revolutional feedrate with JOG)

32050	JOG_REV_VELO		A11, A04	H1,P2,R2,T1,V1,Z 1	
mm/rev	Revolutional fe	Revolutional feedrate in JOG			Reset
CTEQ					
-		0.5,0.5,0.5,0.5,0.5,0.5, 0.5,0.5,0.5	-	-	1/1

Description:

The value entered defines the revolutional feedrate of the axis in JOG mode in relation to the revolutions of the master spindle. This feedrate is active when SD41100 $SN_JOG_REV_IS_ACTIVE=1$ (revolutional feedrate active with JOG).

MD irrelevant for:

Linear feedrate; i.e. SD41100 \$SN_JOG_REV_IS_ACTIVE = 0
Related to:

SD41100 \$SN_JOG_REV_IS_ACTIVE

(revolutional feedrate for JOG active)

MD32040 \$MA_JOG_REV_VELO_RAPID

(JOG revolutional feedrate with rapid traverse override)

32060	POS_AX_VELO			· ·	H1,P2,K1,V1,2.4, 6.2
mm/min, rev/min	Initial setting fo	al setting for positioning axis velocity			Reset
CTEQ					
-	-	10000.,10000.,10000., 10000.,10000	-	-	1/1

Description:

If a positioning axis is programmed in the part program without specifying the axis-specific feedrate, the feedrate entered in MD32060 \$MA_POS_AX_VELO is automatically used for this axis. The feedrate in MD32060 \$MA_POS_AX_VELO applies until an axis-specific feedrate is programmed in the part program for this positioning axis.

MD irrelevant for:

 $\mbox{MD32060 $MA_POS_AX_VELO}$ is irrelevant for all axis types other than positioning axis.

Special cases:

If a ZERO velocity is entered in MD32060 $MA_POS_AX_VELO$, the positioning axis does not traverse if it is programmed without feed. If a velocity is entered in MD32060 $MA_POS_AX_VELO$ that is higher than the maximum velocity of the axis (MD32000 $MA_AX_AX_VELO$), the velocity is automatically restricted to the maximum rate.

32070	CORR_\	CORR_VELO			2.4,6.2		
%	Axis velo	ocity for override		DOUBLE	Reset		
CTEQ							
802d-cu3	-	50.0	-	-	2/2		
802d-ng2	-	50.0	-	-	1/1		
802d-ng3	-	50.0	-	-	1/1		
802d-tm1	-	50.0	-	-	0/0		
802d-tm2	-	50.0	-	-	0/0		
802d-tm3	-	50.0	-	-	0/0		

Description:

Limitation of axis velocity for handwheel override, external zero offset, continuous dressing, distance control AA_0FF via synchronized actions related to the JOG velocity

MD32020 \$MA_JOG_VELO,

MD32010 \$MA_JOG_VELO_RAPID,

MD32050 \$MA JOG REV VELO,

MD32040 \$MA_JOG_REV_VELO_RAPID.

The maximum permissible velocity is the maximum velocity in MD32000 \$MA MAX AX VELO. Velocity is limited to this value.

The conversion into linear or rotary axis velocity is made according to MD30300 $MA_IS_ROT_AX$.

32074	FRAME_	OR_CORRPOS_NO	OTALLOWED	A01	K5,K2,2.4,6.2			
-	Frame or	tool length compen	sation are not permissible	DWORD	PowerOn			
CTEQ								
802d-cu3	-	0	0	0xFFF	1/1			
802d-ng2	-	0	0	0xFFF	1/1			
802d-ng3	-	0	0	0xFFF	1/1			
802d-tm1	-	0	0	0xFFF	0/0			
802d-tm2	-	0	0	0xFFF	1/1			
802d-tm3	-	0	0	0xFFF	1/1			

```
This machine data is used to define the effectiveness of the
frames and tool length compensations for indexing axes, PLC axes
and command axes started from synchronized actions.
Bit assignment:
Bit 0 = 0:
  Programmable zero offset (TRANS) allowed for indexing axis
Bit 0 = 1:
  Programmable zero offset (TRANS) forbidden for indexing axis
Bit 1 = 0:
  Scale modification (SCALE) allowed for indexing axis
Bit 1 = 1:
  Scale modification (SCALE) forbidden for indexing axis
  Direction change (MIRROR) allowed for indexing axis
Bit 2 = 1:
  Direction change (MIRROR) forbidden for indexing axis
Bit 3 = 0:
  DRF offset allowed for axis
Bit 3 = 1:
  DRF offset forbidden for axis
Bit 4 = 0:
  External zero offset allowed for axis
Bit 4 = 1.
  External zero offset forbidden for axis
Bit 5 = 0:
  Online tool compensation allowed for axis
Bit 5 = 1:
  Online tool compensation forbidden for axis
Bit 6 = 0:
  Synchronized action offset allowed for axis
Bit 6 = 1:
```

Synchronized action offset forbidden for axis

Axial frames and tool length compensation are NOT considered for PLC axes (bit evaluation so for compatibility reasons)

Compile cycles offset allowed for axis

Compile cycles offset forbidden for axis

Bit 7 = 0:

Bit 7 = 1:

Bit 8 = 0:

Bit 8 = 1:

Machine Data 06/2009

Axis-specific machine data

Bit 9 = 0:

Axial frames are considered for command axes, and the tool length compensation is considered for command axes which are geometry axes.

Bit 9 = 1:

Axial frames and tool length compensation are NOT considered for command axes $\,$

Bit 10 = 0:

In JOG mode, too, traversing of a geometry axis as a PLC or command axis is NOT allowed with active rotation.

Bit 10 = 1:

In JOG mode, traversing of a geometry axis as a PLC axis or command axis (static synchronized action) is allowed with active rotation (ROT frame). Traversing must be terminated prior to returning to AUTOMATIC mode (neutral axis state), as otherwise alarm16908 would be output when the mode is changed.

Bit 11 = 0:

In the 'Program interrupted' status, repositioning to the interrupt position (AUTO - ${\sf JOG}$) takes place when changing from ${\sf JOG}$ to AUTO.

Bit 11 = 1:

Prerequisite: Bit 10 == 1 (PLC or command axis motion with active rotation in JOG mode).

In the 'Program interrupted' status, the end point of the PLC or command axis motion is taken over when changing from JOG to AUTOMATIC and the geometry axes are positioned according to the rotation

32080	HANDWH_MAX_INCR_SIZE			A05, A10	H1
mm, degrees	Limitation of selected increment			DOUBLE	Reset
CTEQ					
-	-	0.0	-	-	1/1

Description:

> 0: Limitation of size of selected increment $MN_JOG_INCR_SIZE < Increment/VDI signal>Ü or SD41010 <math display="inline">SN_JOG_VAR_INCR_SIZE$ for the associated machine axis

0: No limitation

32082	HANDWH	_MAX_INCR_VELO_SIZE		A05, A10, A04	-
mm/min, rev/min	Limitation	for velocity override		DOUBLE	Reset
CTEQ					•
802d-cu3	-	500.0,500.0,500.0,500 .0,500.0,500.0	-	-	2/2
802d-ng2	-	500.0,500.0,500.0,500 .0,500.0,500.0	-	-	1/1
802d-ng3	-	500.0,500.0,500.0,500 .0,500.0,500.0	-	-	1/1
802d-tm1	-	500.0,500.0,500.0,500 .0,500.0,500.0	-	-	1/1
802d-tm2	-	500.0,500.0,500.0,500 .0,500.0,500.0	-	-	1/1
802d-tm3	-	500.0,500.0,500.0,500 .0,500.0,500.0	-	-	1/1

For the velocity override of positioning axes:

>0: Limitation of size of selected increment

 $MN_JOG_INCR_SIZEL < Increment/VDI signal > 0 or SD41010 $SN JOG VAR INCR SIZE for the associated machine axis$

0: No limitation

32084	HANDW	H_STOP_COND		EXP, A10	H1
-	Handwh	eel travel behavior		DWORD	Reset
CTEQ				•	-
802d-cu3	-	0xFF	0	0x7FF	2/2
802d-ng2	-	0xFF	0	0x7FF	1/1
802d-ng3	-	0xFF	0	0x7FF	1/1
802d-tm1	-	0xFF	0	0x7FF	1/1
802d-tm2	-	0xFF	0xFF 0		1/1
802d-tm3	-	0xFF	0	0x7FF	1/1

Description:

Definition of the response of the handwheel travel to axis-specific VDI interface signals or a context-sensitive interpolator stop:

Bit = 0:

Interruption or collection of the distances preset via the handwheel.

Bit = 1:

Cancellation of the traversing motion or no collection.

Bit assignment:

Bit 0: feedrate override

Bit 1: spindle speed override

Bit 2: feedrate stop/spindle stop or context-sensitive interpola-

tor stop

Bit 3: clamping procedure running (= 0 no effect)

Bit 4: servo enable

Bit 5: pulse enable

For machine axis:

Bit 6 = 0

For handwheel travel, the maximum velocity at which the relevant machine axis can be traversed is the feedrate set in MD32020 MA_JOG_VELO .

Machine Data 06/2009

Axis-specific machine data

```
Bit 6 = 1
  For handwheel travel, the maximum velocity at which the rele-
  vant machine axis can be traversed is the feedrate set in
  MD32000 $MA MAX AX VELO.
Bit 7 = 0
  The override is active in handwheel travel.
Bit 7 = 1
  The override is always assumed to be 100% for handwheel travel,
  regardless of how the override switch is set.
  Exception: override 0% is always active.
Bit. 8 = 0
  The override is active with DRF
Bit 8 = 1
  The override is always assumed to be 100% for DRF, regardless of
  how the override switch is set.
  Exception: override 0% is always active.
Bit 9 = 0
  For handwheel travel, the maximum possible velocity with revo-
  lutional feedrate is
  - with the feedrate in SD41120 $SN JOG REV SET VELO or
  - the feedrate in MD32050 $MA_JOG_REV_VELO or
  - in the case of rapid traverse with MD32040
  $MA JOG REV VELO RAPID
   of the relevant machine axis calculated with the spindle or
  rotary axis feedrate.
Bit 9 = 1
  For handwheel travel, the maximum possible velocity is with the
  revolutional feedrate in MD32000 $MA MAX AX VELO of the rele-
  vant machine axis. (see also bit 6)
Bit 10 = 0
  For overlaid motions, $AA_OVR is not active.
Bit 10 = 1
  For overlaid motions (DRF, $AA OFF, external work offset,
  online tool offset), the override $AA OVR settable via synchro-
  nized actions is active.
Bit 11 = 0
  With the VDI interface signal "driveReady" (= 0) missing, paths
  defined by the handwheel are not collected, but a traversing
  request is displayed. Start of a continuous JOG motion in con-
  tinuous mode ($SN JOG CONT MODE LEVELTRIGGRD 41050 = 0) or an
  incremental JOG motion in continuous mode
  ($MN_JOG_INC_MODE_LEVELTRIGGRD 11300 = 0) is displayed as a
  traversing request. With "driveReady" = 1, however, the tool is
  not traversed, but the procedure is aborted and must be started
  again.
Bit 11 = 1
  With the VDI interface "driveReady" missing, the paths defined
  by the handwheel are collected. Start of a continuous JOG motion
  in continuous mode ($SN JOG CONT MODE LEVELTRIGGRD 41050 = 0)
  or an incremental JOG motion in continuous mode
  ($MN JOG INC MODE LEVELTRIGGRD 11300 = 0) is displayed and
  saved as a traversing request. With "driveReady" = 1 the tra-
  versing motion is started.
```

32090	HANDWH		_FACTOR	A10, A04	H1			
-	Ratio of J	IOG velocity to hand	wheel velocity (DRF)	DOUBLE	Reset			
CTEQ								
802d-cu3	-	0.5	-	-	2/2			
802d-ng2	-	0.5	-	-	1/1			
802d-ng3	-	0.5	-	-	1/1			
802d-tm1	-	0.5	-	-	1/1			
802d-tm2	-	0.5	-	-	1/1			
802d-tm3	-	0.5	-	-	1/1			

The velocity active with the handwheel in DRF can be reduced from the ${\tt JOG}$ velocity with this machine data.

The following applies to linear axes for the velocity active with DRF:

```
vDRF = SD41110 $SN_JOG_SET_VELO * MD32090
$MA_HANDWH_VELO_OVERLAY_FACTOR
or when SD41110 $SN_JOG_SET_VELO = 0:
vDRF = MD32020 $MA_JOG_VELO * MD32090
$MA HANDWH VELO OVERLAY FACTOR
```

The velocity setting in SD41130 $SN_JOG_ROT_AX_SET_VELO$ applies for DRF on rotary axes instead of the value in SD41110 $SN_JOG_SET_VELO$.

MD irrelevant for:

JOG handwheel

Related to:

MD32020 \$MA_JOG_VELO (JOG axis velocity) SD41110 \$SN_JOG_SET_VELO (JOG velocity for G94)

SD41130 \$SN_JOG_ROT_AX_SET_VELO (JOG velocity for rotary axes)

32100	AX_MOTION_DIR			A07, A03, A11, -	G1,TE3,G2		
-	Traversing direction (not control direction)			DWORD	PowerOn		
-							
-	-	1 -1 1			2/2		

Description:

The direction of movement of the machine can be reversed with this $\ensuremath{\mathsf{MD}}\,.$

The control direction is, however, not destroyed, i.e. closed-loop control remains stable.

-1: direction reversed0, 1: direction not reversed

32110	ENC_FEEDBACK_POL			A07, A02, A11	G2		
-	Sign actual value (control direction)			DWORD	PowerOn		
-							
-	1	1, 1	-1	1	2/2		

Description:

The evalution direction of the shaft encoder signals is entered into the MD.

-1: actual value is reversed

0, 1: actual value is not reversed

The index[n] of the machine data has the following coding:

[Encoder no.]: 0 or 1

Special cases:

When an incorrect control direction is entered, the axis can run off.

Depending on the setting of the corresponding limit values, one of the following alarms is displayed:

Alarm 25040 "Standstill monitoring"

Alarm 25050 "Contour monitoring"

Alarm 25060 "Speed setpoint limitation"

If an uncontrolled setpoint leap occurs on connection of a drive, the control direction might be incorrect.

32200	POSCTRL_GAIN			A07, A11	G1,TE1,TE9,K3,S 3,A2,A3,D1,G2,S1 ,V1
1000/min	Servo gain fac	Servo gain factor			NEW CONF
CTEQ					·
-	6	16.66666667, 16.66666667, 16.66666667, 16.66666667, 16.66666667	0	2000.	7/2

Description:

Position controller gain, or servo gain factor.

The input/output unit for the user is [(m/min)/mm].

I.e. MD32200 $MA_POSCTRL_GAIN[n] = 1$ corresponds to a 1 mm following error at V = 1m/min.

The following machine data have default settings for adapting the standard selected input/output unit to the internal unit [rev/s].

- MD10230 \$MN SCALING FACTORS USER DEF[9] = 16.666667S
- MD10220 \$MN_SCALING_USER_DEF_MASK = 0x200; (bit no 9 as hex value).

If the value "0" is entered the position controller is opened. When entering the servo gain factor it is important to take into account that the gain factor of the whole position control loop is still dependent on other parameters of the controlled system. A distinction should be made between a "desired servo gain factor" (MD32200 \$MA_POSCTRL_GAIN) and an "actual servo gain factor" (produced by the machine). Only when all the parameters of the control loop are matched will these servo gain factors be the same.

Other factors are:

 Speed setpoint adjustment (MD32260 \$MA_RATED_VELO, MD32250 \$MA RATED OUTVAL)

or automatic speed setpoint interface adjustment (with MD32250 MA RATED OUTVAL = 0 etc.)

- Correct actual value recording of the position encoder (no. of encoder marks, high resolution, encoder mounting location, gear etc.)
- Correct actual speed recording on the drive (standardization, possibly tacho compensation, tacho generator)

Note:

Axes which interpolate together and are to perform a machining operation, must either have the same gain setting (i.e. have the identical following error = 45° slope at the same velocity) or they must be matched via MD32910 \$MA_DYN_MATCH_TIME.

The actual servo gain factor can be checked by means of the following error (in the service display). However, note that the drift compensation must be checked first.

In the case of analog axes, a drift compensation must be performed prior to the control.

The index [n] of the machine data has the following coding: [control parameter set no.]: 0-5

32210	POSCTRL_INTEGR_TIME			A07	G2			
s	Position controller integral time			DOUBLE	NEW CONF			
-								
-	-	1.0	0	10000.0	2/2			

Description:

Position controller integral action time for the integral component in \boldsymbol{s}

The MD is only active if MD32220 $MA_POSCTRL_INTEGR_ENABLE = TRUE$. A value of the MD less than 0.001 disables the integral component of the PI controller. The controller is then a P controller, which works with disabled manipulated variable clamping (see also MD32230 $MA_POSCTRL_CONFIG$, bit0 = 1).

32220	POSCTRL_INTEGR_ENABLE			A07	G2			
-	Enable integral	nable integral component position controller			PowerOn			
-		·						
-	-	FALSE	-	-	2/2			

Description:

Enable of the integral component position controller; the position controller is then a PI controller in which the manipulated variable clamping is disabled (s.a. MD32230 \$MA_POSCTRL_CONFIG, bit0 = 1).

Position overshoots may occur if the integral component is used. For this reason, this functionality may only be used in special cases.

32230	POSCTRL_CONFIG		A07	TE1	
-	Configuration of the position controller structure		BYTE	PowerOn	
-					
-	-	0	0	17	7/2

Description:

Configuration of the position controller structure:

Bit0 = 1: Manipulated variable clamping inactive

Bit4 = 1: Accelerated exact stop signal active

32250	RATED_OUTVAL			A01, A11	A3,D1,G2
%	Rated output voltage			DOUBLE	NEW CONF
CTEQ					
-	1	0.0	0.0	200	1/1

Description:

a.)

Scaling of the manipulated variable with analog drives: The value of the speed setpoint in percent is to be entered in this MD, in relation to the maximum speed setpoint at which the motor speed specified in MD32260 \$MA_RATED_VELO[n] is reached. Related to:

MD32250 $\texttt{$MA_RATED_OUTVAL[n]}$ only makes sense in combination with MD32260 $\texttt{$MA_RATED_VELO[n]}$.

Example:

- 1. At a voltage of 5V, the drive reaches a speed of
 1875 rev/min ==> RATED_OUTVAL = 50%, RATED_VELO = 11250
 [degrees/s]
- 2. At a voltage of 8V, the drive reaches a speed of
 3000 rev/min ==> RATED_OUTVAL = 80%, RATED_VELO = 18000
 [degrees/s]
- 3. At a voltage of 1.5V, the drive reaches a speed of
 562.5 rev/min ==> RATED_OUTVAL = 15%, RATED_VELO = 3375
 [degrees/s]

All three examples are possible for one and the same drive/converter. The ratio of the two values is decisive; it is the same in all three examples.

MD32250 \$MA_RATED_OUTVAL and MD32260 \$MA_RATED_VELO describe physical characteristics of converter and drive; they can therefore only be determined by means of measurement or start-up instructions (converter, drive).

b.)

Scaling of the manipulated variable with digital PROFIdrive drives:

Default value "0" declares MD32250 \$MA_RATED_OUTVAL and MD32260 \$MA_RATED_VELO as invalid. Scaling of the manipulated variable is automatically determined and adjusted from the drive parameters instead.

Otherwise (MD32250 \$MA_RATED_OUTVAL unequal to zero), the scaling of the manipulated variable is not determined from the drive (for example non-Siemens PROFIdrive drives), but set with RATED_VELO and RATED_OUTVAL, even in the case of these, irrespective of the scaling active on the drive side. In this case, the following applies:

Scaling of the manipulated variable on the drive = $RATED_VELO$ / RATED OUTVAL

In the case of simultaneous operation of analog and PROFIdrive drives, the settings for the analog axes must be adjusted as described in a.).

32260	RATED_VELO			A01, A11	A3,D1,G2
rev/min	Rated motor speed			DOUBLE	NEW CONF
CTEQ					
-	1	3000.0	-	-	1/1

Only applies when:

MD32250 \$MA_RATED_OUTVAL is set greater than 0.

The drive speed (scaled on the drive) that is reached with the percentual speed setpoint specified in MD32250 $MA_RATED_OUTVAL[n]$ must be entered in the MD.

Related to:

MD32260 $\texttt{SMA_RATED_VELO[n]}$ only makes sense in combination with MD32250 $\texttt{SMA_RATED_OUTVAL[n]}$.

32300	MAX_AX_ACCEL			A11, A04, -	M3,TE6,Z3,H1,K3 ,M1,A3,B1,B2,K1, V1,2.4
m/s², rev/s²	maximum axis	maximum axis acceleration			NEW CONF
CTEQ					
-	5	1.0, 1.0, 1.0, 1.0, 1.0,1.0, 1.0, 1.0, 1.0, 1.0	1.0e-3	-	7/2

Description:

Maximum acceleration, i.e. change in setpoint velocity, which is to act upon the axis. The value limits both the positive and negative axis acceleration.

Depending on machine data MD30300 \$MA_IS_ROT_AX, the maximum angular or linear axis acceleration must be entered.

If axes are interpolated linearly in a grouping, the grouping is limited in such a way that no axis is overloaded. With regard to contour accuracy, the control dynamic behavior has to be taken into account.

 $\ensuremath{\mathsf{MD}}$ irrelevant for error states that lead to rapid stop. Related to:

MD32210 \$MA_MAX_ACCEL_OVL_FACTOR
MD32434 \$MA_G00_ACCEL_FACTOR
MD32433 \$MA_SOFT_ACCEL_FACTOR
MD20610 \$MC_ADD_MOVE_ACCEL_RESERVE
MD20602 \$MC_CURV_EFFECT_ON_PATH_ACCEL

32301	JOG_MAX_AC	CEL	A11, A04, -	-	
m/s², rev/s²	Maximum acceleration in JOG mode			DOUBLE	NEW CONF
CTEQ					
-	-	0.0	-	-	0/0

Description:

MD32301 \$MA_JOG_MAX_ACCEL is effective only in JOG mode.

It ensures that the acceleration set in the MD is not exceeded when the axis/spindle is in JOG mode.

MD32301 $MA_JOG_MAX_ACCEL = 0$ disables the limit. The actual acceleration value of the axis/spindle is then effective. Related to:

MD32300 \$MA_MAX_AX_ACCEL (axis acceleration)

MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL (acceleration of spindle in speed control mode)

 $\texttt{MD35210}\ \$\texttt{MA_GEAR_STEP_POSCTRL_ACCEL}\ (acceleration of spindle in position control mode)$

MD35212 \$MA_GEAR_STEP_POSCTRL_ACCEL2 (acceleration of spindle in position control mode, tapping)

32310	MAX_ACCEL_OVL_FACTOR			A04	B1
-	Overload factor for axial velocity steps			DOUBLE	NEW CONF
CTEQ					
-	5	1.26, 1.26, 1.26, 1.26, 1.26	-	-	1/1

Description:

The overload factor limits the velocity jump of the machine axis on block transition. The value entered is related to the value of MD32300 \$MA_MAX_AX_ACCEL (axis acceleration) and states by how much the maximum acceleration can be exceeded for one IPO cycle. Related to:

MD32300 \$MA_MAX_AX_ACCEL (axis acceleration)
MD10070 \$MN_IPO_SYSCLOCK_TIME_RATIO (interpolator clock)
There is an entry for each dynamic G code group.

32320				A05, A06, A10, A04	-
-	Reset behavior	Reset behavior of dynamic response limitation.			Reset
CTEQ					
-	-	0	0	0x01	2/2

Description:

With MD32320 $MA_DYN_LIMIT_RESET_MASK$, the reset behavior of functions limiting the dynamic response can be set.

The MD is bit-coded; currently only bit 0 (LSB) is assigned. Bit 0 == 0:

Channel reset/M30 resets the programmed ACC to 100%. (compatibility: same response as before)

Bit 0 == 1:

Programmed ACC is maintained beyond channel reset/M30.

32400	AX_JERK_ENABLE			A07, A04, -	B2
-	Axial jerk limitation			BOOLEAN	NEW CONF
CTEQ					
-	-	FALSE	-	-	1/1

Enables the function of an axial jerk limitation.

The limitation is set via a time constant; it is always active. The limitation works independently of the limitations "path-related maximum jerk", "knee-shaped acceleration characteristic" and the axial jerk limitation of the axes that are operated in JOG mode or positioning axis mode.

Related to:

MD32410 \$MA_AX_JERK_TIME (time constant for axial jerk limitation)

32402	AX_JERK_MODE			A07, A04	B2,G2,B3
-	Filter type for axial jerk limitation			BYTE	PowerOn
CTEQ					
-	-	1 1 3			1/1

Description:

Filter type for axial jerk limitation:

- 1: 2nd order filter (as in SW 1 through 4)
- 2: Moving averaging (SW 5 and higher)
- 3: Bandstop filter (SW 6 and higher)

Type 2 requires more computing time, but causes smaller contour errors for the same smoothing effect, or smoother movements at the same accuracy.

Type 2 is recommended; type 1 is set as a default value for reasons of compatibility.

The maximum jerk is set in the time constant MD32410 $\mbox{\rm SMA}$ AX JERK TIME.

Recommended values for type 1:

Min. 0.03 s; max. 0.06s.

Recommended values for type 2:

Min. 1 position-control cycle; max. 16 position-control cycles At a position-control cycle of 2ms, this corresponds to 0.002 to 0.032 seconds.

Type 3 requires the setting of MD32410 $MA_AX_JERK_TIME, MD32412 <math display="inline">AX$ JERK FREQ and MD32414 AX JERK DAMP.

To parameterize a simple bandstop filter, we recommend setting MD32410 $MA_AX_JERK_TIME=0$, which automatically sets "denominator frequency = numerator frequency = blocking frequency = MD32412 $MA_AX_JERK_FREQ$ ".

However, MD32410 \$MA_AX_JERK_TIME>0 is used to set a specific denominator frequency, which makes it possible to implement a bandstop filter with amplitude increase for frequencies beyond the blocking frequency.

MD32402 $MA_AX_JERK_MODE$ is only active if MD32400 $MA_AX_JERK_ENABLE$ has been set to 1.

Machine Data 06/2009

Axis-specific machine data

Special cases, errors:

The machine data must be same for all axes of an axis container. Related to:

MD32400 \$MA_AX_JERK_ENABLE

MD32410 \$MA AX JERK TIME

and for type 3: MD32412 $MA_AX_JERK_FREQ$ and MD32414

\$MA_AX_JERK_DAMP

32410	AX_JERK_TIME			A07, A04	G1,TE1,S3,B2,G2
s	Time constant for axial jerk filter			DOUBLE	NEW CONF
-					
-	-	0.001			1/1

Description:

Time constant of the axial jerk filter which causes a smoother axis setpoint characteristic. The jerk filter will only be active, if the time constant is higher than a position control cycle. Not active in case of errors that cause a change in follow-up mode (for example EMERGENCY STOP99:

Special cases:

Machine axes that are supposed to be interpolating with one another, must have the same effective jerk filtering (for example the same time constant for tapping without compensating chuck).

Related to:

MD32400 \$MA AX JERK ENABLE (axial jerk limitation)

32412	AX_JERK_FREQ			A07, A04	-			
-	Blocking frequency of axial jerk filter			DOUBLE	NEW CONF			
-								
-	-	10.0	-	-	1/1			

Description:

Blocking frequency of axial jerk filter bandstop MD is only active if MD32402 MA AX JERK MODE = 3

32414	AX_JERK_DAMP			A07, A04	-			
-	Damping of axial jerk filter			DOUBLE	NEW CONF			
-								
-	-	0.0	-	-	1/1			

Description:

Damping of axial jerk filter bandstop:

Input value 0 means complete blocking with MD32412

 $MA_AX_JERK_FREQ$, input values >0 can attenuate the blocking effect.

MD is only active if MD32402 MA AX JERK MODE = 3

32420	JOG_AND_POS_JERK_ENABLE			A04	G1,H1,P2,S3,B2
-	Default setting of	ult setting of axis jerk limitation			Reset
CTEQ					
-	-	FALSE	-	-	2/2

Enables the function of the axis-specific jerk limitation for the operating modes JOG, REF and positioning axis mode.

1: Axial jerk limitation for JOG mode and positioning axis mode

0: No jerk limitation for JOG mode and positioning axis mode

The maximum jerk occurring is defined in MD32430 $\,$

\$MA JOG AND POS MAX JERK.

Related to:

MD32430 \$MA_JOG_AND_POS_MAX_JERK (axial jerk)

32430	JOG_AND_POS_MAX_JERK			A04	G1,P2,S3,B2
m/s³, rev/s³	Axial jerk	kial jerk I			NEW CONF
CTEQ					
-		1000.0,1000.0,1000.0, 1000.0,1000.0	1.e-9	-	2/2

Description:

The jerk limit value limits the rate of change of axis acceleration in JOG, REF and positioning axis modes.

The setting and time calculation are made as for MD20600 \pm MD2 MAX PATH JERK (path-related maximum jerk).

MD irrelevant for:

- Path interpolation
- Error states that lead to rapid stop.

Related to:

 $\label{eq:md32420 sma_jog_and_pos_jerk_enable} \mbox{(initial setting of axial jerk limitation)}$

32431	MAX_AX_JERK			A04	B1,B2			
m/s³, rev/s³	maximum axial	aximum axial jerk for path movement			NEW CONF			
-								
-	5	1.e6, 1.e6, 1.e6, 1.e6, 1.e6	1.e-9	-	3/3			

Description:

Maximum axial jerk for path motion

There is an entry for each ${\tt G}$ code except for the 59th ${\tt G}$ code group (dynamic ${\tt G}$ code group).

32432	PATH_TRANS_JERK_LIM			A04	B1,B2			
m/s³, rev/s³	maximum axial jerk at block transition in continuous-path mode			DOUBLE	NEW CONF			
CTEQ								
-	5	1.e6, 1.e6, 1.e6, - 1.e6			3/3			

Description:

The control limits the jerk (acceleration jump) at a block transition between contour sections of different curvature to the value set.

MD irrelevant for:

Exact stop

Related to:

Continuous-path mode, SOFT type of acceleration

32433	SOFT_ACCEL_FACTOR			A04, -	TE9,B1,B2
-	Scaling of acceleration limitation with SOFT			DOUBLE	NEW CONF
-					
-	5	1., 1., 1., 1.	1e-9	-	1/1

Description:

Scaling of the acceleration limitation with SOFT.

Relevant axial acceleration limitation for SOFT =:

(MD32433 \$MA_SOFT_ACCEL_FACTOR[..] * MD32300 \$MA_MAX_AX_ACCEL[..])

There is an entry for each dynamic G code group.

32434	G00_ACCEL_FACTOR			A04, -	TE9,B1,B2
-	Scaling of acce	Scaling of acceleration limitation with G00.			NEW CONF
-					
-	-	1.	1e-9	-	1/1

Description:

Scaling of the acceleration limitation with G00. Relevant axial acceleration limitation for G00 =:

(MD32433 \$MA G00 ACCEL FACTOR[..] * MD32300 \$MA MAX AX ACCEL[..])

32435	G00_JERK_FACTOR			A04	B1,B2		
-	Scaling of jerk limitation with G00.			DOUBLE	NEW CONF		
-							
-	-	1.	1e-9	-	1/1		

Description:

Scaling of the jerk limitation with G00. Relevant axial jerk limitation for G00 = :

(MD32435 \$MA_G00_JERK_FACTOR[..] * MD32431 \$MA_MAX_AX_JERK[..])

32436	JOG_MAX_JERK			A04	-	
m/s³, rev/s³	Maximum axial jerk during JOG motion			DOUBLE	NEW CONF	
CTEQ						
-	-	0.0	-	-	0/0	

Description:

The jerk limit value limits the change of axis acceleration in ${\tt JOG}$ mode only .

The behavior of the MD is analog to:

MD32430 \$MA_JOG_AND_POS_MAX_JERK

It therefore also communicates with:

MD32420 \$MA_JOG_AND_POS_JERK_ENABLE (default of the axial jerk limitation)

32440	LOOKAH_FREQUENCY			EXP, A04	B1	
-	Smoothing frequency for Look Ahead			DOUBLE	NEW CONF	
-						
-	-	10.	-	-	2/2	

Description:

Acceleration procedures in continuous-path mode with Look Ahead which execute with a higher frequency than that parameterized in this MD are smoothed as a function of the parameterization in MD20460 $MC_LOOKAH_SMOOTH_FACTOR$.

It is always the minimum of all the axes participating in the path which is determined.

If vibrations are aroused in the mechanics of this axis and if their frequency is known, then this MD should be set to a lower value than this frequency.

32450	BACKLASH			A09	K3,G2
mm, degrees	Backlash			DOUBLE	NEW CONF
-					
-	1	0.0, 0.0	-	-	2/2

Backlash on reversal between positive and negative travel directions.

Input of the compensation value is

- ullet positive, if the encoder is leading the machine part (normal situation)
- negative, if the encoder is behind the machine part.

Backlash compensation is not active when 0 is entered.

Backlash compensation is always active after reference point approach in all operating modes.

Special cases:

A specific backlash on reversal must be entered for each measuring system.

Related to:

MD30200 \$MA NUM ENCS (number of measuring systems)

MD36500 \$MA ENC CHANGE TOL

(Maximum tolerance at actual position value change)

32452	BACKLASH_FACTOR			A09	K3,G2,S1,V1		
-	Evaluation factor for backlash			DOUBLE	NEW CONF		
-							
-	6	1.0, 1.0, 1.0, 1.0, 1.0, 1.0	0.01	100.0	1/1		

Description:

Evaluation factor for backlash.

The machine data enables the backlash defined in MD32450 $MA_BACKLASH$ to be changed as a function of the parameter set, in order to take a gear stage dependent backlash into account, for example.

Related to:

MD32450 \$MA BACKLASH[n]

32490	FRICT_COMP_MODE			A09	K3	
-	Type of friction compensation			BYTE	PowerOn	
-	·					
-	1	1	0	2	2/2	

Description:

- 0: No friction compensation
- 1: Friction compensation with constant injection value or adaptive characteristic ${}^{\circ}$
- 2: Friction compensation with learned characteristic via neural network $\$

32500	FRICT_COMP_ENABLE			A09	K3,G2	
-	Friction compensation active			BOOLEAN	NEW CONF	
-						
-	-	FALSE	-	-	2/2	

Description:

1: Friction compensation is enabled for this axis.

Depending on the setting of MD32490 \$MA_FRICT_COMP_MODE, either "friction compensation with constant modulation factor" or "QEC with neural networks" becomes active.

In the case of neural QEC, the machine data should not be set to "1" until a valid characteristic has been "learnt".

During the learning stage, the compensation values are added on independently of the contents of this machine data.

0: Friction compensation is not enabled for this axis.

Thus, no friction compensation values are entered.

Related to:

MD32490 \$MA FRICT COMP MODE

Friction compensation type

MD32510 \$MA FRICT COMP ADAPT ENABLE

Friction compensation adaptation active

MD32520 \$MA_FRICT_COMP_CONST_MAX

Maximum friction compensation value

MD32540 \$MA FRICT COMP TIME

Friction compensation time constant

MD38010 \$MA_MM_QEC_MAX_POINTS

Number of interpolation points for QEC with neural networks

32510	FRICT_COMP_ADAPT_ENABLE			EXP, A09	K3	
-	Adaptation friction compensation active			BOOLEAN	NEW CONF	
-						
-	1	FALSE	-	-	2/2	

1: Friction compensation with amplitude adaptation is enabled for the axis. Quadrant errors on circular contours can be compensated with friction compensation.

The amplitude of the friction compensation value required to be added on is frequently not constant over the entire acceleration range. That is, a lower compensation value needs to be entered for optimum friction compensation for higher accelerations than for lower accelerations.

The parameters of the adaptation curve have to be determined, and entered in the machine data.

0: Friction compensation with amplitude adaptation is not enabled for the axis.

MD irrelevant for:

MD32500 \$MA FRICT COMP ENABLE = 0

MD32490 \$MA_FRICT_COMP_MODE = 2

Related to:

MD32500 \$MA FRICT COMP ENABLE

Friction compensation active

MD32520 \$MA FRICT COMP CONST MAX

Maximum friction compensation value

MD32530 \$MA_FRICT_COMP_CONST_MIN

Minimum friction compensation value

MD32550 \$MA_FRICT_COMP_ACCEL1

Adaptation acceleration value 1

MD32560 \$MA FRICT COMP ACCEL2

Adaptation acceleration value 2

MD32570 \$MA FRICT COMP ACCEL3

Adaptation acceleration value 3

MD32540 \$MA_FRICT_COMP_TIME

Friction compensation time constant

Machine Data 06/2009

Axis-specific machine data

32520	FRICT_COMP_CONST_MAX			EXP, A09	K3	
mm/min, rev/min	Maximum friction compensation value			DOUBLE	NEW CONF	
-						
-	1	0.0	-	-	2/2	

Description:

```
If adaptation is inactive (MD32510=0), the maximum friction com-
pensation is added throughout the entire acceleration range.
If adaptation is active (MD32510=1), the maximum friction compen-
sation is entered in accordance with the adaptation curve.
In the 1st acceleration range (
                                          a < MD32550), the add-
on amplitude = MD32520 * (a/MD32550)
In the 2nd acceleration range (MD32550 \ll a \ll MD32560), the add-
on amplitude = MD32520
In the 3rd acceleration range (MD32560 < a < MD32570), the add-
on amplitude = MD32520 * (1-(a-MD32560)/(MD32570-MD32560))
In the 4th acceleration range (MD32570 \leq a
                                                      ), the add-
on amplitude = MD32530
MD irrelevant for:
  MD32500 $MA FRICT COMP ENABLE = 0
  MD32490 \$MA FRICT COMP MODE = 2 (neural QEC)
Related to:
  MD32500 $MA FRICT COMP ENABLE
  Friction compensation active
  MD32510 $MA FRICT COMP ADAPT ENABLE
  Friction compensation adaptation active
  MD32530 $MA_FRICT_COMP_CONST_MIN
  Minimum friction compensation value
  MD32550 $MA FRICT COMP ACCEL1
  Adaptation acceleration value 1
  MD32560 $MA FRICT COMP ACCEL2
  Adaptation acceleration value 2
  MD32570 $MA_FRICT_COMP_ACCEL3
  Adaptation acceleration value 3
  MD32540 $MA FRICT COMP TIME
  Friction compensation time constant
```

32530	FRICT_COMP_CONST_MIN			EXP, A09	K3
mm/min, rev/min	Minimum friction compensation value			DOUBLE	NEW CONF
-					
-	1	0.0	-	-	2/2

The minimum friction compensation value is active only if "Friction compensation with adaptation" (MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE=1) is active.

The amplitude of the friction compensation value is entered in the 4th acceleration range (MD32570 $MA_FRICT_COMP_ACCEL3 \le a$).

MD irrelevant for:

MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE = 0 MD32490 \$MA_FRICT_COMP_MODE = 2 (neural QEC)

Special cases:

In special cases, the value for FRICT_COMP_CONST_MIN may be even higher than for MD32520 \$MA_FRICT_COMP_CONST_MAX.

Related to:

MD32500 \$MA_FRICT_COMP_ENABLE
Friction compensation active
MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE
Friction compensation adaptation active
MD32520 \$MA_FRICT_COMP_CONST_MAX
Maximum friction compensation value
MD32550 \$MA_FRICT_COMP_ACCEL1
Adaptation acceleration value 1
MD32560 \$MA_FRICT_COMP_ACCEL2
Adaptation acceleration value 2
MD32570 \$MA_FRICT_COMP_ACCEL3

MD32540 \$MA_FRICT_COMP_TIME
Friction compensation time constant

Adaptation acceleration value 3

32540	FRICT_COMP_TIME			EXP, A09	K3
s	Friction compensation time constant			DOUBLE	NEW CONF
-					
-	1	0.015	-	-	2/2

Description:

The friction compensation value is entered via a DT1 filter. The add-on amplitude decays in accordance with the time constant.

MD irrelevant for:

MD32500 \$MA_FRICT_COMP_ENABLE = 0

Related to:

MD32500 \$MA_FRICT_COMP_ENABLE
Friction compensation active
MD32520 \$MA_FRICT_COMP_CONST_MAX
Maximum friction compensation value

Machine Data 06/2009

Axis-specific machine data

32550	FRICT_COM	FRICT_COMP_ACCEL1			K3
m/s², rev/s²	Adaptation a	cceleration value 1		DOUBLE	NEW CONF
-			·		
802d-cu3	1	0.0	-	-	1/1
802d-ng2	1	0.0	-	-	0/0
802d-ng3	1	0.0	-	-	1/1
802d-tm1	1	0.0	-	-	0/0
802d-tm2	1	1 0.0 -			0/0
802d-tm3	1	0.0	-	-	1/1

Description:

The adaptation acceleration value is only required if "Friction compensation with adaptation" (MD32510=1) is active.

The adaptation acceleration values 1 to 3 are interpolation points for defining the adaptation curve. The adaptation curve is subdivided into 4 ranges, in each of which a different friction compensation value applies.

For the 1st range (a < MD32550), the add-on amplitude = a * MD32520/ MD32550

MD irrelevant for:

MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE = 0 MD32490 \$MA FRICT COMP MODE = 2

Related to:

MD32500 \$MA_FRICT_COMP_ENABLE

Friction compensation active

MD32510 \$MA FRICT COMP ADAPT ENABLE

Friction compensation adaptation active

MD32520 \$MA_FRICT_COMP_CONST_MAX

Maximum friction compensation value

MD32530 \$MA_FRICT_COMP_CONST_MIN

Minimum friction compensation value

MD32560 \$MA FRICT COMP ACCEL2

Adaptation acceleration value 2

MD32570 \$MA FRICT COMP ACCEL3

Adaptation acceleration value 3

MD32540 \$MA_FRICT_COMP_TIME

Friction compensation time constant

32560	FRICT_0	FRICT_COMP_ACCEL2			K3
m/s², rev/s²	Adaptati	on acceleration value	2	DOUBLE	NEW CONF
-			·	·	
802d-cu3	1	0.0	-	-	1/1
802d-ng2	1	0.0	-	-	0/0
802d-ng3	1	0.0	-	-	1/1
802d-tm1	1	0.0	-	-	0/0
802d-tm2	1	1 0.0 -			0/0
802d-tm3	1	0.0	-	-	1/1

The adaptation acceleration value is only required if "Friction compensation with adaptation" (MD32510=1) is active.

The adaptation acceleration values 1 to 3 are interpolation points for defining the adaptation curve. The adaptation curve is subdivided into 4 ranges, in each of which a different friction compensation value applies.

In the 1st acceleration range (\$a < MD32550)\$, the add-on amplitude = MD32520 * (a/MD32550)

In the 2nd acceleration range (MD32550 \leq a \leq MD32560), the add-on amplitude = MD32520

In the 3rd acceleration range (MD32560 < a < MD32570), the add-on amplitude = MD32520 * (1-(a-MD32560)/(MD32570-MD32560))

In the 4th acceleration range (MD32570 \leq a), the add-

on amplitude = MD32530

MD irrelevant for:

MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE = 0 MD32490 \$MA FRICT COMP MODE = 2

Related to:

MD32500 \$MA_FRICT_COMP_ENABLE

Friction compensation active

MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE

Friction compensation adaptation active

MD32520 \$MA_FRICT_COMP_CONST_MAX

Maximum friction compensation value

MD32530 \$MA_FRICT_COMP_CONST_MIN
Minimum friction compensation value

MD32550 \$MA_FRICT_COMP_ACCEL1

Adaptation acceleration value 1

MD32570 \$MA_FRICT_COMP_ACCEL3

Adaptation acceleration value 3

MD32540 \$MA FRICT COMP TIME

Friction compensation time constant

32570	FRICT_COMP	FRICT_COMP_ACCEL3			K3
m/s², rev/s²	Adaptation acc	eleration value 3		DOUBLE	NEW CONF
-					
802d-cu3	1	0.0	-	-	1/1
802d-ng2	1	0.0	-	-	0/0
802d-ng3	1	0.0	-	-	1/1
802d-tm1	1	0.0	-	-	0/0
802d-tm2	1	1 0.0 -			0/0
802d-tm3	1	0.0	-	-	1/1

Description:

The adaptation acceleration value is only required if "Friction compensation with adaptation" (MD32510=1) is active.

The adaptation acceleration values 1 to 3 are interpolation points for defining the adaptation curve. The adaptation curve is subdivided into 4 ranges, in each of which a different friction compensation value applies.

```
In the 1st acceleration range ( $a < MD32550)$, the add-on amplitude = MD32520 * (a/MD32550)
```

In the 2nd acceleration range (MD32550 \leq a \leq MD32560), the add-on amplitude = MD32520

In the 3rd acceleration range (MD32560 < a < MD32570), the addon amplitude = MD32520 * (1-(a-MD32560)/(MD32570-MD32560))

In the 4th acceleration range (MD32570 \leq a), the add-

on amplitude = MD32530

MD irrelevant for:

MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE = 0

 $MD32490 \ \$MA_FRICT_COMP_MODE = 2$

Related to:

MD32500 \$MA_FRICT_COMP_ENABLE

Friction compensation active

MD32510 \$MA_FRICT_COMP_ADAPT_ENABLE

Friction compensation adaptation active

MD32520 \$MA_FRICT_COMP_CONST_MAX

Maximum friction compensation value

MD32530 \$MA FRICT COMP CONST MIN

Minimum friction compensation value

MD32550 \$MA_FRICT_COMP_ACCEL1

Adaptation acceleration value 1

MD32560 \$MA_FRICT_COMP_ACCEL2

Adaptation acceleration value 2

MD32540 \$MA FRICT COMP TIME

Friction compensation time constant

32580	FRICT_C	OMP_INC_FACTOR	₹	A09	K3
%	Weighting movem.	Weighting factor of friction comp. value w/ short trav. movem.			NEW CONF
-					
802d-cu3	1	0.0	0	100.0	1/1
802d-ng2	1	0.0	0	100.0	0/0
802d-ng3	1	0.0	0	100.0	1/1
802d-tm1	1	0.0	0	100.0	0/0
802d-tm2	1	0.0	0	100.0	0/0
802d-tm3	1	0.0	0	100.0	1/1

The optimum friction compensation value determined by the circularity test can cause overcompensation of this axis if compensation is activated and axial positioning movements are short. In such cases, a better setting can be achieved by reducing the amplitude of the friction compensation value and acts on all positioning blocks that are made within an interpolation cycle of the control.

The factor that has to be entered can be determined empirically and can be different from axis to axis because of the different friction conditions. The input range is between 0 and 100% of the value determined by the circularity test.

The default setting is 0; so that no compensation is performed for short traversing movements.

Related to:

MD32500 \$MA FRICT COMP ENABLE Friction compensation active

32610	VELO_F	FW_WEIGHT	A07, A09	G1,TE1,K3,S3,A3, G2,S1,V1
-	Feedforv control	vard control factor f. velocity/speed feedforwa	rd DOUBLE	NEW CONF
-				
802d-cu3	6	1.0, 1.0, 1.0, 1.0, 1.0, - 1.0	-	2/2
802d-ng2	6	1.0, 1.0, 1.0, 1.0, 1.0, - 1.0	-	0/0
802d-ng3	6	1.0, 1.0, 1.0, 1.0, 1.0, - 1.0	-	2/2
802d-tm1	6	1.0, 1.0, 1.0, 1.0, 1.0, - 1.0	-	0/0
802d-tm2	6	1.0, 1.0, 1.0, 1.0, 1.0, - 1.0	-	0/0
802d-tm3	6	1.0, 1.0, 1.0, 1.0, 1.0, - 1.0	-	2/2

Description:

Weighting factor for feedforward control. Is normally = 1.0 on digital drives, since these keep the setpoint speed exactly . On analog drives, this factor can be used to compensate the gain error of the drive actuator, so that the actual speed becomes exactly equal to the setpoint speed (this reduces the following error with feedforward control).

On both drive types, the effect of the feedforward control can be continuously reduced with a factor of < 1.0, if the machine moves too abruptly and other measures (e.g. jerk limitation) are not to be used. This also reduces possibly existing overshoots; however, the error increases on curved contours, e.g. on a circle. With 0.0, you have a pure position controller without feedforward control.

Contour monitoring takes into account factors < 1.0.

In individual cases, it can, however, become necessary to increase $\ensuremath{\mathtt{MD}}$ CONTOUR_TOL.

32620	FFW_MODE			A07, A09	G1,K3,S3,G2,S1
-	Feedforward control mode			BYTE	Reset
-					
-	-	3	0	4	1/1

Description:

 ${\tt FFW_MODE}$ defines the feedforward control mode to be applied on an axis-specific basis:

- 0 = No feedforward control
- 1 = Speed feedforward control with PT1 balancing
- 2 = Torque feedforward control (only for SIMODRIVE 611D) with PT1 balancing
- 3 = Speed feedforward control with Tt balancing
- 4 = Torque feedforward control (only for SIMODRIVE611D) with Tt balancing

The high-level language instructions FFWON and FFWOF are used to activate and deactivate the feedforward control for specific channels on all axes.

To prevent the feedforward control from being affected by these instructions on individual axes, you can define that it is always activated or always deactivated in machine data

FFW ACTIVATION MODE (see also FFW ACTIVATION MODE).

The torque feedforward control must be activated via the global option data $\$ON\ FFW\ MODE\ MASK.$

If a feedforward control mode is selected (speed or torque feedforward control), whether or not the feedforward control can be activated or deactivated by the part program can also be set in MD32630 MA FFW ACTIVATION MODE.

Torque feedforward control is an option that has to be enabled. Related to:

MD32630 \$MA_FFW_ACTIVATION_MODE MD32610 \$MA_VELO_FFW_WEIGHT MD32650 \$MA_AX_INERTIA

32630	FFW_AC	FFW_ACTIVATION_MODE			K3,G2
-	Activate fe	eedforward control f	rom program	BYTE	Reset
CTEQ					
802d-cu3	-	1	0	2	2/2
802d-ng2	-	1	0	2	0/0
802d-ng3	-	1	0	2	2/2
802d-tm1	-	1	0	2	0/0
802d-tm2	-	1	0	2	0/0
802d-tm3	-	1	0	2	2/2

Description:

MD32630 \$FFW_ACTIVATION_MODE can be used to define whether the feedforward control for this axis/spindle can be switched on and off by the part program.

0 = The feedforward control cannot be switched on or off by the high-level language elements FFWON and FFWOF respectively.

For the axis/spindle, the state specified by MD32620 $\mbox{MA_FFW_MODE}$ is therefore always effective.

1 = The feedforward control can be switched on and off by the part program with FFWON and FFWOF respectively.

The instruction FFWON/FFWOF becomes active immediately

2 = The feedforward control can be switched on and off by the part program with FFWON and FFWOF respectively.

The instruction FFWON/FFWOF does not become active until the next axis standstill

The default setting is specified by the channel-specific MD20150 $MC_GCODE_RESET_VALUES$. This setting is valid even before the first NC block is executed.

Notes:

The last valid state continues to be active even after Reset (and therefore also with JOG).

As the feedforward control of all axes of the channel is switched on and off by FFWON and FFWOF respectively, MD32630 $\,$

 $MA_FFW_ACTIVATION_MODE$ should be set identically for axes interpolating with one naother.

Switching feedforward control on or off while the axis/spindle is traversing may cause compensation operations in the control loop. Interpolating axes are therefore stopped by the part program if such switching operations occur (internal stop Stop G09 is triggered).

Related to:

MD32620 \$MA FFW MODE

MD20150 \$MC_GCODE_RESET_VALUES

32640	STIFFNESS_CONTROL_ENABLE			A01, A07	TE3,G2
-	Dynamic stiffness control			BOOLEAN	NEW CONF
CTEQ					
-	1	FALSE	-	-	2/2

Dynamic stiffness control is active when the bit is set.

Higher servo gain factors are possible if stiffness control is active (MD32200 $MA_DOSCTRL_GAIN$).

Precondition: The drive supports the DSC function (see ${\tt SIMODRIVE611D}$ and ${\tt PROFIdrive}$).

Note on PROFIdrive drives:

Alarm 26017 refers to this machine data, if

- a. The PROFIdrive telegramm used (see \$MN_DRIVE_TELEGRAM_TYPE) does not support the DSC function. Remedy: Use a sufficiently powerful telegram (e.g. tel. 106, 116).
- b. Specifically for SINAMICS drives, if inversion of the encoder signal is parameterized in \$MA_ENC_FEEDBACK_POL=-1 for active DSC. Remedy: Remove inversion of the encoder signal from \$MA_ENC_FEEDBACK_POL, and enter it in SINAMICS parameter p410 instead.

32642	STIFFNESS_CONTROL_CONFIG			A01, A07	-
-	Dynamic stiffness control configuration (DSC)			BYTE	NEW CONF
CTEQ					
-	1	0	0	1	2/2

Description:

Configuration of dynamic stiffness control (DSC):

- 0: DSC in drive works with indirect measuring system, i.e. motor measuring system (standard case)

Availability of this function depends on the drive used (the drive must support function $\ensuremath{\mathsf{DSC}})\:.$

With SIMODRIVE611D (without independent parameterization on the drive) or SINAMICS (P1193 unequal to 0) the value of this machine data must be set to 0.

32644	STIFFNESS_DELAY_TIME			A01, A07	-
s	dynamic stiffness control: Delay			DOUBLE	PowerOn
CTEQ					
-	1	-0.0015	-0.02	0.02	2/2

Description:

Configuration of compensation dead time of the dynamic stiffness control (DSC) with optimized PROFIBUS/PROFINET cycle, unit: seconds

32700	ENC_COMP_E	NABLE	A09	K3	
-	Encoder/spindle error compensation.			BOOLEAN	NEW CONF
-					
-	1	FALSE, FALSE	-	-	2/2

Description:

1: LEC (leadscrew error compensation) is activated for the measuring system.

This enables leadscrew and measuring system errors to be compensated.

The function is not enabled internally until the relevant measuring system has been referenced (NC/PLC interface signal V390x 0000.4 / .5 (Referenced/synchronized 1 or 2) = 1).

write protect function (compensation values) active.

0: LEC is not active for the axis/measuring system.

Related to:

MD38000 $MA_MM_ENC_COMP_MAX_POINTS$ number of interpolation points with LEC

NC/PLC interface signal V390x 0000.4 (Referenced/synchronized 1) NC/PLC interface signal V390x 0000.5 (Referenced/synchronized 2)

32710	CEC_EN	NABLE		A09	K3
-	Enable of	of sag compensation		BOOLEAN	NEW CONF
-				•	
802d-cu3	-	FALSE	-	-	1/1
802d-ng2	-	FALSE	-	-	1/1
802d-ng3	-	FALSE	-	-	1/1
802d-tm1	-	FALSE	-	-	-1/2
802d-tm2	-	FALSE	-	-	1/1
802d-tm3	-	FALSE	-	-	1/1

Description:

1: Sag compensation is enabled for this axis.

Inter-axis machine geometry errors (e.g. sag and angularity errors) can be compensated with sag compensation.

The function is not activated until the following conditions have been fulfilled:

- The "Interpolatory compensation" option is set
- The associated compensation tables have been loaded into the NC user memory and enabled (SD41300 \$SN_CEC_TABLE_ENABLE[t] = 1)
- The relevant position measuring system is referenced (NC/PLC interface signal V390x 0000.4 / .5 = 1 (Referenced/synchronized 1 or 2))
- 0: Sag compensation is not enabled for the compensation axis. Related to:

```
MD18342 $MN_MM_CEC_MAX_POINTS[t]
```

Number of interpolation points for sag compensation $SD41300 \ SN \ CEC \ TABLE \ ENABLE[t]$

Enable evaluation of sag compensation table t NC/PLC interface signal V390x 0000.4 / .5

(referenced/synchronized 1 or 2)

32711	CEC_SCALING_SYSTEM_METRIC			A09	K3,G2
-	Measuring syst	suring system of sag compensation			NEW CONF
-					
802d-cu3	-	TRUE	-	-	1/1
802d-ng2	-	TRUE	-	-	1/1
802d-ng3	-	TRUE	-	-	1/1
802d-tm1	-	TRUE	-	-	-1/2
802d-tm2	-	TRUE	RUE		1/1
802d-tm3	-	TRUE	-	-	1/1

Compensation data exist in:

0: inch system
1: metric system

32720	CEC_MA	CEC_MAX_SUM			K3		
mm, degrees	Maximur	Maximum compensation value for sag compensation			NEW CONF		
-							
802d-cu3	-	1.0	0	1.0	1/1		
802d-ng2	-	1.0	0	1.0	1/1		
802d-ng3	-	1.0	0	1.0	1/1		
802d-tm1	-	1.0	0	1.0	-1/2		
802d-tm2	-	1.0	0	1.0	1/1		
802d-tm3	-	1.0	0	1.0	1/1		

Description:

In sag compensation, the absolute value of the total compensation value (sum of compensation values of all active compensation relations) is monitored axially with machine data value CEC_MAX_SUM. If the determined total compensation value is larger than the maximum value, alarm 20124 is triggered. Program processing is not interrupted. The compensation value output as the additional setpoint is limited to the maximum value.

MD irrelevant to:

- MSEC
- ullet Backlash compensation
- Temperature compensation

Related to:

MD32710 \$MA_CEC_ENABLE
Enable sag compensation
SD41300 \$SN_CEC_TABLE_ENABLE[t]
Enable evaluation of sag compensation table t
NC/PLC interface signal V390x 0000.4 / .5
(referenced/synchronized 1 or 2)

Machine Data 06/2009

Axis-specific machine data

32730	CEC_M	CEC_MAX_VELO			K3
%	Change	Change in velocity at CEC			NEW CONF
-					
802d-cu3	-	10.0	0	100.0	1/1
802d-ng2	-	10.0	0	100.0	1/1
802d-ng3	-	10.0	0	100.0	1/1
802d-tm1	-	10.0	0	100.0	-1/2
802d-tm2	-	10.0	10.0 0 1		1/1
802d-tm3	-	10.0	0	100.0	1/1

Description:

In sag compensation, modification of the total compensation value (sum of the compensation values of all active compensation relations) is limited axially. The maximum change value is defined in this machine data as a percentage of MD32000 $MA_MAX_AX_VELO$ (maximum axis velocity).

If the change in the total compensation value is greater than the maximum value, alarm 20125 is output. Program processing is however continued. The path not covered because of the limitation is made up as soon as the compensation value is no longer subject to limitation.

MD irrelevant to:

- MSEC
- Backlash compensation
- Temperature compensation

Related to:

MD32710 \$MA_CEC_ENABLE
Enable sag compensation
MD32000 \$MA_MAX_AX_VELO
Maximum axis velocity
SD41300 \$SN_CEC_TABLE_ENABLE[t]
Enable evaluation of sag compensation table t
NC/PLC interface signal V390x 0000.4 / .5
(referenced/synchronized 1 or 2)

32750	TEMP_COMP_TYPE			A09	K3,W1			
-	Temperature compensation type			BYTE	PowerOn			
CTEQ								
-	-	0 0			0/0			

Description:

The type of temperature compensation applicable to the machine axis is activated in MD32750 MA TEMP COMP TYPE.

A distinction is made between the following types:

- 0: No temperature compensation active
- 1: Position-independent temperature compensation active (compensation value with SD43900 \$SA_TEMP_COMP_ABS_VALUE)
- 2: Position-dependent temperature compensation active (compensation value with SD43910 \$SA_TEMP_COMP_SLOPE and SD43920 TEMP_COMP_REF_POSITION)

3: Position-dependent and position-independent temperature compensation active

(compensation values with SD according to types 1 and 2) Temperature compensation is an option that must be enabled. Related to:

SD43900 \$SA TEMP COMP ABS VALUE

Position-dependent temperature compensation value

SD43920 \$SA TEMP COMP REF POSITION

Reference point for position-dependent temperature compensation SD43910 \$SA TEMP COMP SLOPE

Gradient for position-dependent temperature compensation MD32760 \mbox{MM} COMP ADD VELO FACTOR

Excessive velocity due to compensation

32760	COMP_ADD_VELO_FACTOR			EXP, A09, A04	K3			
-	Excessive veloc	xcessive velocity due to compensation			NEW CONF			
CTEQ								
-	-	0.01 0.			0/0			

Description:

The maximum distance that can be traversed because of temperature compensation in one IPO cycle can be limited by the axial MD32760 $MA_COMP_ADD_VELO_FACTOR$.

If the resulting temperature compensation value is above this maximum, it is traversed over several IPO cycles. There is no alarm. The maximum compensation value per IPO cycle is specified as a factor referring to the maximum axis velocity (MD32000 \$MA MAX AX VELO).

The maximum gradient of the temperature compensation tanbmax is also limited with this machine data.

Example of calculation of the maximum gradient tanb (max):

1. Calculation of the interpolator cycle time (see Description of Functions Velocities, Setpoint/Actual Value Systems, Cycle Times (G2))

Interpolator cycle time = Basic system clock rate * factor for interpolation cycle

Interpolator cycle time = MD10050 \$MN_SYSCLOCK_CYCLE_TIME ^
MD10070 \$MN_IPO_SYSCLOCK_TIME_RATIO

Example:

MD10050 \$MN SYSCLOCK CYCLE TIME = 0.004 [s]

MD10070 \$MN IPO SYSCLOCK TIME RATIO = 3

- -> Interpolator cycle time = 0.004 * 3 = 0.012 [s]
- 2. Calculation of the maximum velocity increase resulting from a change made to the temperature compensation parameter DvTmax

```
DvTmax = MD32000 $MA_MAX_AX_VELO * MD32760
```

\$MA_COMP_ADD_VELO_FACTOR

Example: $MD32000 \ \ MA_MAX_AX_VELO = 10 \ 000 \ [mm/min]$

MD32760 \$MA COMP ADD VELO FACTOR = 0.01

-> DvTmax = 10 000 * 0.01 = 100 [mm/min]

```
3. Calculation of the traverse distances per interpolator cycle
                                    0.012
     S1 (at vmax) = 10\ 000\ x ----- = 2.0\ [mm]
                                     0.012
     ST (at DvTmax) =
                          100 x ---- = 0.02 [mm]
                                       60
   Calculation of tanbmax
                       ST
                               0.02
             tanbmax = ---- = ----- = 0.01 (corresponds to
value for
                                 2
                        S1
COMP ADD VELO FACTOR)
              \rightarrow bmax = arc tan 0.01 = 0.57 degrees
  With larger values of SD43910 $SA TEMP COMP SLOPE, the maximum
  gradient (here 0.57 degrees) for the position-dependent temper-
  ature compensation value is used internally. There is no alarm.
Note:
  Any additional excessive velocity resulting from temperature
  compensation must be taken into account when defining the limit
  value for velocity monitoring (MD36200 $MA_AX_VELO_LIMIT).
MD irrelevant for:
  MD32750 $MA TEMP COMP TYPE = 0, sag compensation, LEC, backlash
  compensation
Related to:
  MD32750 $MA_TEMP_COMP_TYPE
  Temperature compensation type
  SD43900 $SA_TEMP_COMP_ABS_VALUE
  Position-independent temperature compensation value
  SD43910 $SA TEMP COMP SLOPE
  Gradient for position-dependent temperature compensation
  MD32000 $MA MAX AX VELO
  Maximum axis velocity
  MD36200 $MA_AX_VELO_LIMIT
  Threshold value for velocity monitoring
  MD10070 $MN IPO SYSCLOCK TIME RATIO
  Ratio of basic system clock rate to IPO cycle
  MD10050 $MN_SYSCLOCK_CYCLE_TIME
  Basic system clock rate
```

32800	EQUIV_CURRCTRL_TIME			EXP, A07, A09	G1,K3,S3,A2,A3, G2,S1,V1
s	Equiv. time const. current control loop for feedforward control			DOUBLE	NEW CONF
-					
-		0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005	-	-	0/0

The time constant is used for parameterizing the torque feedforward control and for calculating the dynamic following error model (contour monitoring).

In order to set the torque feedforward control correctly, the equivalent time constant of the current control loop must be determined exactly by measuring the step response of the current control loop.

Closed-loop control free of following errors can be set by inputting negative values when MD32620 $MA_FFW_MODE=4$ (but positioning overshoots may then occur).

Delay values taken into account automatically by the software internally are thus compensated again until the actually active minimum symmetrizing time "0" is reached.

Any other negative input values have no further effect.

Negative values input when MD32620 $MA_FFW_MODE=2$ are automatically converted internally to the input value "0", which means that they are not active in this case.

Related to:

MD32620 \$MA FFW MODE

Type of feedfoward control

MD32650 \$MA_AX_INERTIA

Moment of inertia for torque feedforward control

or MD32652 \$MA AX MASS

Axis mass for torque feedforward control

MD36400 \$MA CONTOUR TOL

Tolerance band contour monitoring

32810	EQUIV_SPEEDCTRL_TIME			A07, A09	G1,K3,S3,A2,A3, G2,S1,V1
s	Equiv. time cor control	Equiv. time constant speed control loop for feedforward control			NEW CONF
-					
-	6	0.003, 0.003, 0.003, 0.003, 0.003	-	-	2/2

Description:

This time constant must be equal to the equivalent time constant of the closed current control loop.

It is used for parameterizing the speed feedforward control and for calculating the dynamic following error model (contour monitoring).

In addition, this MD determines the time behavior of the closed-loop speed control circuit for simulated drives (MD30130 $\rm MA_CTRLOUT_TYPE~0)$.

In order to set the speed feedforward control correctly, the equivalent time constant of the current control loop must be determined exactly by measuring the step response of the current control loop.

Closed-loop control free of following errors can be set by inputting negative values when MD32620 $MA_FFW_MODE=3$ (but positioning overshoots may then occur).

Delay values taken into account automatically by the software internally are thus compensated again until the actually active minimum symmetrizing time "0" is reached.

Any other negative input values have no further effect.

Negative values input when MD32620 $MA_FFW_MODE=1$ are automatically converted internally to the input value "0", which means that they are not active in this case.

Related to:

MD32620 \$MA FFW MODE (type of feedfoward control)

 $\texttt{MD32610} \ \$\texttt{MA_VELO_FFW_WEIGHT}$ (moment of inertia for speed feedforward control)

MD36400 \$MA_CONTOUR_TOL (tolerance band contour monitoring)

32900	DYN_MATCH_ENABLE			A07	G21,S3,G2
-	Dynamic response adaptation			BOOLEAN	NEW CONF
CTEQ					
-	-	FALSE	-	-	1/1

Description:

With dynamic response adaptation, axes with different servo gain factors can be set to the same following error with MD32910 $\mbox{\tt SMA}$ DYN MATCH TIME.

- 1: Dynamic response adaptation active.
- 0: Dynamic response adaptation inactive.

Related to:

MD32910 \$MA_DYN_MATCH_TIME[n]

(time constant of dyamic response adaptation)

32910	DYN_MATCH_	TIME			G1,K3,S3,A2,A3, G2,S1,V1
S	Time constant	Time constant of dynamic response adaptation			NEW CONF
-					
-	6	0.0, 0.0, 0.0, 0.0, 0.0, 0.0	-	-	1/1

The time constant of the dynamic response adaptation of an axis has to be entered in this $\mbox{MD.}$

Axes interpolating with each other but having different dynamic responses can be adapted to the "slowest" control loop by means of this value.

The difference of the equivalent time constant of the "slowest" control loop to the individual axis has to be entered here as the time constant of the dynamic response adaptation.

The MD is only active if MD32900 \$MA_DYN_MATCH_ENABLE = 1. Related to:

MD32900 \$MA DYN MATCH ENABLE (dynamic response adaptation)

32920	AC_FILTER_TIME			A10	-
S	Smoothing filter time constant for adaptive control			DOUBLE	PowerOn
-					
-	-	0.0	-	-	0/0

Description:

For SIMODRIVE611D (as well as for PROFIdrive drives, provided that they transport the following actual drive values in the PROFIdrive message frame, e.g. MD13060 \$MN_DRIVE_TELEGRAM_TYPE = 116): With the main run variables \$AA_LOAD, \$AA_POWER, \$AA_TORQUE and \$AA CURR, the following drive actual values can be measured:

- Drive utilization
- Drive active power
- Drive torque setpoint value
- Current actual value of the axis or spindle

To compensate any peaks, the measured values can be smoothed with a PT1 filter. The filter time constant is defined via MD32920 $MA_AC_FILTER_TIME$ (filter smoothing time constant for adaptive control).

When measuring the drive torque setpoint value or the current actual value, the filter is active in addition to the filters available in the drive. The two filters are connected in series, if both strongly and slightly smoothed values are required in the system. The filter is switched off when a smoothing time of 0 seconds is entered.

32930	POSCTRL_OUT_FILTER_ENABLE			A07	G2			
-	Activation of low-pass filter at position controller output			BOOLEAN	NEW CONF			
CTEQ								
-	-	FALSE -			0/0			

Description:

Activation of low-pass filter at position controller output. Activation of the low-pass filter is only enabled when the dynamic stiffness control is inactive MD32640=0.

32940	POSCTRL_OUT_FILTER_TIME			A07	G2
s	Time constant of low-pass filter at position controller output			DOUBLE	NEW CONF
-					
-	-	0.0	-	-	0/0

Description:

Time constant of low-pass filter at position controller output Related to:

MD32640 \$MA_STIFFNESS_CONTROL_ENABLE (dynamic stiffness control)

32950	POSCTRL_DAMPING I			EXP, A07	G2
%	Damping of the speed control circuit.			DOUBLE	NEW CONF
-					
-	-	0.0	-	-	0/0

Description:

Application:

Attenuation of an oscillating axis through additional activation of a rotational speed difference, which is determined from the difference of the two measuring systems.

Condition: the axis must have two measuring systems, while one encoder must be connected directly, the other indirectly.

Explanation of normalization by means of ${\tt SIMODRIVE611D:}$

An input value of "100%" means: An additional torque is activated in accordance with drive MD 1725, if

- a positional deviation of 1mm exists on linear motors
- a load-side positional deviation of 360 degrees exists on rotary axes
- a positional deviation corresponding to MD31030 \$MA_LEADSCREW_PITCH (e.g. 10mm as a standard) exists on linear axes (rot. drive).

33000	FIPO_T	FIPO_TYPE			G1,G3,S3,G2
-	Fine inte	erpolator type		BYTE	PowerOn
CTEQ					·
802d-cu3	-	2	1	3	0/0
802d-ng2	-	1	1	3	0/0
802d-ng3	-	2	1	3	0/0
802d-tm1	-	1	1	3	0/0
802d-tm2	-	1	1 1 ;		0/0
802d-tm3	-	2	1	3	0/0

Description:

The type of the fine interpolator has to be entered in this MD:

- 1: differential FIPO
- 2: cubic FIPO
- 3: cubic FIPO, optimized for operation with feedforward control Calculation time required and contour quality increase with increasing type of FIPO.
- The default setting is the cubic FIPO.
- If no feedforward control is used in the position control loop, the use of the differential FIPO reduces the calculation time while slightly increasing the contour error.
- If the position control cycle and the interpolation cycle are identical, fine interpolation does not take place, i.e. the different types of fine interpolator do not have different effects.

33050	LUBRICATION_DIST			A03, A10	A2,Z1			
mm, degrees	Traversing path for lubrication from PLC			DOUBLE	NEW CONF			
-		·						
-	-	1.0e8 -			3/3			

After the traversing path defined in the MD has been covered, the state of the axial interface signal "Lubrication pulse" is inverted, this can activate an automatic lubrication device.

The traversing path is summated after Power on.

The "Lubrication pulse" can be used with axes and spindles. Application example(s):

The machine bed lubrication can be carried out as a function of the relevant traversed path.

Note:

When 0 is entered, the NC/PLC interface signal V390x 1002.0 (Lubrication pulse) is set in every cycle.

Related to:

NC/PLC interface signal V390x 1002.0 (Lubrication pulse)

33060	MAINTENANCE_DATA			A10	W6,2.4,6.2
-	Configuration of	configuration of maintenance data recording			Reset
-					
-	-	1	-	-	1/1

Description:

Configuration of axis maintenance data recording:

Bit 0:

Recording the entire traversing path, entire traversing time and number of axis traversing procedures

Bit 1:

Recording the entire traversing path, entire traversing time and number of traversing procedures at high axis speed

Bit 2:

Recording the total sum of axis jerks, the time in which the axis is traversed with jerk, and the number of traversing procedures with jerk.

2.4.4 Reference point approach

34000	REFP_CAM_IS_ACTIVE			A03, A11	G1,R1			
-	Axis with reference point cam			BOOLEAN	Reset			
-								
-	-	TRUE			2/2			

Description:

- 1: There is at least one reference point cam for this axis

The referencing cycle starts immediately with phase 2 (see documentation)

Machine axes that have only one zero mark over the whole travel range or rotary axes that have only one zero mark per revolution do not require an additional reference cam that selects the zero mark (select MD34000 MA REFP CAM IS ACTIVE = 0).

The machine axis marked this way accelerates to the velocity specified in MD34040 $MA_REFP_VELO_SEARCH_MARKER$ (reference point creep velocity) when the plus/minus traversing key is pressed, and synchronizes with the next zero mark.

34010	REFP_CAM_DIR_IS_MINUS			A03, A11	G1,R1
-	Approach reference point in minus direction			BOOLEAN	Reset
-					
-	-	FALSE	-	-	2/2

Description:

- 0: MD34010 $MA_REFP_CAM_DIR_IS_MINUS$ Reference point approach in plus direction
- 1: MD34010 $MA_REFP_CAM_DIR_IS_MINUS$ Reference point approach in minus direction

For incremental measuring systems:

If the machine axis is positioned in front of the reference cam, it accelerates, depending on the plus/minus traversing key pressed, to the velocity specified in MD34020

\$MA_REFP_VELO_SEARCH_CAM (reference point approach velocity) in the direction specified in MD34010 \$MA_REFP_CAM_DIR_IS_MINUS. If the wrong traversing key is pressed, reference point approach is not started.

If the machine axis is positioned on the reference cam, it accelerates to the velocity specified in MD34020

 $MA_REFP_VELO_SEARCH_CAM$ and travels in the direction opposite to that specified in MD34010 MA REFP CAM DIR IS MINUS.

Note on absolute encoders:

The direction of the traverse key is also important for adjusting the absolute encoder: approach direction for fixed position and updating the values in MD34090 $MA_REFP_MOVE_DIST_CORR$ und MD34210 MA ENC REFP STATE.

34020	REFP_VELO_SEARCH_CAM			A03, A11, A04	G1,R1
mm/min, rev/min	Reference point approach velocity			DOUBLE	Reset
-					
-	-	5000.00,5000.00,5000 .00,5000.00	-	-	2/2

The reference point approach velocity is the velocity at which the machine axis travels in the direction of the reference cam after the traversing key has been pressed (phase 1). This value should be set at a magnitude large enough for the axis to be stopped to 0 before it reaches a hardware limit switch.

MD irrelevant for:

Linear measuring systems with distance-coded reference marks

34030	REFP_MAX_CAM_DIST			A03, A11	G1,R1
mm, degrees	Maximum distance to reference cam			DOUBLE	Reset
-					
-	-	10000.0			2/2

Description:

If the machine axis travels a maximum distance defined in MD34030 $MA_REFP_MAX_CAM_DIST$ from the starting position in the direction of the reference cam, without reaching the reference cam (NC/PLC interface signal V380x1000.7 (Reference point approach delay) is reset), the axis stops and alarm 20000 "Reference cam not reached" is output.

Irrelevant to:

Linear measuring systems with distance-coded reference marks

34040	REFP_VELO_SEARCH_MARKER			A03, A11, A04	G1,R1,S1		
mm/min, rev/min	Creep velocity	Creep velocity			Reset		
-							
-		300.00, 300.00,300.00, 300.00	-	-	2/2		

Description:

1) For incremental measuring systems:

This is the velocity at which the axis travels during the time between initial detection of the reference cam and synchronization with the first zero mark (phase 2).

Traversing direction: Opposite to the direction specified for the cam search (MD34010 $MA_REFP_CAM_DIR_IS_MINUS$)

- If MD34050 \$MA_REFP_SEARCH_MARKER_REVERSE (direction reversal on reference cam) is enabled, then if the axis is synchronized with a rising reference cam signal edge on the cam, the axis traverses at the velocity defined in MD34020 \$MA_REFP_VELO_SEARCH_CAM.
- 2) Indirect measuring system with BERO on the load-side (preferred for spindles):

At this velocity, a search is made for the zero mark associated with the BERO (zero mark selection per VDI signal). The zero mark is accepted if the actual velocity lies within the tolerance range defined in MD35150 $MA_SPIND_DES_VELO_TOL$ as a deviation from the velocity specified in MD34040 $MA_SPIND_DES_VELO_SEARCH_NARKER[n]$.

3) For linear measuring systems with distance-coded reference marks:

The axis crosses the two reference marks at this velocity. The maximum velocity must be low enough to ensure that the time required to travel the smallest possible reference mark distance [(x(minimum)] on the linear measuring system is longer than one position controller cycle.

The formula

Position controller cycle [ms]

This limiting value consideration also applies to the other measuring systems. $\,$

Traversing direction:

- as defined in MD34010 \$MA REFP CAM DIR IS MINUS;
- if the axis is already positioned on the cam, the axis is traversed in the opposite direction

34050	REFP_SEARCH_MARKER_REVERSE			A03, A11	G1,R1
-	Direction reversal to reference cam			BOOLEAN	Reset
-					
-	1	FALSE, FALSE	-	-	2/2

Description:

This MD can be used to set the direction of search for the zero $\mbox{mark:}$

MD34050 \$MA_REFP_SEARCH_MARKER_REVERSE = 0

Synchronization with falling reference cam signal edge
The machine axis accelerates to the velocity specified in MD34040
\$MA_REFP_VELO_SEARCH_MARKER (reference point creep velocity) in
the opposite direction to that specified in MD34010
\$MA_REFP_CAM_DIR_IS_MINUS (reference point approach in minus
direction).

If the axis leaves the reference cam (NC/PLC interface signal V380x1000.7 (Reference point approach delay) is reset) the control is synchronized with the first zero mark.

MD34050 \$MA REFP SEARCH MARKER REVERSE = 1

Synchronization with rising reference cam signal edge

The machine axis accelerates to the velocity defined in MD34020 \$MA_REFP_VELO_SEARCH_CAM (reference point creep velocity) in the opposite direction to that specified in the MD34010 \$MA_REFP_CAM_DIR_IS_MINUS. If the axis leaves the reference cam (NC/PLC interface signal V380x1000.7 (Reference point approach delay) is reset), the machine axis decelerates to a halt and accelerates in the opposite direction towards the reference cam at the velocity specified in MD34040: \$MA_REFP_VELO_SEARCH_MARKER. When the reference cam is reached (NC/PLC interface signal V380x1000.7 (Reference point approach delay) is enabled) the control is synchronized with the first zero mark.

Linear measuring systems with distance-coded reference marks

34060	REFP_MAX_MARKER_DIST			A03, A11	G1,R1,S1
mm, degrees	maximum dista	naximum distance to reference mark			Reset
-					
-		20.0, 20.0,20.0, 20.0,20.0, 20.0	-	-	2/2

Description:

For incremental measuring systems:

If, after leaving the reference cam (NC/PLC interface signal V380x1000.7 (Reference point approach delay) is reset), the machine axis travels a distance defined in MD34060: \$MA_REFP_MAX_MARKER_DIST without detecting the zero mark, the axis stops and alarm 20002 "Zero mark missing" is output. For linear measuring systems with distance-coded reference marks: If the machine axis travels a distance defined in MD34060 \$MA_REFP_MAX_MARKER_DIST from the starting position without crossing two zero marks, the axis stops and alarm 20004 "Reference mark missing" is output.

34070	REFP_VELO_POS			A03, A11, A04	G1,R1
mm/min, rev/min	Reference poir	Reference point positioning velocity			Reset
-					
-	-	10000.00,10000.00,10 000.00,10000.00	-	-	2/2

Description:

For incremental measuring systems:

The axis travels at this velocity between the time of synchronization with the first zero mark and arrival at the reference point.

For linear measuring systems with distance-coded reference marks:

The axis travels at this velocity between the time of synchronization (crossing two zero marks) and arrival at the target point.

34080	REFP_MOVE_DIST			A03, A11	G1,R1,S1,S3,G2				
mm, degrees	Reference poin	Reference point distance			NEW CONF				
-									
-	1	-2.0, -2.0	-1e15	1e15	2/2				

Description:

1. Standard measuring system (incremental with equidistant zero marks)

Reference point positioning movement: 3rd phase of the reference point approach:

The axis traverses from the position at which the zero mark is detected with the velocity REFP_AX_VELO_POS along the path REFP_MOVE_DIST + REFP_MOVE_DIST_CORR (relative to the marker). REFP_SET_POS is set as the current axis position at the target point.

2. Irrelevant for distance-coded measuring system. Override switch and selection jog/continuous mode (MD $\tt JOG_INC_MODE_IS_CONT$) are active.

34090				A03, A02, A08, A11	G1,R1,S1,S3,G2
mm, degrees	Reference poin	Reference point offset/absolute offset			NEW CONF
-, -					
-	1	0.0, 0.0	-1e12	1e12	2/2

Description:

• Incremental encoder with zero mark(s):

After detection of the zero mark, the axis is positioned away from the zero mark by the distance specified in MD34080 \$MA_REFP_MOVE_DIST_CORR. After traversing this distance, the axis has reached the reference point. MD34100 \$MA_REFP_SET_POS is transferred into the actual value. During traversing by MD34080 \$MA_REFP_MOVE_DIST + MD34090 \$MA_REFP_MOVE_DIST_CORR, the override switch and MD11300 \$MN JOG INC MODE LEVELTRIGGRD (jog/continuous mode) are active.

• Distance-coded measuring system:

 ${\tt MD34090~\$MA_REFP_MOVE_DIST_CORR}$ acts as an absolute offset. It describes the offset between the machine zero and the first reference mark of the measuring system.

• Absolute encoder:

 ${\tt MD34090~\$MA_REFP_MOVE_DIST_CORR}$ acts as an absolute offset. It describes the offset between the machine zero and the zero point of the absolute measuring system.

Note:

In conjunction with absolute encoders, this MD is modified by the control during calibration processes and modulo offset. With rotary absolute encoders (on linear and rotary axes), the modification frequency also depends on the setting of MD34220 \$MA_ENC_ABS_TURNS_MODULO.

Manual input or modification of this MD via the part program should therefore be followed by a Power ON Reset to activate the new value and prevent it from being lost.

The following applies to an NCU-LINK:

If a link axis uses an absolute encoder, every modification of MD34090 \$MA_REFP_MOVE_DIST_CORR on the home NCU (servo physically available) is updated only locally and not beyond the limits of the NCU. The modification is therefore not visible to the link axis. Writing MD34090 \$MA_REFP_MOVE_DIST_CORR through the link axis is rejected with alarm 17070.

34092	REFP_CAM_SHIFT			A03, A11	G1,R1
mm, degrees	electronic cam offset for incremental measuring systems			DOUBLE	Reset
-					
-	1	0.0, 0.0	-	-	2/2

Description:

Electronic cam offset for incremental measuring systems with equidistant zero marks.

When the reference cam signal occurs, the zero mark search does not start immediately but is delayed until after the distance from REFP CAM SHIFT.

This ensures the reproducibility of the zero mark search through a defined selection of a zero mark, even with temperature-dependent expansion of the reference cam.

Because the reference cam offset is calculated by the control in the interpolation cycle, the actual cam offset is at least REFP_CAM_SHIFT and at most REFP_CAM_SHIFT+(MD34040 \$MA REFP VELO SEARCH MARKER*interpolation cycle)

The reference cam offset is effective in the search direction of the zero mark.

The reference cam offset is only active if existing cam MD34000 \mbox{SMA} REFP CAM IS ACTIVE=1.

34093	REFP_CAM_MARKER_DIST			A03, A11	R1
mm, degrees	Reference cam/reference mark distance			DOUBLE	PowerOn
-					
-	1	0.0, 0.0	-	-	2/2

Description:

The value displayed corresponds to the distance between exiting the reference cam and the occurrence of the reference mark. If the values are too small, there is a risk of not being able to determine the reference point due to temperature reasons or varying operating times of the cam signal. The distance travelled may serve as a clue for setting the electronic reference cam offset. This machine data is a display data and can therefore not be changed.

34100	REFP_SET_POS			A03, A11	G1,S3,G2,R1,S1			
mm, degrees	Reference poin	Reference point for incremental system			Reset			
-								
-	4	0., 0., 0., 0.	-45000000	45000000	2/2			

Description:

Incremental encoder with zero mark(s):

The position value which is set as the current axis position after detection of the zero mark and traversal of the distance REFP_MOVE_DIST + REFP_MOVE_DIST_CORR (relative to zero mark). REFP_SET_POS of the reference point number, which is set as the instant that the edge of the reference cam signal rises (NC/PLC interface signal V380x 0002.4 - .7 (Reference point value 1 to 4)), is set as the axis position.

• Distance-coded measuring system:

Target position which is approached when MD34330 $MA_REFP_STOP_AT_ABS_MARKER$ is set to 0 (FALSE) and two zero marks have been crossed.

Absolute encoder:

 $\mbox{MD}34100$ $\mbox{MA_REFP_SET_POS}$ corresponds to the correct actual value at the calibration position.

The reaction on the machine depends on the status of MD34210 $MA_ENC_REFP_STATE$: When MD34210 $MA_ENC_REFP_STATE = 1$, the value of MD34100 $MA_REFP_SET_POS$ is transferred as the absolute value. When MD34210 $MA_REFP_SET_POS$ is transferred as the absolute value.

 $MA_REFP_STOP_AT_ABS_MARKER = 0$ (FALSE), the axis approaches the target position stored in MD34100 $MA_REFP_SET_POS$.

The value of MD34100 $MA_REFP_SET_POS$ that has been set via NC/PLC interface signal V380x 0002.4 - .7 (Reference point value 1 to 4) is used.

Related to:

NC/PLC interface signal V380x 0002.4 - .7 (Reference point value 1 to 4) $\,$

34102	REFP_SYNC_ENCS			A03, A02	R1,Z1			
-	Calibration of m	Calibration of measuring systems			Reset			
-								
-	-	0	0	1	0/0			

Description:

Calibrating the measuring system to the reference measuring system can be activated for all measuring systems of this axis with this machine data.

The calibration procedure is made during reference point approach or when calibrated absolute encoders selected for the closed-loop control are switched on.

Values:

- 0: No measuring system calibration, measuring systems must be referenced individually
- 1: Calibration of all measuring systems of the axis to the position of the reference measuring system

In combination with MD30242 $MA_ENC_IS_INDEPENDENT = 2$, the passive encoder is calibrated to the active encoder but NOT referenced.

34104	REFP_PERMITTED_IN_FOLLOWUP			A03, A02	R1
-	Enable referencing in follow-up mode			BOOLEAN	Reset
-					
-	-	FALSE	-	-	1/1

An axis can also be referenced in the follow-up mode under JOG+REF mode by means of an external motion.

34110	REFP_CYCLE_NR			A03	G1,TE3,D1,R1,Z1
-	Sequence of axes in channel-specific referencing			DWORD	PowerOn
-					
-		1,2,3,4,5,6,7,8,9,10,11 ,12,13,14,15,16,17,18.		31	2/2

Description:

MD34110 \$MA_REFP_CYCLE_NR = 0 -----> axis-specific referencing
 Axis-specific referencing is started separately for each
 machine axis with the NC/PLC interface signal V380x 0004.7 / 4.6
 (Plus/minus travel keys).

Up to 8 axes (840D) can be referenced simultaneously. The following alternatives are provided for referencing the machine axes in a specific sequence:

- The operator has to observe the correct sequence on startup.
- The PLC checks the sequence on startup or defines the sequence itself.
- The channel-specific referencing function is used.

MD34110 \$MA_REFP_CYCLE_NR = 1 -----> channel-specific referencing Channel-specific referencing is started with the NC/PLC interface signal V3200 0001.0 (Activate referencing). The control acknowledges a successful start with the NC/PLC interface signal V3300 0001.0 (Referencing active). Each machine axis assigned to the channel can be referenced with channel-specific referencing (this is achieved internally on the control by simulating the plus/minus traversing keys). The axis-specific MD34110 \$MA_REFP_CYCLE_NR can be used to define the sequence in which the machine axes are referenced:

-1 means:

The machine axis is not started by channel-specific referencing, and NC start is possible without referencing this axis.

0 means:

The machine axis is not started by channel-specific referencing, and NC start is not possible without referencing this axis.

1 means:

The machine axis is started by channel-specific referencing.

2 means:

The machine axis is started by channel-specific referencing if all machine axes identified by a 1 in MD34110 \$MA_REFP_CYCLE_NR are referenced.

3 means:

The machine axis is started by channel-specific referencing if all machine axes identified by a 2 in MD34110 \$MA_REFP_CYCLE_NR are referenced.

4 to 8:

As above for further machine axes.

Setting the channel-specific MD20700 $MC_REF_NC_START_LOCK$ (NC start disable without reference point) to zero has the effect of entering -1 for all the axes of a channel.

MD irrelevant to:

Axis-specific referencing

Related to:

NC/PLC interface signal V3200 0001.0 (Activate referencing) NC/PLC interface signal V3300 0001.0 (Referencing active)

34200	ENC_REFP_MODE			A03, A02	G1,R1,S1
-	Referencing mode			BYTE	PowerOn
-					
-	1	1, 1	0	8	2/2

Description:

The mounted position measuring systems can be classified for referencing as follows with MD34200 \$MA ENC REFP MODE:

• MD34200 \$MA ENC REFP MODE = 0

If an absolute encoder is available: MD34100 \$MA_REFP_SET_POS is taken over

Other encoders: Reference point approach not possible MD34200 $MA_ENC_REFP_MODE = 1$

Incremental rotary measuring system

Incremental linear measuring system

Zero pulse on encoder track (not with absolute encoders)

MD34200 MA ENC REFP MODE = 2

BERO with 1-edge detection.

Also possible with an absolute encoder. After referencing, the absolute encoder is additionally marked as "calibrated".

• MD34200 \$MA ENC REFP MODE = 3

Referencing on linear measuring systems with distance-coded reference marks:

Linear measuring system with distance-coded reference marks (as specified by Heidenhain)

• MD34200 \$MA ENC REFP MODE = 5:

When the BERO is passed, the zero mark search is started when the negative BERO edge is detected, and it is referenced to the next zero mark detected.

• MD34200 \$MA ENC REFP MODE = 6

Measuring system calibration to an already referenced encoder (not NCU 570)

• MD34200 \$MA ENC REFP MODE = 7

BERO with configured approach velocity for axis and spindle applications (SW3.6 and higher) (MD34040 $MA_REFP_VELO_SEARCH_MARKER[n]$

(Reference point creep velocity [enc. no.].

• MD34200 \$MA_ENC_REFP_MODE = 8

Referencing for linear measuring systems with distance-coded reference marks:

Linear measuring system with distance-coded reference marks over 4 zero marks (increased safety).

34210	ENC_REFP_STATE			A07, A03, A02	R1
-	Adjustment status of absolute encoder			BYTE	Immediately
-					
-	1	0, 0	0	3	2/2

• Absolute encoder:

This machine data contains the absolute encoder status

- 0: Encoder is not calibrated
- 1: Encoder calibration enabled (but not yet calibrated)
- 2: Encoder is calibrated

Default setting for new startup: Encoder is not calibrated.

- 3: No significance, has the same effect as "0"
- Incremental encoder:

This machine data contains the "Referenced status", which can be saved beyond Power On:

- 0: Default setting: No automatic referencing
- 1: Automatic referencing enabled, but encoder not yet referenced
- 2: Encoder is referenced and at exact stop, automatic referenc-
- ing becomes active at the next encoder activation
- 3: The last axis position buffered before switch off is restored, no automatic referencing

Default setting for new startup: No automatic referencing

34220	ENC_ABS_TURNS_MODULO			A03, A02	R1		
-	Modulo range for rotary absolute encoder			DWORD	PowerOn		
-		·					
-	1	4096, 4096	100000	2/2			

Description:

Number of encoder revolutions, which a rotary absolute encoder can resolve (cf. also maximum multiturn information of the absolute encoder, cf. encoder data sheet or, for example SIMODRIVE611D-MD 1021 or 1031 or PROFIdrive parameter p979).

The absolute position of a rotary axis is reduced to this resolvable range when an absolute encoder is switched on:

That means that a MODULO transformation takes place, if the actual position sensed is larger than the position permitted by MD $\tt ENC_ABS_TURNS_MODULO$.

0 degree <= position <= n*360 degrees, (with n = ENC_ABS_TURNS_MODULO)

Note:

With SW 2.2, the position is reduced to this range when the control/encoder is switched on. With SW 3.6 and higher, half of this value represents the maximum permissible travel distance with the control swiched off / the encoder inactive.

Special cases:

For PROFIdrive any integer values are permissible.

This MD is relevant only for rotary encoders (on linear and rotary axes).

Important recommendation:

The default value "1 encoder revolution" has been changed for SW 3.6 and higher to "4096". The new value is a more robust setting for the most frequently used encoder types.

When an encoder with a smaller multiturn information (encoder data sheet!) is used or when singleturn encoders are used, the value must be reduced accordingly. In either case, the value should be adjusted with multiturn absolute encoders to the maximum variable supported by the encoder, in order to be able to utilize the definite maximum travel range (Please observe: This value also influences the permissible position offset with the encoder inactive/Power Off).

Related to:

PROFIdrive parameter p979

34230	ENC_SERIAL_NUMBER			A02	R1		
-	Encoder serial number			DWORD	PowerOn		
-		<u> </u>					
-	1	0, 0			2/2		

Description:

The encoder serial number (from ${\tt EnDat}$ encoders) can be read out here.

It is updated at power ON (SIMODRIVE611D or PROFIdrive) or when parking is deselected (only PROFIdrive)

"0" is supplied for encoders which do not have a serial number available.

Manipulating this MD normally causes an automatic absolute encoder maladjustment (\$MA ENC REFP MODE returns to "0").

34232	EVERY_ENC_S	SERIAL_NUMBER	A02	R1				
-	Range of encoder serial number			BOOLEAN	PowerOn			
-		·						
-	1	TRUE, TRUE			2/2			

Description:

0 = only valid encoder serial number are entered in the MD, i.e. when the drive supplies a "0" (which corresponds to invalid or unknown) the last valid encoder serial number is retained in the MD (e.g. for add-on axes that are not permanently connected to the machine).

1 = (default, upward compatible): the value supplied by the drive for the encoder serial number is taken over into the MD with every control runup. A validity check is not carried out.

Note for PROFIdrive drives:

As not every drive can supply the relevant parameters at all or in good time, the functionality is coded permanently corresponding to "0" for the PROFIdrive drive. A "1" setting is therefore ineffective on the PROFIBUS.

34300	ENC_REFP_MARKER_DIST			A03, A02	R1			
mm, degrees	Basic distance of reference marks of distance-coded encoders.			DOUBLE	PowerOn			
-		·						
-	1	10.0, 10.0	-	-	2/2			

In addition to the incremental encoder track, a further encoder track is available with distance-coded measuring systems for determining the absolute encoder position. This encoder track has reference marks at defined, different distances. The basic distance between the fixed reference marks (which are the reference marks that are always the same distance from one another) can be taken from the data sheet, and directly transferred into machine data MD34300 \$MA_ENC_REFP_MARKER_DIST.

With the basic distance between the fixed reference marks (MD34300 \$MA_ENC_REFP_MARKER_DIST), the distance between two reference marks (MD34310 \$MA_ENC_MARKER_INC), and the number of encoder marks (MD31020 \$MA_ENC_RESOL) on angular measuring systems or the graduation cycle (MD31010 \$MA_ENC_GRID_POINT_DIST) on linear measuring systems, the absolute encoder position can be determined once two successive reference marks have been crossed.

 $\texttt{MD34300}\ \$\texttt{MA_ENC_REFP_MARKER_DIST}$ is also used for a plausibility check of reference mark distances.

Examples of application:

For example: Heidenhain LS186 C

MD 31010 = 0.02mm (graduation cycle)

MD 34300 = 20.00mm (basic distance between the reference marks) MD 34310 = 0.02mm (distance between two reference marks corresponds to one graduation cycle).

34310	ENC_MARKER_INC			A03, A02	R1		
mm, degrees	Interval betwee scales	terval between two reference marks for distance-coded ales			Reset		
-							
-	1	0.02, 0.02	-	-	2/2		

Description:

The distances between two reference marks are defined variably, so that the position of the crossed reference marks can be determined accurately in linear measuring systems with distance-coded reference marks.

The difference between two reference mark distances is entered in MD34310 $\$ MARKER INC.

MD irrelevant for:

Incremental measuring systems

Special cases:

On linear measuring systems with distance-coded reference marks supplied by Heidenhain, the interval between two reference marks is always equal to one graduation cycle.

34320	ENC_INVERS			A03, A02	G2,R1				
-	Length measuring system inverse to axis movement.			BOOLEAN	Reset				
-									
-	1	FALSE, FALSE	-	2/2					

Description:

In the case of a distance-coded measuring system:

When setting a reference point, the actual position (determined by the distance-coded reference marks) on the linear measuring system is assigned to an exact machine axis position (referred to the machine zero point). The absolute offset between the machine zero point and the position of the 1st reference mark on the linear measuring system must therefore be entered in MD34090 \$MA_REFP_MOVE_DIST_CORR (reference point/absolute offset). In addition, MD34320 \$MA_ENC_INVERS must be used to set whether the linear measuring system is connected in the same or the opposite direction to the machine system.

MD irrelevant to:

Incremental encoders without distance-coded reference marks.

34330	REFP_STOP_AT_ABS_MARKER			A03	G1,R1		
-	Distance-coded point	g -,g -,g -,			BOOLEAN	Reset	
-		·					
-	1	TRUE, TRUE -			-	2/2	

Description:

• Distance-coded measuring system:

REFP STOP AT ABS MARKER = 0:

At the end of the reference cycle, the position entered in MD34100 $MA_REFP_SET_POS$ is approached (normal case for phase 2). REFP STOP AT ABS MARKER = 1:

The axis is braked after detection of the second reference mark (shortening of phase 2)

• Absolute encoder:

 $\tt MD34330$ $MA_REFP_STOP_AT_ABS_MARKER$ defines the response of an axis with a valid calibration identifier (MD34210

 $MA_ENC_REFP_STATE = 2$) with G74 or when a traversing key is actuated in JOG-REF:

REFP_STOP_AT_ABS_MARKER = 0:

Axis traverses to the position entered in MD34100 \$MA_REFP_SET_POS REFP STOP AT ABS MARKER = 1:

Axis does not traverse.

MD irrelevant for:

Incremental encoders with zero mark (standard encoders)

Related to:

MD34100 \$MA_REFP_SET_POS

(reference point distance/target point for distance-coded system)

34990	ENC_ACTVAL_SMOOTH_TIME			A02	V1			
s	Smoothing time constant for actual values.			DOUBLE	Reset			
-		·						
-	1	0.0, 0.0			3/3			

Using low-resolution encoders, a more continuous motion of coupled path or axis motions can be achieved with smoothed actual values. The bigger the time constant, the better the smoothing of actual values and the larger the overtravel.

Smoothed actual values are used for:

- Thread-cutting (G33, G34, G35)
- Revolutional feedrate (G95, G96, G97, FPRAON)
- Display of actual position and velocity, or speed respectively.

2.4.5 Spindles

35000	SPIND_ASSIGN_TO_MACHAX			A01, A06, A11	M1,S3,K2,S1	
-	Assignment of spindle to machine axis			BYTE	PowerOn	
-						
-		0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,		20	2/2	

Description:

Spindle definition. The spindle is defined when the spindle number has been entered in this MD.

Example:

If the corresponding axis is to be spindle 1, value "1" must be entered in this MD.

The spindle functions are possible only for modulo rotary axes.

For this purpose MD30300 MA IS ROT AX and MD30310

\$MA_ROT_IS_MODULO must be set.

The axis functionality is maintained; transition to axis operation can be performed with M70.

The gear stage-specific spindle data are set in parameter blocks ${\bf 1}$ to ${\bf 5}$.

The lowest spindle number is 1, the highest number depends on the number of axes in the channel.

If other spindle numbers are to be assigned, the function "spindle converter" must be used.

With multi-channel systems, the same numbers can be assigned in all channels, except for those spindles active in several channels (replacement axes/spindles MD 30550:

\$MA_AXCONF_ASSIGN_MASTER_CHAN) .

35010	GEAR_STEP_CHANGE_ENABLE			A06, A11	P3 pl,P3 sl,S1
-	Parameterize gear stage change			DWORD	Reset
CTEQ					
-	-	0x00 0			2/2

Description:

Meaning of bit places:

Bit 0 = 0 and bit 1 = 0:

There is an invariable gear ratio between motor and load. The MD of the first gear stage are active. Gear stage change is not possible with M40 to M45.

Bit 0 = 1:

Gear stage change at undefined change position. The gear can have up to 5 gear stages, which can be selected with M40, M41 to M45. To support the gear stage change, the motor can carry out oscillating motions, which must be enabled by the PLC program.

Bit 1 = 1:

Same meaning as for bit 0=1, however, the gear stage change is carried out at a configured spindle position (SW 5.3 and higher). The change position is configured in MD35012 \$MA_GEAR_STEP_CHANGE_POSITION. The position is approached in the current gear stage before the gear stage change. If this bit is set, bit 0 is not taken into account!

Bit 2: reserved

Bit 3 = 1:

The gear stage change dialog between NCK and PLC is simulated. An NCK-internal acknowledgement is given. PLC signals for the change are output, checkback signals from the PLC are ignored because of the NCK-internal acknowledgement.

Bit 4: reserved

Bit 5 = 1:

The second gear stage data set is used for tapping with G331/G332. The bit must be set for the master spindle used for tapping. Bit 0 or bit 1 must be set.

Related to:

MD35090 $MA_NUM_GEAR_STEPS$ (number of gear stages 1st data set, see bit 5)

 $\texttt{MD35092} \ \texttt{SMA_NUM_GEAR_STEPS2}$ (number of gear stages 2nd data set, see bit 5)

 $\tt MD35110 \ SMA_GEAR_STEP_MAX_VELO \ (max. speed for autom. gear stage change)$

MD35112 \$MA_GEAR_STEP_MAX_VELO2 (max. speed for autom. gear stage change 2nd data set, see bit 5)

 $\tt MD35120 \ SMA_GEAR_STEP_MIN_VELO \ (min. speed for autom. gear stage change)$

MD35122 \$MA_GEAR_STEP_MIN_VELO2 (min. speed for autom. gear stage change 2nd data set, see bit 5)

35012	GEAR_STEP_CHANGE_POSITION			A06, A11	S1			
mm, degrees	Gear stage cha	Sear stage change position			NEW CONF			
CTEQ								
-	6	0.0, 0.0, 0.0, 0.0, 0.0, 0.0	-	-	2/2			

Gear stage change position.

The value range must be within the configured modulo range.

Related to:

MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE, bit 1

MD30330 \$MA_MODULO_RANGE

35014	GEAR_STEP_USED_IN_AXISMODE			A01, A06, A11	-		
-	Gear stage for	ear stage for axis mode with M70			NEW CONF		
CTEQ							
-	-	0 0			2/2		

Description:

With this MD, a gear stage can be defined which can be loaded into the axis mode during the transition with M70. The parameter set zero used in axis mode is to be optimized on this gear stage. Significance of the values:

0: There is no implicit gear stage change with M70.

The current gear stage is retained.

1 ... 5:

There is a change into gear stage (1...5) during the execution of M70.

During the transition into axis mode without M70, there is monitoring for this gear stage and alarm 22022 is issued if necessary. The condition for a gear stage change is the general release of the function in MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE. Secondary conditions:

When changing from axis mode into spindle mode, the configured gear stage continues to remain active. There is no automatic return to the last active gear stage in spindle mode.

35020	SPIND_DEFAULT_MODE			A06, A10	S1
-	Initial spindle setting			BYTE	Reset
CTEQ					
-	-	0	0	3	2/2

Description:

SPIND_DEFAULT_MODE activates the operating mode of the spindle at the time specified in MD35030 \$MA_SPIND_DEFAULT_ACT_MASK. The appropriate spindle operating modes can be selected with the following values:

- O Speed mode, position control deselected
- 1 Speed mode, position control activated
- 2 Positioning mode
- 3 Axis mode

Related to:

MD35030 \$MA_SPIND_DEFAULT_ACT_MASK (activate initial spindle setting)

35030	SPIND_DEFAULT_ACT_MASK			A06, A10	S1
-	Time at which initial spindle setting is effective			BYTE	Reset
CTEQ					
-	-	0x00	0	0x03	2/2

Description:

SPIND_DEFAULT_ACT_MASK specifies the time at which the operating mode defined in MD35020 $MA_SPIND_DEFAULT_MODE$ becomes effective. The initial spindle setting can be assigned the following values at the following points in time:

- 0 POWER ON
- 1 POWER ON and NC program start
- 2 POWER ON and RESET (M2/M30)

Special cases:

If MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET = 1, the following supplementary conditions are applicable:

- SPIND DEFAULT ACT MASK should be set to 0
- If this is not possible, the spindle must be at a standstill prior to activation.

Related to:

MD35020 \$MA_SPIND_DEFAULT_MODE (initial spindle setting)
MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET (spindle active after reset)

35032	SPIND_FUNC_RESET_MODE			A06, A10	-
-	Reset response of individual spindle functions			DWORD	PowerOn
CTEQ					
-	-	0x00	0	0x01	1/1

Description:

This data allows the "GWPS in every operating mode" function to be selected/deselected.

SPIND_FUNC_RESET_MODE, bit 0 = 0: "GWPS in every operating mode" is deselected

SPIND_FUNC_RESET_MODE, bit 0 = 1: "GWPS in every operating mode" is selected

35035	SPIND_FUNCTION_MASK			A06, A10	K1,S1
-	Spindle functions			DWORD	Reset
CTEQ					
-	-	0x510	-	-	1/1

Description:

This MD allows spindle-specific functions to be set.

The MD is bit-coded, the following bits are assigned:

Bit 0 = 1: Gear stage changes are suppressed when the DryRun function is activated for

block programming (M40, M41 to M45), programming via

FC18

and synchronized actions.

Bit 1 = 1: Gear stage changes are suppressed when the Program test function is activated for

block programming (M40, M41 to M45), programming via FC18 and synchronized actions.

Bit 2 = 1: The gear stage will finally be changed to the programmed gear stage

by REPOS after the DryRun or Program test function has been deselected.

```
Bit 3: Reserved
Bit 4 = 1:
  The programmed speed is taken over into SD 43200 $SA SPIND S
  (incl. speed default settings via FC18 and synchronized
  actions).
  S programmings, that are not speed programmings, are not writ-
  ten into the SD. These include, for example, S value with con-
  stant cutting speed (G96, G961), S value with revolution-
  related dwell time (G4).
Bit. 5 = 1:
  The content of SD 43200 $SA_SPIND_S acts as speed setpoint for
  JOG. If the content is zero, then other JOG speed default set-
  tings become active (see SD 41200 JOG_SPIND_SET_VELO).
Bit 6: Reserved
Bit 7: Reserved
Bit 8 = 1:
  The programmed cutting speed is taken over into SD 43202
  $SA SPIND CONSTCUT S (incl. default settings via FC18. S pro-
  grammings, that are not cutting speed programmings, are not
  written into the SD. These include, for example, S value beyond
  constant cutting speed (G96, G961, G962), S value with revolu-
  tion-related dwell time (G4), S value in synchronized actions.
Bit 9: Reserved
Bit 10 = 0:
  SD 43206 $SA_SPIND_SPEED_TYPE is not changed by part program or
  channel settings,
  For the master spindle, the value of the 15th G group (type of
  feedrate) is taken over into SD 43206 $SA SPIND SPEED TYPE. For
  all other spindles, the corresponding SD remains unchanged.
Bit 11: Reserved
Bit 12 = 1:
  Spindle override is active for zero mark search for M19, SPOS
  and SPOSA
       = 0:
  Previous behavior (default)
The following bits 16-20 can be used to set spindle-specific M
functions, which are output to the VDI interface,
if the associated M functionality has been implicitly generated
for the program run.
Bit 16: Reserved
Bit 17: Reserved
```

Bit 18: Reserved

Bit 19: "Output of implicit M19 to PLC"

- = 0: If MD20850 $MC_SPOS_TO_VDI$ is also 0, then auxiliary function M19 is not generated with SPOS and SPOSA. Therefore, there is no acknowledgement time for the M function. This can cause faults in short blocks.
- = 1: When SPOS and SPOSA are programmed, the implicit auxiliary function M19 is generated, and output to the PLC. The address extension corresponds to the spindle number.

Bit 20: "Output of implicit M70 to PLC"

= 0: The implicit auxiliary function M70 is not generated. Note: A programmed auxiliary function M70 is always output to the PLC.

Machine Data 06/2009

Axis-specific machine data

= 1: The transition to axis mode implicitly generates the auxiliary function M70, and it is output to the PLC. The address extension corresponds to the spindle number.

Related to:

MD20850 \$MC_SPOS_TO_VDI
MD35040 \$MA_SPIND_ACTIVE_AFTER_RESET
MD35020 \$MA_SPIND_DEFAULT_MODE

SD43200	\$SA	SPIND	S
---------	------	-------	---

35040	SPIND_ACTIVE_AFTER_RESET			A06, A10	S1,Z1,2.7
-	Own spindle RESET			BYTE	PowerOn
CTEQ					
-	-	0	0	2	2/2

Description:

MD35040 $MA_SPIND_ACTIVE_AFTER_RESET$ defines the response of the spindle after channel reset NC/PLC interface signal V3000 0000.7 (Reset) and program end (M2, M30).

This MD is only active in the spindle mode open-loop control mode. In positioning mode or oscillation mode, the spindle is always stopped.

MD35040 \$MA SPIND ACTIVE AFTER RESET = 0:

- Spindle stops (with M2/M30 and channel and mode group reset)
- Program is aborted

MD35040 \$MA SPIND ACTIVE AFTER RESET= 1:

- Spindle does not stop
- Program is aborted

MD35040 \$MA SPIND ACTIVE AFTER RESET= 2:

- Spindle does not stop at the M function configured via MD10714 \$MN_M_NO_FCT_EOP (e.g. M32).
- However, the spindle stops at channel or mode group reset. The NC/PLC interface signal V380x 0002.2 (Delete distance-to-go/Spindle reset) is always effective, independent of MD35040 $MA_PND_ACTIVE_AFTER_RESET..$

Not relevant to:

• Spindle modes other than open-loop control mode.

Related to:

NC/PLC interface signal V3000 0000.7 (Reset)
NC/PLC interface signal V380x 0002.2 (Delete distance-to-go/Spindle reset)

35090	NUM_GEAR_STEPS			A06, A10	S1			
-	Number of gear stages			DWORD	Reset			
-								
-	-	MAXNUM_GEAR_ST EPS	1	5	1/1			

Number of set gear stages.

The first gear stage is always available.

Corresponding MDs:

MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stages available/functions)

MD35012 \$MA_GEAR_STEP_CHANGE_POSITION (gear stage change position)

 $\tt MD35014\ \$MA_GEAR_STEP_USED_IN_AXISMODE\ (gear stage for axis mode with M70)$

MD35110 \$MA_GEAR_STEP_MAX_VELO (max. speed for gear stage change)

 $\texttt{MD35120} \ \texttt{$MA_GEAR_STEP_MIN_VELO}$ (min. speed for gear stage change)

MD35130 \$MA GEAR STEP MAX VELO LIMIT (max. speed of gear stage)

MD35140 \$MA GEAR STEP MIN VELO LIMIT (min. speed of gear stage)

MD35200 $\texttt{$MA_GEAR_STEP_SPEEDCTRL_ACCEL}$ (acceleration in speed control mode)

MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode)

MD35310 \$MA_SPIND_POSIT_DELAY_TIME (positioning delay time)

MD35550 \$MA DRILL VELO LIMIT (maximum speeds for tapping)

 $\tt MD35092 \ \$MA_NUM_GEAR_STEPS2$ (number of gear stages 2nd gear stage data set)

35092	NUM_GEAR_STEPS2			A06, A10	S1			
-	Number of gear stages of 2nd gear stage data set			DWORD	Reset			
-								
-	-	MAXNUM_GEAR_ST EPS	1	5	1/1			

Description:

Number of set gear stages of the second gear stage data set for the function 'Tapping with G331/G332'.

Activation (only makes sense for master spindle on tapping): MD 35010 $MA_GEAR_STEP_CHANGE_ENABLE$, bit 5.

The number of gear stages must not be the same in the first and second gear stage data sets.

Corresponding MD:

MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stages available/functions)

MD35112 \$MA_GEAR_STEP_MAX_VELO2 (2nd gear stage data set: max. speed for gear stage change)

MD35122 \$MA_GEAR_STEP_MIN_VELO2 (2nd gear stage data set: min. speed for gear stage change)

MD35212 \$MA_GEAR_STEP_POSCTRL_ACCEL2 (2nd gear stage data set: acceleration in position control mode)

35100	SPIND_VELO_LIMIT			A06, A11, A04	TE3,G2,S1,V1,Z1
rev/min	Maximum spindle speed			DOUBLE	PowerOn
CTEQ					
-	-	10000.0	1.0e-3	-	7/2

Description:

MD35100 \$MA_SPIND_VELO_LIMIT defines the maximum spindle speed which the spindle (the spindle chuck with the workpiece or the tool) must not exceed. The NCK limits an excessive spindle setpoint speed to this value. If the maximum actual spindle speed is exceeded, even allowing for the spindle speed tolerance (MD35150 \$MA_SPIND_DES_VELO_TOL), there is a fault with the drive and the NC/PLC interface signal V390x 2001.0 (Speed limit exceeded) is set. Alarm 22050 "Maximum speed reached" is also output and all axes and spindles on the channel are decelerated (provided the encoder is still functioning correctly).

MD35150 \$MA_SPIND_DES_VELO_TOL (spindle speed tolerance)
NC/PLC interface signal V390x 2001.0 (Speed limit exceeded)
Alarm 22050 "Maximum speed reached"

35110	GEAR_STEP_MAX_VELO			A06, A11, A04	A3,S1
rev/min	Maximum speed for gear stage change			DOUBLE	NEW CONF
CTEQ					
-		500., 500., 1000., 2000., 4000., 8000.	-	-	2/2

Description:

MD35110 \$MA_GEAR_STEP_MAX_VELO defines the maximum speed of the gear stage for automatic gear stage change (M40). The gear stages must be defined by MD35110 \$MA_GEAR_STEP_MAX_VELO and MD35120 \$MA_GEAR_STEP_MIN_VELO in a way that avoids gaps in the programmable spindle speed range between the gear stages.

Incorrect

MD35110 \$MA_GEAR_STEP_MAX_VELO [gear stage1] =1000 MD35120 \$MA_GEAR_STEP_MIN_VELO [gear stage2] =1200

Correct

MD35110 \$MA_GEAR_STEP_MAX_VELO [gear stage1] =1000 MD35120 \$MA_GEAR_STEP_MIN_VELO [gear stage2] = 950

Related to:

MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE

(gear stage change is possible)

MD35120 \$MA_GEAR_STEP_MIN_VELO

(min. speed for gear stage change)

MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT

(min. speed of gear stage)

MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT

(max. speed of gear stage)

35112	GEAR_STEP_MAX_VELO2			A06, A11, A04	S1
rev/min	2nd data set: M	2nd data set: Maximum speed for gear stage change			NEW CONF
CTEQ					
-		500., 500., 1000., 2000., 4000., 8000.	0	-	2/2

The 2nd data set for the max. speeds (upper switching thresholds) of the gear stages for the automatic gear stage change (M40) is defined in GEAR_STEP_MAX_VELO2. The gear stages must be defined in GEAR_STEP_MAX_VELO2 and MD35122 \$MA_GEAR_STEP_MIN_VELO2 so that there are no gaps between the gear stages in the programmable spindle speed range.

Examples:

Incorrect:

GEAR_STEP_MAX_VELO2 [gear stage 1] =1000
GEAR_STEP_MIN_VELO2 [gear stage 2] =1200

Correct:

GEAR_STEP_MAX_VELO2 [gear stage 1] =1000 GEAR_STEP_MIN_VELO2 [gear stage 2] =950

The 2nd gear stage data block for tapping with G331/G332 is activated by MD 35010: $MA_GEAR_STEP_CHANGE_ENABLE$ bit 5 for the master spindle.

Related to:

MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT (min. speed of gear stage) MD35130 \$MA GEAR STEP MAX VELO LIMIT (max. speed of gear stage)

35120	GEAR_STEP_MIN_VELO			A06, A11, A04	S1
rev/min	Minimum speed for gear stage change			DOUBLE	NEW CONF
CTEQ					
-		50., 50., 400., 800., 1500., 3000.	-	-	2/2

Description:

MD35120 $MA_GEAR_STEP_MIN_VELO$ defines the minimum speed of the gear stage for the automatic gear stage change (M40).

Refer to MD35120 \$MA GEAR STEP MAX VELO for more information.

Related to:

MD35110 \$MA_GEAR_STEP_MAX_VELO

(maximum speed for gear stage change)

MD35010 \$MA GEAR STEP CHANGE ENABLE

(gear stage change is possible)

MD35140 \$MA GEAR STEP MIN VELO LIMIT

(minimum speed of gear stage)

MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT

 $(maximum\ speed\ of\ gear\ stage)$

35122	GEAR_STEP_MIN_VELO2			A06, A11, A04	S1
rev/min	2nd data set: Minimum speed for gear stage change			DOUBLE	NEW CONF
CTEQ					
-		50., 50., 400., 800., 1500., 3000.	0	-	2/2

Description:

The 2nd data block of the minimum speeds (lower switching thresholds) of the gear stages for automatic gear stage change (M40) is set in GEAR_STEP_MIN_VELO2. The gear stages must be defined with GEAR_STEP_MIN_VELO2 and MD35112 \$MA_GEAR_STEP_MAX_VELO2 so that there are no gaps between the gear stages within the programmable spindle speed range.

Examples:

Incorrect:

GEAR_STEP_MAX_VELO2 [gear stage 1] = 1000
GEAR_STEP_MIN_VELO2 [gear stage 2] = 1200
prrect:

GEAR_STEP_MAX_VELO2 [gear stage 1] = 1000 GEAR STEP MIN VELO2 [gear stage 2] = 950

The 2nd gear stage data block for tapping with G331/G332 is activated by MD35010 $MA_GEAR_STEP_CHANGE_ENABLE$ bit 5 for the master spindle.

Related to:

MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT$ (min. speed of the gear stage)

 ${\tt MD35130~\$MA_GEAR_STEP_MAX_VELO_LIMIT}$ (max. speed of the gear stage)

35130	GEAR_STEP_MAX_VELO_LIMIT			A06, A11, A04	A2,S1,V1		
rev/min	Maximum speed of gear stage			DOUBLE	NEW CONF		
CTEQ							
-		500., 500., 1000., 2000., 4000., 8000.	1.0e-3	-	2/2		

Description:

The maximum speed of the gear stage is entered in MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT$ with the position control switched off.

This speed can never be exceeded in the active gear stage. With the position control switched on, the behavior described in MD35135 $MA_GEAR_STEP_PC_MAX_VELO_LIMIT$ applies. Note:

- If an S value is programmed that exceeds the max. speed of the active gear stage, the setpoint speed is limited to the max. speed of the gear stage (with gear stage selection M41 to M45). Furthermore, the NC/PLC interface signal "Programmed speed too high" will be set.
- If an S value is programmed that exceeds the max. speed for gear stage change, a new gear stage will be set (with automatic gear stage selection M40).

- If an S value is programmed that exceeds the max. speed of the highest gear stage, the speed will be limited to the max. speed of the gear stage (with automatic gear stage selection M40).
- If an S value is programmed that does not have a suitable gear stage, no gear stage change will be triggered.

Related to:

MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage change possible)
MD35110 \$MA_GEAR_STEP_MAX_VELO (max. speed for gear stage change)
MD35120 \$MA_GEAR_STEP_MIN_VELO (min. speed for gear stage change)
MD35135 \$MA_GEAR_STEP_PC_MAX_VELO_LIMIT (min. speed of the gear stage with position control)
MD35140 \$MA_GEAR_STEP_MIN_VELO_LIMIT (min. speed of the gear

 $\mbox{MD35140}$ $\mbox{MA_GEAR_STEP_MIN_VELO_LIMIT}$ (min. speed of the gear stage)

35135	GEAR_STEP_PC_MAX_VELO_LIMIT			A06, A11, A04	S1
rev/min	Maximum spee	Maximum speed of the gear stage with position control			NEW CONF
CTEQ					
-	6	0., 0., 0., 0., 0.	0	-	2/2

Description:

The maximum speed of the gear stage is set in GEAR_STEP_PC_MAX_VELO_LIMIT with the position control active. If value 0 is set (default), 90% of the value from MD35130: GEAR_STEP_MAX_VELO_LIMIT (control margin) will become the max. speed of the gear stage with position control active. This limit speed is limited to a value that does not exceed MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT and MD35100 \$MA_SPIND_VELO_LIMIT. If an S value is programmed that exceeds the limit speed, the setpoint speed is limited to the limit speed. In this case, the VDI interface signal "Programmed speed too high" will be set. Related to:

MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE (gear stage change possible)

MD35110 \$MA_GEAR_STEP_MAX_VELO (max. speed for gear stage change)

MD35120 \$MA_GEAR_STEP_MIN_VELO (min. speed for gear stage change)

 $\mbox{MD35140}$ $\mbox{MA_GEAR_STEP_MIN_VELO_LIMIT}$ (min. speed of the gear stage)

35140	GEAR_STEP_MIN_VELO_LIMIT			A06, A11, A04	S1,V1
rev/min	Minimum speed of gear stage			DOUBLE	NEW CONF
CTEQ					
-	6	5., 5., 10., 20., 40., 80.	-	-	2/2

Description:

MD35140 $MA_GEAR_STEP_MIN_VELO_LIMIT$ defines the minimum speed for the gear stage. The speed cannot drop below this value, even if an S value is programmed that is too low.

The speed can only drop below this minimum value as a result of the "Minimum/maximum speed of gear stage" related signals/commands/states.

MD irrelevant for:

- Spindle oscillation mode
- · Spindle positioning mode, axis mode

Related to:

MD35010 \$MA_GEAR_STEP_CHANGE_ENABLE

(gear stage change is possible)

MD35110 \$MA GEAR STEP MAX VELO

(maximum speed for gear stage change)

MD35120 \$MA GEAR STEP MIN VELO

(minimum speed for gear stage change)

MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT

(maximum speed of gear stage)

35150				A03, A05, A06, A10, A04	R1,S1,Z1			
-	Spindle speed tolerance			DOUBLE	Reset			
-		·						
-	-	0.1	0.0	1.0	2/2			

Description:

In spindle control mode, the set speed (programmed speed x spindle offset, allowing for limits) is compared with the actual speed.

- If the actual speed deviates from the set speed by more than MD35150 \$MA_SPIND_DES_VELO_TOL, the NC/PLC interface signal is V390x 2001.5 (Spindle in setpoint range) is set to zero.
- If the actual speed deviates from the set speed by more than MD35150 \$MA_SPIND_DES_VELO_TOL, the path feed is disabled (positioning axes continue traversing).
- If the actual speed exceeds the maximum spindle speed (MD35100 \$MA_SPIND_VELO_LIMIT) by more than MD35150 \$MA_SPIND_DES_VELO_TOL, the NC/PLC interface signal is V390x 2001.0 (Speed limit exceeded) is enabled and alarm 22050 "Maximum speed reached" is output. All axes and spindles on the channel are decelerated.

MD irrelevant to:

- Spindle oscillation mode
- Spindle positioning mode

Example:

MD 35150 \$MA SPIND DES VELO TOL = 0.1

The actual spindle speed must not deviate from the set speed by more than +/- 10%.

Related to:

MD35500 \$MA SPIND ON SPEED AT IPO START

(feed enable for spindle in setpoint range)

MD35100 \$MA SPIND VELO LIMIT

(maximum spindle speed)

NC/PLC interface signal V390x 2001.5 (Spindle in setpoint range)

NC/PLC interface signal V390x 2001.0 (Speed limit exceeded)

Alarm 22050 "Maximum speed reached"

35160	SPIND_EXTERN_VELO_LIMIT			A06, A04	A3,S1,V1,Z1
rev/min	Spindle speed I	Spindle speed limitation from PLC			NEW CONF
CTEQ					
-	-	1000.0 1.0e-3 -			2/2

Description:

A limiting value for the maximum spindle speed is entered in MD35160 \$MA_SPIND_EXTERN_VELO_LIMIT, which is taken into account exactly when the NC/PLC interface signal V380x 0003.6 (Velocity/speed limitation) is set.

The control limits a spindle speed which is too high to this value.

35200	GEAR_STEP_SPEEDCTRL_ACCEL			A06, A11, A04, -	S1
rev/s²	Acceleration in	cceleration in speed control mode			NEW CONF
CTEQ					
-		30.0, 30.0, 25.0, 20.0, 15.0, 10.0	1.0e-3	-	2/2

Description:

If the spindle is in speed control mode, the acceleration is entered in MD35200 $\rm SMA\ GEAR\ STEP\ SPEEDCTRL\ ACCEL.$

The spindle is in speed control mode with the function SPCOF. Special cases:

The acceleration in speed control mode (MD35200

 $MA_GEAR_STEP_SPEEDCTRL_ACCEL)$ can be set so that the electric current limit is reached.

Related to:

MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL(acceleration in position control mode)

MD35220 \$MA_ACCEL_REDUCTION_SPEED_POINT (speed limit for reduced acceleration)

35210	GEAR_STEP_POSCTRL_ACCEL			A06, A11, A04, -	S1
rev/s²	Acceleration in	Acceleration in position control mode			NEW CONF
CTEQ					
-		30.0, 30.0, 25.0, 20.0, 15.0, 10.0	1.0e-3	-	2/2

Description:

The acceleration in position control mode must be set so that the electric current limit is not reached.

Related to:

MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL MD35212 \$MA GEAR STEP POSCTRL ACCEL2

35212	GEAR_STEP_I	POSCTRL_ACCEL2	A06, A11, A04, -	S1				
rev/s²	2nd data set: Acceleration in position control mode			DOUBLE	NEW CONF			
CTEQ								
-		30.0, 30.0, 25.0, 20.0, 15.0, 10.0	1.0e-3	-	2/2			

Description:

Second gear stage data set for maximum acceleration capability of the gear stages in position control mode.

The acceleration in position control mode must be set so that the electric current limit is not reached.

The 2nd data set for tapping with G331/G332 is activated by MD35010 $MA_GEAR_STEP_CHANGE_ENABLE$, bit 5 for the master spindle. Related to:

MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL
MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL
MD35220 \$MA ACCEL REDUCTION SPEED POINT

35220	ACCEL_REDUCTION_SPEED_POINT			A06, A04	S1,S3,B2			
-	Speed for reduced acceleration			DOUBLE	Reset			
-		·						
-	-	1.0 0.0			0/0			

Description:

This machine data defines the threshold speed/velocity for spin-dles/positioning/path axes from which the acceleration reduction is to start. The reference is the defined maximum speed/velocity. The starting point is a percentage of the maximum values. Example: MD35220 \$MA_ACCEL_REDUCTION_SPEED_POINT = 0.7, the maximum speed is 3000 rpm. Acceleration reduction starts at $v_on = 2100$ rpm, i.e. the maximum acceleration capacity is utilized in the speed range 0...2099.99 rpm. Reduced acceleration is used from 2100 rpm to the maximum speed. Related to:

MD32000 \$MA_MAX_AX_VELO
(maximum axis velocity)
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT
(maximum gear stage speed)
MD35230 \$MA_ACCEL_REDUCTION_FACTOR
(reduced acceleration)

35230	ACCEL_REDUCTION_FACTOR			A06, A04	S1,S3,B2
-	Reduced acceleration			DOUBLE	Reset
CTEQ					
-	-	0.0			0/0

The machine data contains the factor by which the acceleration of the spindle/positioning/path axes is reduced with reference to the maximum speed/velocity. The acceleration is reduced by this factor between the threshold speed/velocity defined in MD35220 \$MA_ACCEL_REDUCTION_SPEED_POINT and the maximum speed/velocity. Example:

a= 10 rev/s², v_on = 2100 rpm, MD35230 \$MA_ACCEL_REDUCTION_FACTOR
= 0.3.

Acceleration and deceleration take place within the speed range 0...2099.99 rpm with an acceleration of 10 rev/s². From a speed of 2100 rpm up to the maximum speed, the acceleration is reduced from 10 rev/s² to 7 rev/s².

MD irrelevant to:

Errors that lead to rapid stop.

Related to:

MD32300 \$MA_MAX_AX_ACCEL (axis acceleration)
MD35200 \$MA_GEAR_STEP_SPEEDCTRL_ACCEL
(acceleration in speed control mode)

MD35210 \$MA GEAR STEP POSCTRL ACCEL

(acceleration in position control mode)

MD35242 \$MA ACCEL REDUCTION SPEED POINT

(speed for reduced acceleration)

35300	SPIND_POSCTRL_VELO			A06, A04	P3 pl,P3 sl,R1,S1
rev/min	Position control	Position control activation speed			NEW CONF
CTEQ					
-		500.0, 500.0, 500.0, 500.0, 500.0, 500.0	-	-	2/2

Description:

When positioning a spindle that is not in position control mode from a high speed, the position control is not activated until the spindle has reached or falls below the velocity defined in MD35300 α SPIND POSCTRL VELO.

The speed can be changed with ${\rm FA[Sn]}$ from the part program. Please refer to the documentation:

/FB1/ Function Manual, Basic Functions; Spindles (S1), section "Spindle mode 'positioning operation" for a description of the spindle behavior under various supplementary conditions (positioning from rotation, positioning from standstill).

Note:

The active speed from MD35300 $MA_SPIND_POSCTRL_VELO$ cannot exceed the max. speed set in MD35135 $MA_GEAR_STEP_PC_MAX_VELO_LIMIT$. If MD35135 $MA_GEAR_STEP_PC_MAX_VELO_LIMIT = 0$, the value is limited to 90% of MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT$.

Related to:

MD35350 \$MA_SPIND_POSITIONING_DIR (direction of rotation during positioning from standstill, if no synchronization is available)

MD35100 \$MA SPIND VELO LIMIT (chuck speed)

35310	SPIND_POSIT_DELAY_TIME			A06, A04	S1
s	Positioning dela	Positioning delay time			NEW CONF
CTEQ					
-		0.0, 0.05, 0.1, 0.2, 0.4, 0.8	-	-	2/2

Description:

Positioning delay time.

 After reaching the positioning end (exact stop fine), the time delay for the block search is activated at the output of a collected positioning block (SPOS).

35350	SPIND_POSITIONING_DIR			A06	S1
-	Direction of rotation when positioning			BYTE	Reset
CTEQ					
-	-	3 3			2/2

Description:

When SPOS or SPOSA is programmed, the spindle is switched to position control mode and accelerates with the acceleration defined in MD35210 \$MA_GEAR_STEP_POSCTRL_ACCEL (acceleration in position control mode) if the spindle is not synchronized. The direction of rotation is defined by MD35350 \$MA_SPIND_POSITIONING_DIR (direction of rotation for positioning from standstill).

 ${\tt MD35350~\$MA_SPIND_POSITIONING_DIR} = 3 ---> {\tt Clockwise}$ direction of rotation

MD35350 \$MA_SPIND_POSITIONING_DIR = 4 ---> Counterclockwise direction of rotation

Related to:

MD35300 \$MA SPIND POSCTRL VELO (position control activation speed)

35400	SPIND_OSCILL_DES_VELO			A06, A04	P3 pl,P3 sl,S1
rev/min	Oscillation speed			DOUBLE	NEW CONF
CTEQ					
-	-	500.0	-	-	2/2

Description:

During oscillation, the NC/PLC interface signal $V380 \times 2002.5$ (Oscillation speed) is used to select a motor speed for the spin-dle motor. This motor speed is defined in MD35400

\$MA_SPIND_OSCILL_DES_VELO. The motor speed defined in this MD is independent of the current gear stage. In the AUTOMATIC and MDI displays, the oscillation speed is displayed in the "Spindle setpoint" window until the gear is changed.

This motor speed is independent of the current gear stage. In the AUTOMATIC and MDA displays, the oscillation speed is displayed in the "spindle setpoint" window until the gear is changed.

MD irrelevant to:

All spindle modes except oscillation mode

Special cases:

The acceleration during oscillation (MD35410 $\,$

 $MA_SPIND_OSCILL_ACCEL)$ is valid for the oscillation speed defined in this MD.

Related to:

 $\verb|MD35410 $MA_SPIND_OSCILL_ACCEL| (acceleration during oscillation)|$

NC/PLC interface signal V380x 2002.5 (Oscillation speed)

NC/PLC interface signal V380x 2002.4 (Oscillation via PLC)

35410	SPIND_OSCILL_ACCEL			A06, A04, -	S1,Z1
rev/s²	Acceleration during oscillation			DOUBLE	NEW CONF
CTEQ					
-	-	16.0 1.0e-3			2/2

The acceleration specified here is only effective for the output of the oscillation speed (MD35400 $MA_SPIND_OSCILL_DES_VELO$) to the spindle motor. The oscillation speed is selected using the NC/PLC interface signal V380x 2002.5 (Oscillation speed). MD irrelevant to:

All spindle modes except oscillation mode

Related to:

MD35400 \$MA_SPIND_OSCILL_DES_VELO (oscillation speed)
NC/PLC interface signal V380x 2002.5 (Oscillation speed)
NC/PLC interface signal V380x 2002.4 (Oscillation via PLC)

35430	SPIND_OSCILL_START_DIR			A06	S1			
-	Start direction during oscillation			BYTE	Reset			
CTEQ								
-	-	0	0	4	2/2			

Description:

With the NC/PLC interface signal V380x 2002.5 (Oscillation speed), the spindle motor accelerates to the speed specified in MD35400: SMA SPIND OSCILL DES VELO.

The start direction is defined by MD35430

 $MA_SPIND_OSCILL_START_DIR$ if the NC/PLC interface signal V380x 2002.4 (Oscillation via PLC) is not enabled.

 $\tt MD35430~\$MA_SPIND_OSCILL_START_DIR = 0 ---> Start direction same as the last direction of rotation$

MD35430 \$MA SPIND OSCILL START DIR = 1 ---> Start direction

counter to the last direction of rotation $% \left(1\right) =\left(1\right) \left(1$

MD35430 \$MA SPIND OSCILL START DIR = 2 ---> Start direction

counter to the last direction of rotation

MD35430 \$MA SPIND OSCILL START DIR = 3 ---> Start direction is M3

MD35430 \$MA_SPIND_OSCILL_START_DIR = 4 ---> Start direction is M4

MD irrelevant to:

All spindle modes except oscillation mode

Related to:

MD35400 \$MA SPIND OSCILL DES VELO (oscillation speed)

NC/PLC interface signal V380x 2002.5 (Oscillation speed)

NC/PLC interface signal V380x 2002.4 (Oscillation via PLC)

35440	SPIND_OSCILI	TIME_CW	A06	S1,Z1	
s	Oscillation time for M3 direction			DOUBLE	NEW CONF
CTEQ					
-	-	1.0	-	-	2/2

Description:

The oscillation time defined here is active in the M3 direction. \mbox{MD} irrelevant to:

- All spindle modes except oscillation mode
- Oscillation via PLC (NC/PLC interface signal V380x 2002.4 (Oscillation via PLC) enabled)

Related to:

MD35450 $\texttt{$MA_SPIND_OSCILL_TIME_CCW}$ (oscillation time for M4 direction)

MD10070 \$MN_IPO_SYSCLOCK_TIME_RATIO (interpolator cycle) NC/PLC interface signal V380x 2002.5 (Oscillation speed) NC/PLC interface signal V380x 2002.4 (Oscillation via PLC)

35450	SPIND_OSCILL_TIME_CCW			A06	S1,Z1
s	Oscillation time for M4 direction			DOUBLE	NEW CONF
CTEQ					
-	-	0.5	-	-	2/2

Description:

The oscillation time defined here is active in the M4 direction. $\mbox{\sc MD}$ irrelevant to:

- All spindle modes except oscillation mode
- Oscillation via PLC (NC/PLC interface signal V380x 2002.4 (Oscillation via PLC) enabled)

Related to:

 $\texttt{MD35440}~\texttt{\$MA_SPIND_OSCILL_TIME_CW}$ (oscillation time for M3 direction)

MD10070 \$MN_IPO_SYSCLOCK_TIME_RATIO (interpolator cycle) NC/PLC interface signal V380x 2002.5 (Oscillation speed) NC/PLC interface signal V380x 2002.4 (Oscillation via PLC)

35500	SPIND_ON_SF	PEED_AT_IPO_START	A03, A06, A10	S1,Z1	
-	Feedrate enable for spindle in the set range			BYTE	Reset
CTEQ					
-	-	1	0	2	2/2

Byte = 0:

The path interpolation is not affected

Byte = 1:

The path interpolation is not enabled (positioning axes continue traversing) until the spindle has reached the specified speed. The tolerance range can be set in MD 35150: \$MA_SPIND_DES_VELO_TOL. If a measuring system is active, then the actual speed is monitored, otherwise the set speed. Path axes traversing in continuous-path mode (G64) are not stopped.

Byte = 2:

In addition to 1, traversing path axes are also stopped before machining begins, e.g. continuous-path mode (G64) and the change from rapid traverse (G0) to a machining block (G1, G2,..). The path is stopped at the last G0 block, and does not start traversing until the spindle is within the set speed range.

Restriction:

If the spindle is newly programmed by the PLC (FC18) or a synchronized action "shortly" before the end of the last G0 block, then the path decelerates taking the dynamic limitations into account. Because the spindle programming is asynchronous, a traverse can be made into the machining block if necessary. If the spindle has reached the setpoint speed range, then machining starts from this position.++

35510	SPIND_STOPF	PED_AT_IPO_START	A03, A06, A10	S1	
-	Feedrate enable for spindle stopped			BOOLEAN	Reset
CTEQ					
-	-	FALSE	-	-	2/2

Description:

When a spindle is stopped (M5), the path feed is disabled (positioning axes continue traversing) if MD35510

 $MA_SPIND_STOPPED_AT_IPO_START$ is enabled and the spindle is in control mode.

When the spindle has come to a standstill (NC/PLC interface signal $V390 \times 0001.4$ (Axis/spindle stationary) enabled), the path feed is enabled.

Related to:

MD35500 \$MA_SPIND_ON_SPEED_AT_IPO_START (feed enable for spindle in setpoint range)

35550	DRILL_VELO_LIMIT			A06, A11, A04	-		
rev/min	Maximum speeds for tapping			DOUBLE	NEW CONF		
CTEQ							
-		10000., 10000., 10000., 10000., 10000., 10000.	1	-	2/2		

Description:

Limit speed values for tapping without compensating chuck with G331/G332.

The maximum speed of the linear motor characteristic range (constant acceleration capacity) must be specified depending on the gear stage.

2.4.6 Monitoring functions

36000	STOP_L	STOP_LIMIT_COARSE			TE1,A3,B1,G2,S1, Z1
mm, degrees	Exact sto	Exact stop coarse			NEW CONF
-					·
-	-	0.04,0.04,0.04,0.04,0 04,0.04,0.04		-	2/2

Description:

Threshold for exact stop coarse

An NC block is considered as terminated if the actual position of the path axes is away from the setpoint position by the value entered for the exact stop limit. If the actual position of a path axis is not within this limit, the NC block is considered as not terminated, and further part program execution is not possible. The magnitude of the value entered influences the transition to the next block. The larger the value, the earlier the block change is initiated.

If the specified exact stop limit is not reached, then

- the block is considered as not terminated,
- further traversing of the axis is not possible,
- alarm 25080 Positioning monitoring is output after expiry of the time specified in MD36020 \$MA_POSITIONING_TIME (monitoring time for exact stop fine),
- the direction of movement +/- is indicated for the axis in the positioning display. The exact stop window is also evaluated for spindles in position control mode (SPCON instruction).

Special cases:

MD36000 \$MA_STOP_LIMIT_COARSE must not be set smaller than MD36010 \$MA_STOP_LIMIT_FINE (exact stop fine). To achieve the identical block change behavior as with the "exact stop fine" criterion, the exact stop coarse window may be identical to the exact stop fine window. MD36000 \$MA_STOP_LIMIT_COARSE must not be set equal to or greater than MD36030 \$MA_STANDSTILL_POS_TOL (standstill tolerance).

Related to:

MD36020 \$MA POSITIONING TIME (delay time, exact stop fine)

36010	STOP_LIMIT_FINE				TE1,A3,B1,D1,G2 ,S1,Z1
mm, degrees	Exact stop fine			DOUBLE	NEW CONF
-					
-		0.01,0.01,0.01,0.01,0. 01,0.01,0.01	-	-	2/2

Description:

Threshold for exact stop fine

See also MD36000 \$MA_STOP_LIMIT_COARSE (exact stop coarse)
Special cases:

MD36010 \$MA_STOP_LIMIT_FINE must not be set greater than MD36000 \$MA_STOP_LIMIT_COARSE (exact stop coarse). MD36010 \$MA_STOP_LIMIT_FINE must not be set greater than or equal to MD36030 \$MA_STANDSTILL_POS_TOL (standstill tolerance).

MD 36020: \$MA POSITIONING TIME (delay time, exact stop fine)

36012	STOP_L	STOP_LIMIT_FACTOR		A05	G1,A3,B1,G2,S1, Z1
-	Factor fo	Factor for exact stop coarse/fine and standstill			NEW CONF
-					
-	6	1.0, 1.0, 1.0, 1.0, 1.0, 1.0	0.001	1000.0	1/1

Description:

With this factor,

Related to:

MD36000 \$MA_STOP_LIMIT_COARSE, MD36010 \$MA_STOP_LIMIT_FINE, MD36030 \$MA_STANDSTILL_POS_TOL

can be re-assessed as a function of the parameter set. The relationship between these three values always remains the same. Application examples:

Adapting the positioning behavior if the mass relationships change significantly with a gear change, or if it is desired to save on machine positioning time at the cost of accuracy in various operating conditions.

Related to:

MD36000 \$MA_STOP_LIMIT_COARSE, MD36010 \$MA_STOP_LIMIT_FINE, MD36030 \$MA_STANDSTILL_POS_TOL

36020	POSITIONING_	_TIME	A05	TE1,A3,B1,G2	
S	Delay time exac	Delay time exact stop fine			NEW CONF
-					
-	-	1.0	-	-	2/2

Description:

The following error must have reached the limit value for exact stop fine by the expiry of the time entered in this MD for traveling into the position (position setpoint has reached the destination).

The current following error is therefore continuously monitored for the time limit MD36010 \$MA_STOP_LIMIT_FINE. If this time is exceeded, alarm 25080 "Positioning monitoring" is output, and the axis stopped. The time entered in this MD should be long enough to ensure that the monitoring function is not triggered under normal operating conditions, taking into account any settling times. Related to:

MD 36010: \$MA_STOP_LIMIT_FINE (exact stop fine)

36030	STANDSTILL	STANDSTILL_POS_TOL			G1,A3,D1,G2
mm, degrees	Standstill tole	Standstill tolerance			NEW CONF
-					
-	-	0.2,0.2,0.2,0.2,0.2,0.2, 0.2,0.2,0.2	-	-	2/2

Description:

This MD serves as a tolerance band for the following monitoring functions:

- After termination of a positioning action (exact stop fine reached), positioning monitoring is replaced by standstill monitoring. The axis is monitored for moving from its position by more than defined in MD36030 \$MA_STANDSTILL_POS_TOL (standstill tolerance).

If the setpoint position is over- or undershot by the standstill tolerance, alarm 25040 "Standstill monitoring" is output and the axis stopped.

Special cases:

The standstill tolerance must be greater than the "exact stop limit coarse".

Related to:

MD36040 \$MA_STANDSTILL_DELAY_TIME (delay time, standstill monitoring)

36040	STANDSTILL_I	DELAY_TIME	A05	TE1,A3,F1,G2	
s	Delay time for s	elay time for standstill monitoring			NEW CONF
-					
-	-	0.4	-	-	2/2

Description: See MD36030 \$MA STANDSTILL POS TOL (standstill tolerance)

36042	FOC_STANDSTILL_DELAY_TIME			A05	F1		
s	Delay time for standstill monit. w/ active torque or force lim.			DOUBLE	NEW CONF		
-	·						
-	- 0.4 -			-	0/0		

Only for SIMODRIVE611D or PROFIdrive telegrams including a torque/force limiting value:

Waiting time between the end of a movement and activation of standstill monitoring with active torque/force limitation. If the configurable end of block criterion occurs within this time, then standstill monitoring is activated.

36050	CLAMP_POS_TOL			A05	A3,D1,Z1		
mm, degrees	Clamping tolera	Clamping tolerance			DOUBLE	NEW CONF	
-		·					
-	-	0.5		-	-	2/2	

Description:

With NC/PLC interface signal V380x 0002.3 (Blocking action active), blocking monitoring is activated. If the monitored axis is forced away from the setpoint position (exact stop limit) by more than the blocking tolerance, alarm 26000 "Blocking monitoring" is output and the axis stopped.

Threshold value for clamping tolerance (half width of window). Special cases:

The clamping tolerance must be greater than the "exact stop limit coarse".

Related to:

NC/PLC interface signal V380x 0002.3 (Blocking action active)

36052	STOP_ON_CLAMPING			A10	A3		
-	Special functions with clamped axis			BYTE	NEW CONF		
CTEQ							
-	-	0 0			0/0		

Description:

This MD defines how a blocked axis is taken into account. Bit 0 = 0:

If a blocked axis is to be traversed again in continuous-path mode, it must be ensured via the part program that the path axes are stopped and that there is time for releasing the blockage. Bit 0 =1:

If a blocked axis is to be traversed again in continuous-path mode, the LookAhead function stops the path motion if required until the position controller is allowed to traverse the blocked axis again, i.e. until the controller enable is set again.

Bit 1 is relevant only if bit 0 is set: Bit 1 =0:

If a blocked axis is to be traversed again in continuous-path mode, the LookAhead function does not release the blockage.

Bit 1 =1:

If a blocked axis is to be traversed again in continuous-path mode, a traversing command for the blocked axis is given in the preceding GO blocks so that the PLC releases the axis blockage again.

Bit 2 = 0:

If an axis is to be blocked in continuous-path mode, it must be ensured in the part program that the path axes are stopped to make sure that there is time for setting the blockage.

Bit. 2 =1:

If an axis is to be blocked in continuous-path mode, the LookAhead function stops the path motion prior to the next non-GO block, if the axis has not yet been blocked by that time, i.e. the PLC has not yet set the feedrate override to zero.

36060	STANDSTILL_VELO_TOL			A05, A04	TE1,A2,A3,D1,Z1			
mm/min, rev/min	Threshold veloc	hreshold velocity/speed 'Axis/spindle in stop'			NEW CONF			
-								
-		5.00,5.00,5.00,5.00,5. 00,5.00,5.00	-	-	2/2			

Description:

This MD defines the standstill range for the axis velocity / spindle speed. If the current actual velocity of the axis or the actual speed of the spindle is less than the value entered in this MD, the NC/PLC interface signal V390x 0001.4 (Axis/spindle stationary) is set.

To bring the axis/spindle to a standstill under control, the pulse enable should not be removed until the axis/spindle is at a standstill. Otherwise the axis will coast down.

Related to:

NC/PLC interface signal V390x 0001.4 (Axis/spindle stationary)

36100	POS_LIMIT_MI	NUS	A03, A05, A11, -	TE1,R2,T1,A3,Z1				
mm, degrees	1st software limit switch minus			DOUBLE	NEW CONF			
CTEQ		·						
-	-	-1.0e8	-	2/2				

Description:

Same meaning as 1st software limit switch plus, however the traversing range limitation is in the negative direction.

The MD becomes active after reference point approach if the NC/PLC interface signal V380x 1000.2 (2nd software limit switch minus) is not set.

MD irrelevant:

if axis is not referenced.

Related to:

NC/PLC interface signal $V380 \times 1000.2$ (2nd software limit switch minus)

36110	POS_LIMIT_PL	OS_LIMIT_PLUS			TE1,R2,T1,G2,A3, Z1
mm, degrees	1st software limit switch plus			DOUBLE	NEW CONF
CTEQ					
-	-	1.0e8	-	-	2/2

A software limit switch can be activated in addition to the hardware limit switch. The absolute position in the machine axis system of the positive range limit of each axis is entered.

The MD is active after reference point approach if NC/PLC interface signal V380x 1000.3 (2nd software limit switch plus) has not been set.

MD irrelevant:

if axis is not referenced.

Related to:

NC/PLC interface signal V380x 1000.3 (2nd software limit switch plus) $\,$

36120	POS_LIMIT_MINUS2			A03, A05, -	TE1,A3,Z1		
mm, degrees	2nd software limit switch minus			DOUBLE	NEW CONF		
CTEQ							
-	-	-1.0e8	-	2/2			

Description:

Same meaning as 2nd software limit switch plus, but the traversing range limitation is in the negative direction.

The PLC can select whether software limit switch 1 or 2 is to be active by means of the interface signal.

For example:

 $V380 \times 1000.2 = 0$ (1st software limit switch minus) active for 1st axis

 $V380 \times 1000.2 = 1$ (2nd software limit switch minus) active for 1st axis

MD irrelevant:

if axis is not referenced.

Related to:

NC/PLC interface signal V380x 1000.2 (2nd software limit switch minus)

36130	POS_LIMIT_PL	US2	A03, A05, -	TE1,A3,Z1				
mm, degrees	2nd software lin	nit switch plus	DOUBLE	NEW CONF				
CTEQ								
-	-	1.0e8	-	2/2				

Description:

This machine data can define a 2nd software limit switch position in the positive direction in the machine axis system. The PLC can select which of the two software limit switches 1 or 2 is to be active by means of an interface signal.

For example:

 $V380x\ 1000.3 = 0$ (1st software limit switch plus) active for 1st axis

 $V380x\ 1000.3 = 1$ (2nd software limit switch plus) active for 1st axis

MD irrelevant:

if axis is not referenced.

Related to:

NC/PLC interface signal V380x 1000.3 (2nd software limit switch plus) $\,$

36200	AX_VELO_LIMIT			A05, A11, A04	TE3,A3,G2,S1,V1		
mm/min, rev/min	Threshold value	Threshold value for velocity monitoring			NEW CONF		
CTEQ							
-		11500., 11500., 11500., 11500., 11500., 11500	-	-	2/2		

Description:

The threshold value for actual velocity monitoring is entered in this machine data.

If the axis has at least one active encoder and if this encoder is below its limit frequency, alarm 25030 "Actual velocity alarm limit" is triggered when the treshold value is exceeded, and the axis is stopped.

Settings:

• For axes, a value should be selected that is 10 to 15 % higher than that in MD32000 \$MA_MAX_AX_VELO (maximum axis velocity). With active temperature compensation MD32750 \$MA_TEMP_COMP_TYPE, the maximum axis velocity is increased by an additional factor which is determined by MD32760 \$MA_COMP_ADD_VELO_FACTOR (velocity overshoot through compensation). The following should therefore apply to the velocity monitoring threshold value:

 $\label{eq:md36200} $MA_AX_VELO_LIMIT[n] > MD32000 $MA_MAX_AX_VELO * (1.1 ... 1.15 + MD32760 $MA_COMP_ADD_VELO_FACTOR)$$

• For spindles, a value should be selected for each gear stage that is 10 to 15 % higher than the corresponding values in MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT[n] (maximum speed of gear stage).

The index of the machine data has the following coding: [control parameter set no.]: 0-5

36210	CTRLOUT_LIMIT			EXP, A05	A3,D1,G2			
%	Maximum speed setpoint			DOUBLE	NEW CONF			
CTEQ		<u> </u>						
-	1	110.0			7/2			

This MD defines the maximum speed setpoint in percent. The value refers to the speed (100%) at which the axis velocity of MD32000 $MA_{AX}NELO$ is reached. A value larger than 100% contains the required control reserve for digital drives. If settings beyond the limit are made, the MD value is used as the limiter, an alarm i given and the axes brought to a halt.

With an analog spindle the maximum speed that can be output is limited by the maximum setpoint output voltage of 10V. The value in this MD should not be greater than the speed value that is reached at this voltage (100%).

Index [n] of the machine date has the following coding: [setpoint branch]: 0

36220	CTRLOUT_LIMIT_TIME			EXP, A05	A3
s	Delay time for speed setpoint monitoring			DOUBLE	NEW CONF
-					
-	1	0.0			1/1

Description:

This MD defines how long the speed setpoint may be within the limit $CTRLOUT_LIMIT[n]$ (max. speed setpoint) until the monitoring function is triggered.

Monitoring (and with it also this machine data) is always active. Reaching the limit renders the position control loop non-linear, which results in contour errors provided that the speed setpoint limited axis is participating in contour generation. That is why this MD has default value 0, i.e. the monitoring function responds as soon as the speed setpoint reaches the limit.

36300				EXP, A02, A05, A06	A3,D1,R1,Z1
-	Encoder limit from	Encoder limit frequency			PowerOn
-					
-	1	3.0e5, 3.0e5 -			2/2

Description:

This MD is used to enter the encoder frequency, which, in general, is a manufacturer specification (type plate, documentation).

For PROFIdrive:

No automatic, software-internal limitation for encoders on the PROFIdrive drive; here, the limit values of the measuring circuit module depend on the drive hardware used, i.e. known only by the drive. Therefore, it is the user who is responsible for taking into account the limit frequency of the measuring circuit module.

36302	ENC_FREQ_LI	ENC_FREQ_LIMIT_LOW			A3,R1,S1,Z1
%	Encoder limit from	Encoder limit frequency for new encoder synchronization.			NEW CONF
-					
-	1	99.9, 99.9	0	100	2/2

Description:

Encoder frequency monitoring uses a hysteresis.

MD36300 $MA_ENC_FREQ_LIMIT$ defines the encoder limit frequency. The encoder is switched off when this frequency is exceeded. The encoder is switched on again when the frequency falls below that defined in MD36302 MA ENC FREQ LIMIT LOW.

MD36300 \$MA_ENC_FREQ_LIMITis entered directly in Hertz,

whereas MD36302 $MA_ENC_FREQ_LIMIT_LOW$ is a fraction, expressed as a percentage, of MD36300 $MA_ENC_FREQ_LIMIT$.

 ${\tt MD36302~\$MA_ENC_FREQ_LIMIT_LOW}$ is therefore already correctly preset for most of the encoders used.

Exception: In the case of absolute encoders with an En-Dat interface, the limit frequency of the absolute track is significantly lower than the limit frequency of the incremental track. A low value in MD36302 \$MA_ENC_FREQ_LIMIT_LOW ensures that the encoder is not switched on again until it falls below the limit frequency of the absolute track, and therefore is not referenced until permitted by the absolute track. For spindles, this referencing is carried out automatically.

Example EnDat encoder EQN 1325:

Limit frequency of the electronics of the incremental track: 430 kHz

===> MD36300 \$MA_ENC_FREQ_LIMIT = 430 kHz

The limit frequency of the absolute track is approx. 2000 encoder rpm at 2048 increments/encoder revolution, i.e. the limit frequency is $2000/60 \times 2048 \text{ Hz} = 68 \text{ kHz}$

===> MD36302 \$MA ENC FREQ LIMIT LOW = 68/430 = 15%

36310	ENC_ZERO_MONITORING			EXP, A02, A05	A3,R1
-	Zero mark monitoring			DWORD	NEW CONF
-					
-	1	0, 0			2/2

This MD is used to activate zero mark monitoring.

For PROFIdrive drives (the corresponding diagnostics system variables are not currently supplied for incremental measuring systems):

For PROFIdrive, the permissible deviation must be set in the drive, *not* in the NC. Zero mark monitoring reported by the drive is mapped to the NCK according to the following rule:

0: no zero mark monitoring

100: no zero mark monitoring together with suppression of all encoder monitoring operations, i.e. not only alarm 25020 but also alarms 25000, 25010 etc. are suppressed).

>0 but less than 100: direct triggering of power ON alarm 25000 (or 25001).

>100: attenuated error message: reset alarm 25010 (25011) is output instead of power ON alarm 25000 (25001).

For absolute measuring systems (\$MA ENC TYPE=4):

Permissible deviation in 1/2 coarse increments between the absolute and the incremental encoder track (one 1/2 coarse increment is sufficient).

If a SIMODRIVE611U drive type is used, monitoring only takes place at a standstill.

36312	ENC_ABS_ZEF	ROMON_WARNING	EXP, A02, A05	A3				
-	Zero mark monitoring warning level			DWORD	NEW CONF			
-		·						
-	1	10, 10			0/0			

Description:

Only for absolute measuring systems (\$MA_ENC_TYPE=4):

This MD activates zero mark diagnostics.

0: no zero mark diagnostics

>0: permissible deviation in 1/2 coarse increments between the absolute and the incremental encoder track (one 1/2 coarse increment is sufficient).

36314	ENC_ABS_ZEROMON_INITIAL			EXP, A02, A05	A3		
-	Warning level for absolute encoder power ON			DWORD	NEW CONF		
-		·					
-	1	1000, 1000			0/0		

Description:

Only for absolute measuring systems (\$MA_ENC_TYPE=4):

Parameterization in 1/2 coarse increments

At absolute encoder power ON (deselect parking and similar) this MD parameterizes the previously permissible position offset (comparison of the new absolute position with the information last saved in SRAM). When the warning level is exceeded, system variable \$VA_ENC_ZERO_MON_ERR_CNT is incremented in coarse increments by the value 10000.

36400	CONTOUR_TOL .			A05, A11	A3,D1,G2
mm, degrees	Tolerance band	olerance band for contour monitoring			NEW CONF
-					
-		1.0,1.0,1.0,1.0,1.0,1.0, 1.0,1.0,1.0	-	-	2/2

Description:

Tolerance band for axial contour monitoring (dynamic following error monitoring).

The permissible deviation between the real and the modelled following error is entered in this MD.

The input of the tolerance band is intended to avoid spurious tripping of the dynamic following error monitoring caused by minor speed fluctuations, which occur during normal closed-loop control operations (e.g. during first cut).

Following error modelling and thus the input of this MD depend on the position control gain MD32200 $MA_DOSCTRL_GAIN$ and, in the case of precontrol or simulation, on the accuracy of the controlled system model MD32810 $MA_DOSCTRL_TIME$ (equivalent time constant for precontrol of speed control loop), as well as on the accelerations and velocities used.

36500	ENC_CHANGE	_TOL		· ·	G1,K6,K3,A3,D1, G2,Z1
mm, degrees	Tolerance at ac	tual position value chan	ge.	DOUBLE	NEW CONF
-					
-	-	0.1	-	-	2/2

Description:

The permissible deviation between the actual values of the two measuring systems is entered in this MD.

This difference must not be exceeded when switching over the measuring system used for closed-loop control, in order to avoid compensating processes that are too strong. Otherwise, the error message 25100 "Axis %1 Switchover of measuring system not possible" is generated and the switchover does not take place.

MD irrelevant for:

MD30200 \$MA NUM ENCS = 0 or 1.

36510	ENC_DIFF	ENC_DIFF_TOL			A02, A05	A3,G2	
mm, degrees	Tolerance of	Tolerance of measuring system synchronization			OOUBLE	NEW CONF	
-							
-	-	0.0				0/0	

Description:

Permissible deviation between the actual values of the two measuring systems. This difference must not be exceeded during the cyclic comparison of the two measuring systems used, as otherwise error message 25105 (measuring systems deviate) would be generated.

The corresponding monitoring function is not active

- with MD input value=0,
- if less than 2 measuring systems are active/available in the axis
- or if the axis has not been referenced (at least act. closed-loop control meas. system).

With modulo axes, it is always the absolute value of the short-est/direct position difference that is monitored.

36520	DES_VELO_LIMIT			A02, A05	-
%	Threshold for se	Threshold for setpoint velocity monitoring			NEW CONF
-					
-	-	125.0 -			1/1

Maximum permissible setpoint velocity as a percentage of the maximum axis velocity/spindle speed.

With MD36520 $MA_DES_VELO_LIMIT$, the position setpoint is monitored for abrupt changes. If the permissible limit value is exceeded, alarm 1016 error code 550010 is output.

With axes, this machine data refers to MD32000 \$MA_MAX_AX_VELO. With spindles, this MD refers to the lower of the speeds set in MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT of the current gear stage and MD35100 \$MA SPIND VELO LIMIT.

36600	BRAKE_MODE_CHOICE			EXP, A05	A3,Z1		
-	Deceleration response on hardware limit switch			BYTE	PowerOn		
CTEQ							
-	-	0 0			2/2		

Description:

If a rising edge of the axis-specific hardware limit switch is detected while the axis is traversing, the axis is braked immediately.

The type of braking is determined by this machine data: Value = 0:

Controlled braking along the acceleration ramp defined by MD32300 \mbox{MAM} AX ACCEL (axis acceleration).

Value = 1:

Rapid braking (selection of setpoint = 0) with reduction of following error.

Related to:

NC/PLC interface signal V380x 1000.1 und .0 (Hardware limit switch plus or minus) $\,$

36610	AX_EMERGEN	CY_STOP_TIME		A05, -	TE3,K3,A2,A3,N2, Z1
S	Maximum time	for braking ramp in case	e of error.	DOUBLE	NEW CONF
-					
-	-	0.05	0.0	1.0e15	2/2

Description:

This MD defines the braking ramp time that an axis or spindle requires to brake from maximum velocity/speed to a standstill in the event of errors (e.g. emergency stop). At the same lead/brake acceleration, standstill is reached correspondingly earlier from lower velocities/speeds.

Mechanically robust axes are normally stopped abruptly with speed setpoint 0; values in the lower ms range are appropriate in these cases (default setting).

However, high moving masses or limited mechanical conditions (e.g. gear load capacity) often have to be taken into account for spindles. This means that the MD has to be changed to set a longer braking ramp.

Notice:

- With interpolating axes or axis/spindle couplings, it cannot be ensured that the contour or coupling will be maintained during the braking phase.
- If the time set for the braking ramp for error states is too long, the controller enable will be removed although the axis/spindle is still moving. Depending on the drive type used and the activation of the pulse enable, either an immediate stop with speed setpoint 0 will be initiated or the axis/spindle will coast down without power. The time selected in MD36610 \$MA_AX_EMERGENCY_STOP_TIME should therefore be shorter than the time in MD36620 \$MA_SERVO_DISABLE_DELAY_TIME (cutout delay, controller enable) so that the configured braking ramp can be fully active throughout the entire braking operation.
- The braking ramp may be ineffective or not maintained if the active drive follows its own braking ramp logic (e.g. SINAMICS).

Related to:

MD36620 \$MA_SERVO_DISABLE_DELAY_TIME (cutout delay controller enable)

MD36210 \$MA CTRLOUT LIMIT (maximum speed setpoint)

36620	SERVO_DISAE	BLE_DELAY_TIME		A05, -	TE3,K3,A2,A3,N2, Z1
s	Cutout delay se	Cutout delay servo enable			NEW CONF
-					
-	-	0.1	0.0	1.0e15	2/2

Maximum time delay for removal of "controller enable" after faults. The speed enable (controller enable) of the drive is removed internally within the controller after the set delay time, at the latest.

The delay time entered becomes active as a result of the following events:

- Errors that lead to immediate stopping of the axes
- Removal of the interface signal by the PLC V380x 0002.1 (Controller enable)

As soon as the actual speed reaches the standstill range (MD36060 \$MA_STANDSTILL_VELO_TOL), the "controller enable" for the drive is removed. The time set should be long enough to enable the axis / spindle to brake down to a standstill from maximum traversing velocity or maximum speed. If the axis / spindle is stationary, the "controller enable" for the drive is removed immediately (i.e. the time defined in MD36620 \$MA_SERVO_DISABLE_DELAY_TIME is terminated prematurely).

Application example(s):

Speed control of the drive should be retained long enough to enable the axis / spindle to brake down to standstill from maximum traversing velocity or maximum speed.

Notice:

If the cutout delay controller enable is set too short, controller enable will be removed although the axis/spindle is still moving. This axis/spindle then coasts down without power (which may be appropriate for grinding wheels, for example); otherwise the time set in MD36620 \$MA_SERVO_DISABLE_DELAY_TIME should be longer than the duration of the braking ramp for error states (MD36610 \$MA_AX_EMERGENCY_STOP_TIME).

Related to:

NC/PLC interface signal V380x 0002.1 (Controller enable) MD36610 MA AX EMERGENCY STOP TIME

36690	AXIS_DIAGNOSIS			EXP, A08	-		
-	Internal data fo	Internal data for test purposes			PowerOn		
NBUP							
-	-	0	-	0/0			

Description:

Internal data for test purposes

0: :Basic setting

Bit 0 (LSB) = 1 :For test case task.exp (for alarm SCAL WARN VEL)

Bit 1 = 1 :For test case brake test

- ACT_POS_ABS for ENC-SIM on HOST
- Additional error information in \$VA_FXS INFO

Bit 2 = 1 :For travel to fixed stop - preliminary

- Allow rapid braking for linked axes
- Bit 3 = 1 :For travel to fixed stop preliminary
- Consider inversion of direction when switching off rapid braking for linked axes

Machine Data 06/2009

Axis-specific machine data

36700	DRIFT_ENABL	E	EXP, A07, A09	G2	
-	Automatic drift compensation			BOOLEAN	NEW CONF
-					
-	-	FALSE	-	-	1/1

Description:

Only for special analog and hydraulic drives (not active with digital SIMODRIVE611D or PROFIdrive drives):

The automatic drift compensation is activated by MD36700 $\mbox{\sc MA}$ DRIFT ENABLE.

1: Automatic drift compensation active (only for position-controlled axes/spindles).

With automatic drift compensation, while the axis is at a stand-still, the control continually calculates the additional drift value still required to ensure that the following error reaches the value 0 (compensation criterion). The total drift value is therefore formed from the drift basic value (MD36720 \$MA DRIFT VALUE) and the drift additional value.

0: Automatic drift compensation not active.

The drift value is formed only from the drift basic value (MD36720 MADRIFT VALUE).

MD irrelevant to:

Non-position-controlled spindles

Related to:

 $\texttt{MD36710}\ \$\texttt{MA_DRIFT_LIMIT}\ \texttt{drift}\ \texttt{limit}\ \texttt{value}\ \texttt{for}\ \texttt{automatic}\ \texttt{drift}\ \texttt{compensation}$

MD36720 \$MA_DRIFT_VALUE drift basic value

36710	DRIFT_LIMIT			EXP, A07, A09	-
%	Drift limit value for automatic drift compensation			DOUBLE	NEW CONF
-					
-	1	0.0	0	1.e9	3/3

Description:

Only for special analog and hydraulic drives (not active with digital SIMODRIVE611D or PROFIdrive drives):

The magnitude of the drift additional value calculated during automatic drift compensation can be limited by MD36710 $\$ MA\ DRIFT\ LIMIT.$

If the drift additional value exceeds the limit value entered in MD36710 MA_DRIFT_LIMIT , alarm 25070 "Drift value too large" is output, and the drift additional value is limited to this value. MD irrelevant to:

MD36700 \$MA DRIFT ENABLE = 0

36720	DRIFT_VALUE			EXP, A07, A09	-			
%	Basic drift value			DOUBLE	NEW CONF			
-								
-	1	0.0	-1e15	1e15	2/2			

Only for special analog and hydraulic drives (not with digital SIMODRIVE611D drives - digital drives do not have a drift): The value entered in MD36720 \$MA_DRIFT_VALUE is always added as an offset to the manipulated variable. Whereas automatic drift compensation is active only for position-controlled axes, this machine data is always active.

Special case: the following applies to PROFIdrive drives: This MD can also be used for "simple" drives that have drift problems due to drive-internal implementation as analog drives. To avoid erroneous settings, this static drift compensation only becomes active with PROFIdrive, if \$MA_RATED_OUTVAL != 0 (i.e. the MD has no effect in the case of automatic interface adjustment between the NC and the drive).

Note:

Drift compensation must not be active if the DSC function (MD32640 \$MA_STIFFNESS_CONTROL_ENABLE=1) is used, as otherwise unexpected speed oscillations will occur when DSC is enabled/disabled.

Standardization: the input value is related to the corresponding interface standardization in

MD32250 \$MA_RATED_OUTVAL,

MD32260 \$MA RATED VELO and

MD36210 \$MA_CTRLOUT_LIMIT.

36730	DRIVE_SIGNAL_TRACKING			A10	B3
-	Acquisition of additional drive actual values			BYTE	PowerOn
-					
-	-	0	0	4	0/0

Description:

 ${\tt MD36730~SMA_DRIVE_SIGNAL_TRACKING} = 1$ activates the acquisition of the following drive actual values:

For SIMODRIVE611D or PROFIdrive:

- \$AA LOAD Drive load
- \$AA_POWER Drive active power
- \$AA_TORQUE Drive torque setpoint
- $\$AA_CURR$ Smoothed current setpoint (q-axis current) of drive MD36730 $\$MA_DRIVE_SIGNAL_TRACKING = 2$ activates the acquisition of the following drive actual values:

With PROFIdrive, it must be ensured that the stated values are also transmitted in the drive actual message frame (provide sufficient message frame length on the bus, assign the values to the message frame contents in the drive, e.g. use message frame 116).

\$VA_DP_ACT_TEL shows actual value message frame words

36750	AA_OFF_MODE			A10	2.4,5.3,6.2			
-	Effect of value assignment for axial override of synchr. action.			BYTE	PowerOn			
CTEQ								
-	-	0	0	7	0/0			

Description:

Mode setting for axial offset \$AA OFF

Bit 0: Effect of value assignment within a synchronized action

0: Absolute value

1: Incremental value (integrator)

Bit 1: Response of \$AA_OFF on RESET

0: \$AA OFF is deselected on RESET

1: \$AA_OFF is retained beyond RESET

Bit 2: \$AA OFF in JOG mode

0: No superimposed motion due to \$AA_OFF

1: A superimposed motion due to \$AA_OFF is interpolated

2.4.7 Travel to fixed stop

37000	FIXED_STOP_MODE			A10, -	-
-	Travel to fixed s	stop mode		BYTE	PowerOn
CTEQ					
802d-cu3	-	0	0	3	2/2
802d-ng2	-	0	0	3	2/2
802d-ng3	-	0	0	3	2/2
802d-tm1	-	0	0	3	0/0
802d-tm2	-	0 :		3	2/2
802d-tm3	-	0	0	3	2/2

Description:

This machine data defines how the function "Travel to fixed stop" can be started.

0: Travel to fixed stop not available.

1: Travel to fixed stop can be started only from the NC program with the command FXS[x]=1.

37002	FIXED_	FIXED_STOP_CONTROL			F1
-	Sequen	ce control for travel to	fixed stop	BYTE	PowerOn
-				·	
802d-cu3	-	0	0	3	2/2
802d-ng2	-	0	0	3	2/2
802d-ng3	-	0	0	3	2/2
802d-tm1	-	0	0	3	0/0
802d-tm2	-	0	0	3	2/2
802d-tm3	-	0	0	3	2/2

Sequence control for travel to fixed stop.

Bit 0: behavior on pulse disable at fixed stop

= 0: travel to fixed stop is canceled

= 1: travel to fixed stop is interrupted, i.e. the drive is without power.

As soon as the pulse disable is canceled again, the drive continues with the limited torque.

Control of the torque injection see bit 1.

Bit 1: behavior after pulse disable at the fixed stop

= 0: the torque is applied in steps.

= 1: the torque is applied in ramps (see MD37012

\$MA_FIXED_STOP_TORQUE_RAMP_TIME)

37010	FIXED_S	FIXED_STOP_TORQUE_DEF			-			
%	Default f	ixed stop clamping to	rque	DOUBLE	PowerOn			
CTEQ								
802d-cu3	-	5.0	0.0	100.0	2/2			
802d-ng2	-	5.0	0.0	100.0	2/2			
802d-ng3	-	5.0	0.0	100.0	2/2			
802d-tm1	-	5.0	0.0	100.0	0/0			
802d-tm2	-	5.0	0.0	100.0	2/2			
802d-tm3	-	5.0	0.0	100.0	2/2			

Description:

The clamping torque is set in this machine data as a % of the maximum motor torque (in the case of FDD this corresponds to the % of the max. current setpoint).

The clamping torque becomes active as soon as the fixed stop is reached or the NC/PLC interface signal V380x 0001.1 (Acknowledge fixed stop reached) has been set.

The entered value is a default and is active only as long as

- no clamping torque has been programmed with command FXST[x]
- the clamping torque set in SD 43510: FIXED_STOP_TORQUE was not changed after fixed stop had been reached.

Related to:

SD 43510: FIXED_STOP_TORQUE

(clamping torque for travel to fixed stop)

37012	FIXED_S	FIXED_STOP_TORQUE_RAMP_TIME			-			
s	Time peri	iod until reaching the	changed torque limit	DOUBLE	NEW CONF			
-								
802d-cu3	-	0.0	-	-	2/2			
802d-ng2	-	0.0	-	-	1/1			
802d-ng3	-	0.0	-	-	1/1			
802d-tm1	-	0.0	-	-	0/0			
802d-tm2	-	0.0	-	-	2/2			
802d-tm3	-	0.0	-	-	2/2			

Description:

Period in seconds until the changed torque limit is reached. The value 0.0 deactivates the ramp function.

37014	FIXED_S	STOP_TORQUE_FAC	CTOR	A10	TE3		
-	Adaptior	n factor torque limit		DOUBLE	NEW CONF		
-							
802d-cu3	-	1.0	-	-	2/2		
802d-ng2	-	1.0	-	-	1/1		
802d-ng3	-	1.0	-	-	1/1		
802d-tm1	-	1.0	-	-	0/0		
802d-tm2	-	1.0	-	-	2/2		
802d-tm3	-	1.0	-	-	2/2		

Description:

Interface factor torque limit.

With this factor, the torque limit of linked slave axes (MD 37250) can be weighted additionally.

Even with different motors, the torque limits can be kept equal in all linked axes.

37020	FIXED_STOP_WINDOW_DEF			A05, A10	-		
mm, degrees	Default fixed-st	top monitoring window		DOUBLE	PowerOn		
CTEQ							
802d-cu3	-	1.0	0.0	1.0e15	2/2		
802d-ng2	-	1.0	0.0	1.0e15	2/2		
802d-ng3	-	1.0	0.0	1.0e15	2/2		
802d-tm1	-	1.0	0.0	1.0e15	0/0		
802d-tm2	-	1.0 0.0		1.0e15	2/2		
802d-tm3	-	1.0	0.0	1.0e15	2/2		

This machine data is used to enter the default for the standstill monitoring window at fixed stop.

Fixed stop monitoring becomes active as soon as the fixed stop is reached, i.e. NC/PLC interface signal V390x 0002.5 (Fixed stop reached) is set.

If the position at which the fixed stop is detected is left by more than the tolerance specified in MD37020 $MA_FIXED_STOP_WINDOW_DEF$ alarm 20093 "Fixed stop monitoring has responded" is output and the "FXS" function is deselected.

The value entered is a default setting and is active only as long as

- no fixed stop monitoring window is programmed with command ${\tt FXSW[x]}$,
- the fixed stop monitoring window is not changed via SD 43520: FIXED STOP WINDOW (after reaching of fixed stop).

Related to:

SD43520 \$SA FIXED STOP WINDOW (fixed stop monitoring window)

37030	FIXED_STOP_THRESHOLD			A10, -	-
mm, degrees	Threshold for	fixed stop detection		DOUBLE	NEW CONF
-					
802d-cu3	-	2.0	0.0	1.0e15	2/2
802d-ng2	-	2.0	0.0	1.0e15	2/2
802d-ng3	-	2.0	0.0	1.0e15	2/2
802d-tm1	-	2.0	0.0	1.0e15	0/0
802d-tm2	-	2.0 0.0		1.0e15	2/2
802d-tm3	-	2.0	0.0	1.0e15	2/2

Description:

Threshold value for fixed stop detection.

The contour deviation is checked for this threshold as a criterion for reaching the fixed stop. Waiting until the set torque limit is reached is a further condition for digital drives.

This machine data is only active if MD37040

 $MA_FIXED_STOP_BY_SENSOR = 0.$

The NC/PLC interface signal V390x 0002.5 (Fixed stop reached) is set if the axial contour deviation exceeds the threshold value set in MD37030 $MA_FIXED_STOP_THRESHOLD$.

MD irrelevant to:

MD37040 \$MA_FIXED_STOP_BY_SENSOR = 1

Related to:

NC/PLC interface signal V390x 0002.5 (Fixed stop reached)

Machine Data 06/2009

Axis-specific machine data

37040	FIXED_S	FIXED_STOP_BY_SENSOR			-
-	Fixed sto	Fixed stop detection by sensor			Immediately
CTEQ				·	·
802d-cu3	-	0	0	3	2/2
802d-ng2	-	0	0	3	2/2
802d-ng3	-	0	0	3	2/2
802d-tm1	-	0	0	3	0/0
802d-tm2	-	0	0	3	2/2
802d-tm3	-	0	0	3	2/2

Description:

This machine data defines how the criterion "Fixed stop reached" is determined.

A change of this machine data becomes active with the next selection of travel to fixed stop.

MD=0

The criterion "Fixed stop reached" is determined internally on the basis of the axial FIXED STOP THRESHOLD.

MD=1

The criterion "Fixed stop reached" is determined via an external sensor and signalled to the NC via the NC/PLC interface signal V380x 0001.2 (Sensor fixed stop).

MD=2

The criterion "Fixed stop reached" is accepted if either the contour monitoring (MD = 0) or the signal of the external sensor (MD = 1) has responded.

Related to:

MD37030 \$MA_FIXED_STOP_THRESHOLD
(threshold for fixed stop detection)

NC/PLC interface signal V380x 0001.2 (Sensor fixed stop)

37050	FIXED_STOP_ALARM_MASK			A05, A10	-
-	Enable o	of the fixed stop alarm	ns	BYTE	NEW CONF
-				<u>.</u>	
802d-cu3	-	1	0	15	2/2
802d-ng2	-	1	0	15	2/2
802d-ng3	-	1	0	15	2/2
802d-tm1	-	1	0	15	0/0
802d-tm2	-	1	0	15	2/2
802d-tm3	-	1	0	15	2/2

Description:

This machine data defines whether the alarms

20091 "Fixed stop not reached",

20094 "Fixed stop aborted" and

25042 "FOC: Standstill monitoring" are output.

MD = 0

Suppression of alarm 20091 "Fixed stop not reached"

MD=2

Suppression of alarms

20091 "Fixed stop not reached" and

20094 "Fixed stop aborted"

MD=3

Suppression of alarm 20094 "Fixed stop aborted"

37052	FIXED_STOP_	ALARM_REACTION	A05, A10	-				
-	Reaction with fixed stop alarms			BYTE	PowerOn			
-		·						
-	-	0	-	-	1/1			

Behavior of VDI signal "Mode group ready" in case of fixed stop alarms:

Bit value = 0: "Mode group ready" will be deleted (drives de-energized)

Bit value = 1: "Mode group ready" remains active

Bit0: Alarm 20090 Travel to fixed stop not possible

Bit1: Alarm 20091 Fixed stop not reached

Bit2: Alarm 20092 Travel to fixed stop still active

Bit3: Alarm 20093 Standstill monitoring at fixed stop has triggered

Bit4: Alarm 20094 Travel to fixed stop aborted

All other bits without meaning.

Standard: 0 = All alarms de-energize the drives

37060	FIXED_S	FIXED_STOP_ACKN_MASK			-
-	Waiting f	for PLC acknowledge	ements during travel to f	ixed BYTE	PowerOn
CTEQ					
802d-cu3	-	0	0	3	2/2
802d-ng2	-	0	0	3	2/2
802d-ng3	-	0	0	3	2/2
802d-tm1	-	0	0	3	0/0
802d-tm2	-	0	3	2/2	
802d-tm3	-	0	0	3	2/2

Description:

This machine data defines whether or not the NC waits for acknowledgement messages from the PLC when the "Travel to fixed stop" function is active.

Bit 0 = 0

Once the NC has transmitted interface signal V390x 0002.4 (Activate travel to fixed stop) to the PLC, it starts the programmed traversing.

Bit 0 = 1

After the NC has transmitted interface signal V390x 0002.4 (Activate travel to fixed stop) to the PLC, it waits for the PLC to acknowledge with interface signal V380x 0003.1 (Enable travel to fixed stop) and then starts the programmed traversing.

Bit 0 should be set to 1 for analog drives so that the motion is not started before the PLC has limited the torque in the drive.

Bit 1 = 0

Once the NC has transmitted the interface signal V390x 0002.5 (Fixed stop reached) to the PLC, the program advances to the next block..

Bit 1 = 1

After the NC has transmitted the interface signal V390x 0002.5 (Fixed stop reached) to the PLC, it waits for the PLC to acknowledge with interface signal V380x 0001.1 (Acknowledge fixed stop reached), outputs the programmed torque and then advances to the next block.

Bit 1 should be set for analog drives so that the PLC can switch the drive to torque-controlled operation if a programmable clamping torque has to be specified.

With digital drives (SIMODRIVE611D, PROFIdrive), the "Travel to fixed stop" function can be executed without any acknowledgements, thus allowing program run times to be reduced.

Related to:

NC/PLC interface signal $V390x\ 0002.4$ (Activate travel to fixed stop)

NC/PLC interface signal V380x 0003.1 (Enable travel to fixed stop)

NC/PLC interface signal V390x 0002.5 (Fixed stop reached) NC/PLC interface signal V380x 0001.1 (Acknowledge fixed stop reached)

37070	FIXED_ST	OP_ANA_TORQU	A10	-				
%	Torque lim drives	Torque limit when approaching the fixed stop for analog drives			PowerOn			
CTEQ		<u> </u>						
-	-	5.0	0.0	100.0	0/0			

Description:

Only for analog drives (irrelevant to digital drives ${\tt SIMODRIVE611D}$ or ${\tt PROFIdrive}$):

This machine data defines an internal NC torque limit for analog drives. It is specified as a percentage of the maximum drive torque (corresponds to % of max. current setpoint with FDD).

This torque limit is active in the NC from the start of the motion (acceleration torque) until the instant the fixed stop is reached. The torque limit must have the same effect as the torque limit set in the drive (SIMODRIVE611D-A).

This torque limit is required to ensure that

- there are no step changes in torque during switchover from speed-controlled to current-controlled or torque-controlled operation,
- the acceleration is reduced to the correct value in the NC.

37080	FOC_ACTIVATION_MODE			A10	-
-	Initial setting of modal torque/force limitation			BYTE	PowerOn
-					
-	-	0	0	3	0/0

Description:

The initial setting of the modal torque/force limitation is set with this MD after reset and PowerOn:

Bit 0: Response after PowerON

= 0 : FOCOF

= 1 : FOCON (modal)

Bit 1: Response after reset

= 0 : FOCOF

= 1 : FOCON (modal)

Default setting: FOCOF after reset and PowerOn

37100	GANTRY	GANTRY_AXIS_TYPE			G1,TE1,Z3		
-	Gantry ax	Gantry axis definition			PowerOn		
CTEQ							
802d-cu3	-	0	0	33	2/2		
802d-ng2	-	0	0	33	-1/2		
802d-ng3	-	0	0	33	-1/2		
802d-tm1	-	0	0	33	-1/2		
802d-tm2	-	0	0	33	2/2		
802d-tm3	-	0	0	33	2/2		

```
Description:
             General: decimal representation, with a b
                0: Leading axis
                1: Synchronized axis
                0: No gantry axis
                1: Axis in gantry grouping 1
                2: Axis in gantry grouping 2
                3: Axis in gantry grouping 3
                A max. of 8 gantry groupings is possible.
             Examples:
                11: Axis is a synchronized axis in a gantry grouping 1
                2: Axis is a leading axis in gantry a grouping 2
               12: Axis is a synchronized axis in a gantry grouping 2
                3: Axis is a leading axis in a gantry grouping 3
                13:Axis is a synchronized axis in a gantry grouping 3
             Special cases:
               Alarm 10650 "Incorrect gantry machine data" and 10651 "Gantry
               unit not defined" in the case of an incorrect gantry axis defi-
               nition.
             Related to:
               MD37110 $MA GANTRY POS TOL WARNING (gantry warning limit)
               MD37120 $MA_GANTRY_POS_TOL_ERROR (gantry trip limit)
                MD37130 $MA_GANTRY_POS_TOL_REF (gantry trip limit during refer-
```

encing)

37110	GANTRY_POS_TOL_WARNING			A05, A10	G1,Z3
mm, degrees	Gantry warning	limit		DOUBLE	Reset
-					
802d-cu3	-	0.0	1e15	2/2	
802d-ng2	-	0.0	-1e15	1e15	-1/2
802d-ng3	-	0.0	-1e15	1e15	-1/2
802d-tm1	-	0.0	-1e15	1e15	-1/2
802d-tm2	-	0.0	-1e15	1e15	2/2
802d-tm3	-	0.0	-1e15	1e15	2/2

Description:

Value > 0

With gantry axes, the difference between the position actual values of the leading and synchronized axes is constantly monitored.

MD37110 \$MA_GANTRY_POS_TOL_WARNING is used to define a limit value for the position actual value difference; when the limit is exceeded, warning 10652 "Warning limit exceeded" is output. However, the gantry axes are not stopped internally in the control. The warning threshold must therefore be selected so that the machine can withstand the position actual value deviation between the gantry axes without sustaining mechanical damage. Furthermore, the NC/PLC interface signal V390x 5005.3 (Gantry warning limit exceeded) to the PLC is set to "1". The PLC user program can thus initiate the necessary measures (e.g. program interruption at block end) when the warning limit is exceeded. As soon as the current position actual value difference has dropped below the warning limit again, the message is canceled and the interface signal "Gantry warning limit exceeded" is

Effect of the gantry warning limit on the gantry synchronization process:

The position actual value difference between the leading and synchronized axes is determined during gantry synchronization. If the deviation is less than the gantry warning limit, the synchronizing motion of the gantry axes is automatically started internally in the control.

Otherwise the synchronizing motion has to be initiated via the PLC interface (interface signal (Gantry-Synchronization run ready to start)).

Otherwise the synchronizing motion has to be initiated via the PLC interface (interface signal $V380x\ 5005.4$ (Start gantry synchronization process))

Value = 0

The setting MD37110 $MA_GANTRY_POS_TOL_WARNING = 0$ deactivates the monitoring for violation of the warning limit.

The gantry synchronization is not initiated internally in the control.

Special cases:

Alarm 10652 "Warning limit exceeded" in response to violation of the gantry warning limit.

Related to:

MD37100 \$MA_GANTRY_AXIS_TYPE Gantry axis definition MD37120 \$MA_GANTRY_POS_TOL_ERROR Gantry trip limit

MD37130 \$MA_GANTRY_POS_TOL_REF Gantry trip limit during referencing NC/PLC interface signal V390x 5005.3 (Gantry warning limit exceeded)

NC/PLC interface signal V380x 5005.4 (Start gantry synchronization process)

37120	GANTRY	GANTRY_POS_TOL_ERROR			G1,Z3
mm, degrees	Gantry tr	ip limit		DOUBLE	PowerOn
-			·		
802d-cu3	-	0.0	-1e15	1e15	2/2
802d-ng2	-	0.0	-1e15	1e15	-1/2
802d-ng3	-	0.0	-1e15	1e15	-1/2
802d-tm1	-	0.0	-1e15	1e15	-1/2
802d-tm2	-	0.0	-1e15	1e15	2/2
802d-tm3	-	0.0	-1e15	1e15	2/2

Description:

With gantry axes, the difference between the position actual values of the leading and synchronized axes is continuously monitored. MD37120 \$MA_GANTRY_POS_TOL_ERROR defines the maximum permissible deviation in position actual value between the synchronized axis and the leading axis in the gantry axis grouping. Violation of this limit value is monitored only if the gantry axis grouping is already synchronized (NC/PLC interface signal V390x 5005.5 (Gantry grouping is synchronized) = 1); otherwise the value set in MD37130 \$MA_GANTRY_POS_TOL_REF is used.

When this limit value is exceeded, alarm 10653 "Error limit exceeded" is output. The gantry axes are immediately stopped internally in the control to prevent any damage to the machine. In addition, the NC/PLC interface signal is ... (Gantry-Abschaltgrenze überschritten) an die PLC auf "1" gesetzt. In addition, the NC/PLC interface signal V390x 5005.2 (Gantry trip limit exceeded) to the PLC is set to "1".

Alarm 10653 "Error limit exceeded" in response to violation of the gantry trip limit.

Related to:

Special cases:

MD37100 \$MA_GANTRY_AXIS_TYPE Gantry axis definition MD37110 \$MA_GANTRY_POS_TOL_WARNING Gantry warning limit MD37130 \$MA_GANTRY_POS_TOL_REF

Gantry trip limit during referencing

NC/PLC interface signal V390x 5005.5 (Gantry grouping is synchronized)

NC/PLC interface signal $V390x\ 5005.2$ (Gantry trip limit exceeded)

37130	GANTRY	GANTRY_POS_TOL_REF			G1,Z3
mm, degrees	Gantry tr	ip limit during referen	cing	DOUBLE	PowerOn
-			·		
802d-cu3	-	0.0	-1e15	1e15	2/2
802d-ng2	-	0.0	-1e15	1e15	-1/2
802d-ng3	-	0.0	-1e15	1e15	-1/2
802d-tm1	-	0.0	-1e15	1e15	-1/2
802d-tm2	-	0.0	-1e15	1e15	2/2
802d-tm3	-	0.0	-1e15	1e15	2/2

Description:

With gantry axes, the difference between the position actual values of the leading and synchronized axes is continuously monitored. MD37130 $MA_GANTRY_POS_TOL_REF$ defines the maximum permissible difference between the position actual values of the synchronized axis and the leading axis that is monitored if the gantry axis grouping has not yet been synchronized (NC/PLC interface signal V390x 5005.5 (Gantry grouping is synchronized) = 0). Alarm 10653 "Error limit exceeded" is output if the limit value is exceeded. The gantry axes are immediately stopped internally in the control to prevent any damage to the machine.

In addition, the NC/PLC interface signal V390x 5005.2 (Gantry trip limit exceeded) to the PLC is set to "1".

Special cases:

Alarm 10653 "Error limit exceeded" in response to violation of the gantry trip limit.

Related to:

MD37100 \$MA_GANTRY_AXIS_TYPE Gantry axis definition

MD37110 \$MA GANTRY POS TOL WARNING Gantry warning limit

MD37120 \$MA_GANTRY_POS_TOL_ERROR Gantry trip limit

NC/PLC interface signal V390x 5005.5 (Gantry grouping is synchronized)

NC/PLC interface signal V390x 5005.2 (Gantry trip limit exceeded)

37135	GANTR'	Y_ACT_POS_TOL_E	RROR	A05, A10	-
mm, degrees	Current	gantry trip limit		DOUBLE	Reset
-					-
802d-cu3	-	0.0	-	-	2/2
802d-ng2	-	0.0	-	-	-1/2
802d-ng3	-	0.0	-	-	-1/2
802d-tm1	-	0.0	-	-	-1/2
802d-tm2	-	0.0	-	-	2/2
802d-tm3	-	0.0	-	-	2/2

Description:

Actual value difference between master axis and slave axis in the case of alarm 10653.

Leads to alarm 10657 after Power ON.

37140	GANTRY_BRE	GANTRY_BREAK_UP			G1,Z3
-	Invalidate gantry axis grouping			BOOLEAN	Reset
CTEQ					
802d-cu3	-	FALSE	-	-	2/2
802d-ng2	-	FALSE	-	-	-1/2
802d-ng3	-	FALSE	-	-	-1/2
802d-tm1	-	FALSE	-	-	-1/2
802d-tm2	-	FALSE -		-	2/2
802d-tm3	-	FALSE	-	-	2/2

GANTRY BREAK UP = "0"

The forced coupling of the gantry axis grouping remains valid. Monitoring of violation of the gantry warning or trip limit is active.

GANTRY BREAK UP = "1"

This invalidates the forced coupling of the gantry grouping, thus allowing all gantry axes in this grouping to be traversed individually in manual mode. The monitoring for violation of the gantry warning or trip limit is deactivated. The NC/PLC interface signal "Gantry grouping is synchronized" is set to "0".

Notice:

In cases where the gantry axes are still mechanically coupled, the machine may sustain damage in this operating state when the leading or synchronized axis is traversed.

The gantry axes cannot be referenced individually. Related to:

MD37100 \$MA_GANTRY_AXIS_TYPE Gantry axis definition MD37110 \$MA_GANTRY_POS_TOL_WARNING Gantry warning limit MD37130 \$MA GANTRY POS TOL REF

Gantry trip limit during referencing

NC/PLC interface signal V390x 5005.5 (Gantry grouping is synchronized)

NC/PLC interface signal $V390x\ 5005.2$ (Gantry trip limit exceeded)

37150	GANTR'	GANTRY_FUNCTION_MASK			G1
-	Gantry f	unctions		DWORD	Reset
-				·	
802d-cu3	-	0x00	0	0x3	2/2
802d-ng2	-	0x00	0	0x3	-1/2
802d-ng3	-	0x00	0	0x3	-1/2
802d-tm1	-	0x00	0	0x3	-1/2
802d-tm2	-	0x00	0	0x3	2/2
802d-tm3	-	0x00	0	0x3	2/2

Description:

Special gantry functions are set with this MD.

The MD is bit-coded, the following bits are assigned:

Bit 0 == 0:

Extended monitoring of the actual value difference is inactive. An offset between master and slave axes occurring in the tracking or BREAK_UP is not taken into account in the monitoring of the actual value difference.

Alarm 10657 is not output if alarm 10563 occurs before Power OFF.

Bit 0 == 1:

Extended monitoring of the actual value difference is active.

An offset between master and slave axes occurring in the tracking or BREAK_UP is taken into account in the monitoring of the actual value difference.

Prerequisite: The gantry grouping must be re-referenced or resynchronized after starting of the control.

Alarm 10657 is output if alarm 10563 occurs before Power OFF.

Bit 1 == 0:

Zero mark search direction of the slave axis analogous to MD $34010\,$

Bit 1 == 1:

Zero mark search direction of the slave axis same as for master axis $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

37240	COUP_SYNC_	DELAY_TIME	A05, A10	-				
S	Delay time actu	al value synchronism	DOUBLE	NEW CONF				
-								
-	2	60, 30	-	0/0				

Description:

Synchronous spindle coupling: delay time - monitors the time taken to reach actual value synchronism after reaching setpoint synchronism.

MD37240 \$MA_COUP_SYNC_DELAY_TIME[0]: time to reach 'Synchronism fine'

 $\texttt{MD37240} \ \$\texttt{MA_COUP_SYNC_DELAY_TIME[1]:}$ time to reach 'Synchronism coarse'

If the value "0" is entered, the relevant monitoring is inactive Related to:

MD 37200 \$MA_COUPLE_POS_TOL_COARSE

MD 37210 \$MA COUPLE POS TOL FINE

MD 37220 \$MA_COUPLE_VELO_TOL_COARSE

MD 37230 \$MA_COUPLE_VELO_TOL_FINE

37250	MS_ASSIGN_MASTER_SPEED_CMD			A10	TE3
-	Master axis number for speed setpoint coupling			DWORD	PowerOn
-					
-	-	0	0	31	0/0

A master/slave speed setpoint linkage is configured by indicating the machine axis number of the master axis belonging to this slave.

Related to:

MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR

37252	MS_ASSIGN_MASTER_TORQUE_CTR			A10	TE3
-	Master axis number for torque control			DWORD	PowerOn
-					
-	-	0	0	31	0/0

Description:

A torque control between the master and the slave axes is configured by stating the machine axis number of the master axis belonging to the slave.

A homogenous torque control is achieved by using the torque compensatory controller.

In order to do this, the controller has to know the actual torque values of the drives involved (these are available by default with SIMODRIVE611D, with PROFIdrive, the message frame used must include and transfer these values, e.g. use message frame 116). With default setting = 0, the same master axis is used for torque control as for speed setpoint coupling MD37250 \$MA MS ASSIGN MASTER SPEED CMD.

Related to:

MD37250 \$MA_MS_ASSIGN_MASTER_SPEED_CMD

MD37254 \$MA_MS_TORQUE_CTRL_MODE

MD37256 \$MA_MS_TORQUE_CTRL_P_GAIN

MD37258 \$MA_MS_TORQUE_CTRL_I_TIME

MD37268 \$MA_MS_TORQUE_WEIGHT_SLAVE

37253	MS_FUNCTION_MASK			A10	TE3
-	Master/slave settings			DWORD	NEW CONF
-					
-	-	0x0	-	-	0/0

Description:

Parameterizing a master/slave coupling

Bit 0 = 0:

The scaling of MD37256 \$MA_MS_TORQUE_CTRL_P_GAIN, MD37260 \$MA_MS_MAX_CTRL_VELO is smaller than described in the documentation by the factor 1s/IPO cycle.

Bit 0 = 1:

The scaling of MD37256 $MA_MS_TORQUE_CTRL_P_GAIN, MD37260 <math display="inline">MA_MS_MAX_CTRL_VELO$ corresponds to the documentation.

37254	MS_TORQUE_CTRL_MODE			A10	TE3
-	Torque compensatory controller interconnection			DWORD	Immediately
-					
-	-	0	0	3	0/0

Description:

The output of the torque compensatory controller is connected to

0: Master and slave axis

1: Slave axis

2: Master axis

3: No axis

when the torque control is active.

Related to:

MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR MD37250 \$MA_MS_ASSIGN_MASTER_SPEED_CMD

MD37254 \$MA MS TORQUE CTRL MODE

37255	MS_TOR	MS_TORQUE_CTRL_ACTIVATION			TE3
-	Torque co	orque compensatory controller activation			NEW CONF
-					
-	-	0	0	1	0/0

Description:

The torque compensatory controller can be switched ON and OFF by means of MD37254 \$MA_MS_TORQUE_CTRL_MODE or via the NC/PLC interface signal DB380x.DBX5000.4 (Torque compensatory controller). In order to do this, the controller has to know the actual torque values of the drives involved (these are available by default with SIMODRIVE611D, with PROFIdrive, the message frame used must include and transfer these values, e.g. use message frame 116). In the case of the PLC, MD37254 \$MA_MS_TORQUE_CTRL_MODE is only used for configuring the interconnection of the torque compensatory controller.

0: Switch ON/OFF via MD37254

1: Switch ON/OFF via the NC/PLC interface signal DB380x.DBX5000.4 (Torque compensatory controller)

37256	MS_TORQUE_CTRL_P_GAIN			A10	TE3
%	Torque compensatory controller gain factor			DOUBLE	NEW CONF
-					
-	-	0.0			0/0

Description:

Gain factor of the torque compensatory controller

The gain factor is entered in percent as the ratio of the maximum axis velocity of the slave axis on the load side to the rated torque.

The maximum axis velocity is derived from MD32000 $MA_MX_AX_VELO$, the rated torque from the product of drive machine data MD1725. Related to:

MD37254 \$MA_MS_TORQUE_CTRL_MODE MD37258 \$MA_MS_TORQUE_CTRL_I_TIME MD32000 \$MA_MAX_AX_VELO

37258	MS_TORQUE_CTRL_I_TIME			A10	TE3
s	Torque compensatory controller integral action time			DOUBLE	NEW CONF
-					
-	-	0.0	0.0	100.0	0/0

Integral time of the torque compensatory controller

The integral time does not become active until the P gain factor is greater than $0. \,$

Related to:

MD37254 \$MA_MS_TORQUE_CTRL_MODE MD37256 \$MA_MS_TORQUE_CTRL_P_GAIN

MD32000 \$MA MAX AX VELO

37260	MS_MA	MS_MAX_CTRL_VELO			TE3
%	Torque (Torque compensatory controller limit			NEW CONF
-				·	
-	-	100.0	0.0	100.0	0/0

Description:

Torque compensatory controller limitation

The speed setpoint value calculated by the torque compensatory controller is limited.

The limit that can be entered as a percentage refers to MD32000 \mbox{SMA} MAX AX VELO of the slave axis.

Related to:

MD37254 \$MA_MS_TORQUE_CTRL_MODE
MD37256 \$MA_MS_TORQUE_CTRL_P_GAIN
MD37258 \$MA_MS_TORQUE_CTRL_I_TIME
MD32000 \$MA MAX AX VELO

37262	MS_COUPLING_ALWAYS_ACTIVE			A10	TE3		
-	Permanent master/slave link			BYTE	NEW CONF		
-		·					
-	-	0	0	1	0/0		

Description:

Activation behavior of a master/slave coupling

0: Temporary coupling

The coupling is activated/deactivated via PLC interface signals and language commands.

1: Permanent coupling

This machine data activates the permanent coupling.

 ${\tt PLC}$ interface signals and language commands do not have any effect.

Related to:

MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR MD37250 \$MA_MS_ASSIGN_MASTER_SPEED_CMD

37263	MS_SPIND_COUPLING_MODE			A10	TE3			
-	Link response of a spindle			BYTE	NEW CONF			
-								
-	-	0	0	1	0/0			

Description:

Link behavior of a speed-controlled spindle:

- 0: Link is closed/released in standstill only.
- 1: Link is closed/released already during motion.

The configuration is valid both for activation/deactivation via DB3x.DBX24.5 and for MASLON, MASLOF, MASLOFS, MASLDEL

37264	MS_TENSION_TORQUE			A10	TE3
%	Master/slave tension torque			DOUBLE	Immediately
-					
-	-	0.0	-100.0	100.0	0/0

Description:

A constant tension torque between the master and the slave axis can be entered as a percentage of the rated drive torque of the slave axis.

Use of a tension torque requires an active torque compensatory controller (compare MD37255 $MA_MS_TORQUE_CTRL_ACTIVATION).$

Related to:

MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR
MD37266 \$MA_MS_TENSION_TORQ_FILTER_TIME
MD37255 \$MA MS TORQUE CTRL ACTIVATION

37266	MS_TENSION_TORQ_FILTER_TIME			A10	TE3		
s	Filter time constant tension torque			DOUBLE	NEW CONF		
-		·					
-	-	0.0	0.0	100.0	0/0		

Description:

The tension torque between the master and slave axes can be activated via a PT1 filter. Any change of MD37264

 $MA_MS_{TENSION_TORQUE}$ is then travelled out with the time constant of the filter.

As default, the filter is inactive; any torque change becomes active unfiltered.

Related to:

MD37264 \$MA MS TENSION TORQUE

37268	MS_TORQUE_WEIGHT_SLAVE			A10	TE3
%	Torque weighting of slave axis			DOUBLE	NEW CONF
-					
-	-	50.0 1.0			0/0

Description:

The torque share that the slave axis contributes to the total torque can be configured via the weighting. This enables different torque shares to be implemented between the master and slave axes. In the case of motors with the same rated torque, a 50% to 50% torque sharing is suggested.

The torque share of the master axis results implicitly from 100% - $\mbox{\sc MD}37268$.

Related to:

MD37252 \$MA_MS_ASSIGN_MASTER_TORQUE_CTR MD37266 \$MA MS TENSION TORQ FILTER TIME

37270	MS_VELO_TOL_COARSE			A10	TE3,Z3
%	Master/slave speed tolerance coarse			DOUBLE	NEW CONF
-					
-	-	5.0 -			0/0

Description:

Tolerance window, coarse, for the differential speed between the master and the slave. $\,$

If the speed difference is within the tolerance window, the NC/PLC interface signal (Master/ Slave Ausgleichr. aktiv) gesetzt.

If the speed difference is within the tolerance window, the NC/PLC interface signal V390x 5000.4 (Master-Slave compensatory controller active) is set.

The tolerance value is entered as a percentage of MD32000 \mbox{SMA} MAX AX VELO.

37272	MS_VELO_TO	FINE	A10	TE3,Z3				
%	Master/slave speed tolerance fine			DOUBLE	NEW CONF			
-								
-	-	1.0			0/0			

Description:

Tolerance window, fine, for the differential speed between the master and the slave.

If the speed difference is within the tolerance window, the NC/PLC interface signal (Master/Slave grob) gesetzt.

If the speed difference is within the tolerance window, the NC/PLC interface signal $V390x\ 5000.3$ (Master/Slave coarse) is set.

The tolerance value is entered as a percentage of MD32000 $\mbox{\rm SMA}$ MAX AX VELO.

37274	MS_MOTION_DIR_REVERSE			A10	-
-	Inverting traver	Inverting traversing direction slave axis			NEW CONF
-					
-	-	0	0	1	0/0

Description:

Inverting the traversing direction of a slave axis in the linked status.

- 0: Equidirectional to the master axis
- 1: Inverse to the master axis

37400	EPS_TLIFT_TANG_STEP			A10	Т3	
mm, degrees	Tangent angle	Tangent angle for corner recognition			Reset	
CTEQ						
802d-cu3	-	5.0	-	-	2/2	
802d-ng2	-	5.0	-	-	0/0	
802d-ng3	-	5.0	-	-	2/2	
802d-tm1	-	5.0	-	-	0/0	
802d-tm2	-			-	0/0	
802d-tm3	-	5.0	-	-	2/2	

Description:

If TLIFT has been programmed and the axis is tracked tangentially, a step of the position setpoint larger than MD37400 \$MA_EPS_TLIFT_TANG_STEP causes an intermediate block to be inserted. The intermediate block traverses the axis to the position corresponding to the start tangent in the next block. MD irrelevant if: TLIFT not activated

TLIFT instruction

Related to:

37402	TANG_C	TANG_OFFSET			Т3
mm, degrees	Default a	Default angle for tangential correction			Reset
CTEQ					
802d-cu3	-	0.0	-	-	2/2
802d-ng2	-	0.0	-	-	0/0
802d-ng3	-	0.0	-	-	2/2
802d-tm1	-	0.0	-	-	0/0
802d-tm2	-	0.0	0.0 -		0/0
802d-tm3	-	0.0	-	-	2/2

Description:

Default offset (angle), which the tracked axis forms with the tangent. The angle acts in addition to the angle programmed in the TANGON block.

MD irrelevant if tangential tracking not active.

Related to:

TANGON instruction

37500	ESR_REACTION			EXP, A01, A10, -	M3,P2
-	Axial mode of "Extended Stop and Retract"			BYTE	NEW CONF
CTEQ					
-	0 0			22	0/0

Description:

Selection of the response to be triggered via system variable " $AN_ESR_TRIGGER$ ".

 $0\,=\,\mathrm{No}$ response Reaktion (or only external response through synchronized action programming of rapid digital outputs).

21 = NC-controlled retraction axis

22 = NC-controlled stopping axis

37510	AX_ESR_DELAY_TIME1			EXP, A01, A10, -	P2
s	Delay time ESR single axis			DOUBLE	NEW CONF
CTEQ					
-	-	0.0	-	-	1/1

If, for example, an alarm occurs, the deceleration time can be delayed by means of this MD, e.g. to allow in case of gear hobbing the retraction from the tooth gap first.

37511	AX_ESR_DELAY_TIME2			EXP, A01, A10, -	P2
s	ESR time for interpolatory deceleration of single axis			DOUBLE	NEW CONF
CTEQ					
-	-	0.0	-	-	1/1

Description:

The time for interpolatory braking specified here in MD37511 $MA_AX_ESR_DELAY_TIME2$ still remains after expiry of the time MD37510 $AX_ESR_DELAY_TIME1$.

Rapid braking with subsequent tracking is initiated after expiry of the time MD37511 SMA AX ESR DELAY TIME2.

37600	PROFIBUS_ACTVAL_LEAD_TIME			EXP, A01, A02	-
s	Actual value acquisition time (PROFIBUS/PROFINET Ti)			DOUBLE	PowerOn
-					
-	-	0.000125	0.0	0.032	0/0

Description:

For PROFIBUS/PROFINET only:

Machine data for setting the actual value acceptance time (Ti) of the encoder on the PROFIBUS/PROFINET.

Unit: seconds; therefore default is 125µs

(this is also the default which STEP 7 sets for a 611U).

NOTICE:

The actual ${\tt Ti}$ value is read directly from the SDB configuration or the drive, if possible.

In this case, the machine data value is set to the read value and will only serve for display purposes.

37602	PROFIBUS_OUTVAL_DELAY_TIME			EXP, A01, A02	-
s	Setpoint delay t	etpoint delay time (PROFIBUS/PROFINET To)			PowerOn
-					
-	-	0.003	0.0	0.032	0/0

Description:

For PROFIBUS/PROFINET only:

Machine data for setting the setpoint acceptance time (To) on the ${\tt PROFIBUS/PROFINET}$.

Unit: seconds

NOTICE:

The actual To value is read directly from the SDB configuration or the drive, if possible.

In this case, the value of the machine data is set to the read value and serves for display purposes only.

37610	PROFIBUS_CTRL_CONFIG			EXP, A01	-
-	PROFIdrive control bit configuration			BYTE	PowerOn
-					
-	-	0 0 2			2/2

Description:

For PROFIdrive only:

Machine data for setting special PROFIdrive control word functionality:

0 -

default = no change of standard behavior

1 =

STW2, bits 0-1 are set depending on mode of operation/rapid traverse suppressing the setting of defaults for the VDI control bits "Parameter set bit0/1" from the PLC.

Bits 0-1 get the following combinations depending on the mode of operation, and controlled by NCK:

00 = Default (after Power-On)

01 = JOG (except for JOG-INC) or ((AUTOMATIC or MDI) and G0)

10 = ((AUTOMATIC or MDI) and not G0), other

11 = JOG-INC

2 =

MD=2 acts as MD=1, as long as there are no VDI control bits from the PLC, i.e. if the VDI control bits "Parameter set bit0/1" are both reset (0).

MD=2 acts as MD=0, if the VDI control bits "Parameter set bit0/1" are set both or individually (!=0). In this case, the VDI control bits are transferred directly to the drive (priority of VDI signals higher than that of internally created signals).

37620	PROFIBUS_TORQUE_RED_RESOL			EXP, A01	-
%	Resolution PROFIdrive torque reduction			DOUBLE	NEW CONF
-					
-	-	1.0	0.005	10.0	2/2

For PROFIdrive only:

Resolution of the torque reduction on the PROFIdrive (LSB significance)

The MD is only relevant to controls with PROFIdrive drives. For these controls, it defines the resolution of the cyclic interface data "Torque reduction value" (only exists for MD13060 $MN_DRIVE_TELEGRAM_TYPE = 101$ ff. or 201 ff.), which is required for the "Travel to fixed stop" functionality.

The 1% default value corresponds to the original significance. The torque limit is transferred on the PROFIdrive with increments of 1%; the value 100 in the corresponding PROFIdrive message frame data cell corresponds to full torque reduction (i.e. without force).

By changing this MD to 0.005%, for example, the value can be entered in increments of 0.005%, i.e. the increments for the torque limit value become finer by the factor 200.

For the limitation to the rated torque, the value 0 is transmitted in this case; a complete torque reduction (i.e. without force) characterizes the transmittable value 10000.

To avoid misadaptation, the setting value of the MD must be selected to match the interpretation configured on the drive side or the firmly defined interpretation of the torque reduction value. If the setting of the control on the drive (manufacturer-specific drive parameter) is known (i.e. with SIEMENS drives such as SIMODRIVE 611U or SINAMICS), the software automatically sets the MD, i.e. in this case the MD is merely used for display purposes.

37800	OEM_AXIS_INFO			A01, A11	-	
-	OEM version information			STRING	PowerOn	
-						
-	2				2/2	

Description:

A version information freely available to the user (is indicated in the version screen)

2.4.8 Axis-specific memory settings

38000	MM_ENC_COMP_MAX_POINTS			A01, A09, A02	K3
-	Number of intermediate points for interpol. compensation (SRAM)			DWORD	PowerOn
-					
-	1	125	0	5000	7/0

Description:

The number of interpolation points required per measuring system must be defined for the leadscrew error compensation.

The required number can be calculated as follows using the defined parameters:

\$AA_ENC_COMP_MAX -

\$AA_ENC_COMP_STEP

\$AA_ENC_COMP_MIN Initial position (system variable)
\$AA_ENC_COMP_MAX End position (system variable)
\$AA_ENC_COMP_STEP Distance between interpolation points
(system variable)

When selecting the number of interpolation points and/or the distances between them, it is important to take into account the size of the resulting compensation table and the space required in the buffered NC user memory (SRAM). 8 bytes are required for each compensation value (interpolation point).

The index [n] has the following coding: [encoder no.]: 0 or 1 Special cases: Notice:

After any change in MD38000 $MA_MM_ENC_COMP_MAX_POINTS$, the buffered NC user memory is automatically re-allocated on system power-on.

All data in the buffered NC user memory are then lost (e.g. part programs, tool offsets etc.). Alarm 6020 "Machine data changed - memory reallocated" is output.

If reallocation of the NC user memory fails because the total memory capacity available is insufficient, alarm 6000 "Memory allocation made with standard machine data" is output.

In this case, the NC user memory division is allocated using the default values of the standard machine data.

References:

```
/FB/, S7, "Memory Configuration"
```

/DA/, "Diagnostics Guide"

Related to:

MD32700 \$MA_ENC_COMP_ENABLE[n]LEC active

References:

/FB/, S7, "Memory Configuration"

Setting Data - Description

3

3.1 Setting data

Number	Identifier		Display filters	Reference	
Unit	Name		Data type	Active	
Attributes					
System	Dimension	Default value	Minimum value	Maximum value	Protection

Description: Description

3.1.1 General setting data

41010	JOG_VAR_INCR_SIZE		-	H1
-	Size of the variable increme	ent for JOG	DOUBLE	Immediately
-				
-	- 0.	-	-	7/7

Description:

This setting data defines the number of increments when variable increment (INCvar) is selected. This increment size is traversed by the axis in JOG mode each time the traverse key is pressed or the handwheel is turned one detent position and variable increment is selected (PLC interface signal "Active machine function: INC variable" for machine or geometry axes is set to 1).

Note:

Please note that the increment size is active for incremental jogging and handwheel jogging. So, if a large increment value is entered and the handwheel is turned, the axis might cover a large distance (depends on setting in MD31090 \$MA JOG INCR WEIGHT).

SD irrelevant to

JOG continuous

Related to

NC/PLC interface signal V3300 1001.5,1005.5,1009.5 (Geometry axis 1-3 active machine function: INC variable) or NC/PLC interface signal V390x 0005.5 (Active machine function: INC variable)

 ${\tt MD31090~\$MA_JOG_INCR_WEIGHT}$ (weighting of an increment for INC/handwheel)

41050	µOG_CONT_MODE_LEVELTRIGGRD	-	H1
-	Jog mode / continuous operation with continuous JOG	BOOLEAN	Immediately
-			
-	- TRUE -	-	1/1

Description:

1: Jog mode for JOG continuous

In jog mode (default setting) the axis traverses as long as the traverse key is held down and an axis limitation has not been reached. When the key is released the axis is decelerated to zero speed and the movement is considered complete.

0: Continuous operation for JOG continuous

In continuous operation the traverse movement is started with the first rising edge of the traverse key and continues to move even after the key is released. The axis can be stopped again by pressing the traverse key again (second rising edge).

SD irrelevant for

Incremental jogging (JOG INC)

Reference point approach (JOG REF)

41100		µOG_REV_IS_ACTIVE		-	-
-	JOG mo	OG mode: (1) revolutional feedrate / (0) feedrate		BYTE	Immediately
-					
802d-cu3	-	0x0E	-	-	7/7
802d-ng2	-	0x0E	-	-	1/1
802d-ng3	-	0x0E	-	-	1/1
802d-tm1	-	0x0E	-	-	7/7
802d-tm2	-	0x0E	-	-	7/7
802d-tm3	-	0x0E	-	-	7/7

Bit 0 = 0:

The behavior depends on the following:

- in the case of an axis/spindle:
 - on the axial SD43300 \$SA_ASSIGN_FEED_PER_REV_SOURCE
- in the case of a geometry axis with an active frame with rotation:
 - on the channel-specific SD42600 \$SC JOG FEED PER REV SOURCE
- in the case of an orientation axis:
 - on the channel-specific SD42600 \$SC JOG FEED PER REV SOURCE

Bit 0 = 1:

A JOG motion with revolutional feedrate shall be traversed depending on the master spindle.

The following must be considered:

- If a spindle is the master spindle itself, it will be traversed without revolutional feedrate.
- If the master spindle is in stop position and if SD43300 \$SA_ASSIGN_FEED_PER_REV_SOURCE (with an axis/spindle) or SD42600 \$SC_JOG_FEED_PER_REV_SOURCE (with a geometry axis with an active frame with rotation, or with an orientation axis) = -3, traversing will be carried out without revolutional feedrate.

Bit 1 = 0:

The axis/spindle, geometry axis or orientation axis will be traversed with revolutional feedrate even during rapid traverse (see bit 0 for selection).

Bit 1 = 1:

The axis/spindle, geometry axis or orientation axis is always traversed without revolutional feedback during rapid traverse.

Bit 2 = 0:

The axis/spindle, geometry axis or orientation axis is traversed with revolutional feedrate during JOG handwheel travel, too (see bit 0 for selection).

Bit 2 = 1

The axis/spindle, geometry axis or orientation axis is always traversed without revolutional feedrate during JOG handwheel travel.

Bit 3 = 0:

The axis/spindle is traversed with revolutional feedrate during DRF handwheel travel, too (see bit 0 for selection).

Bit 3 = 1:

The axis/spindle is always traversed without revolutional feedrate during DRF handwheel travel.

41110	μOG_SET_VELO			
mm/min	Axis velocity in JOG	Axis velocity in JOG		
_			•	·
-	- 0.0	-	-	7/7

Description:

Value not equal to 0:

The velocity value entered applies to linear axes traversed in JOG mode if they are traversed manually using the "Traversing keys plus or minus".

The axis velocity is active for

- continuous jogging
- incremental jogging (INC1, ... INCvar)

The value entered must not exceed the maximum permissible axis velocity (MD32000 $MA_MX_AX_VELO$)

Value = 0:

The feedrate in JOG mode is the corresponding axis-specific MD32020 MA_JOG_VELO "Convetional axis velocity". In this way, it is possible to define a separate JOG velocity for every axis. Related to

 ${\tt SD41100~\$SN_JOG_REV_IS_ACTIVE~(revolutional~feed rate~with~JOG~active)}$

MD32020 \$MA_JOG_VELO (JOG axis velocity)

MD32000 \$MA MAX AX VELO (maximum axis velocity)

SD41130 \$SN JOG ROT AX SET VELO (JOG speed with rotary axes)

41120	JOG_RE	JOG_REV_SET_VELO			H1
mm/rev	Revolution	tional feedrate of axes in JOG mode		DOUBLE	Immediately
-					
802d-cu3	-	0.0	-	-	7/7
802d-ng2	-	0.0	-	-	1/1
802d-ng3	-	0.0	-	-	1/1
802d-tm1	-	0.0	-	-	7/7
802d-tm2	-	0.0	-	-	7/7
802d-tm3	-	0.0	-	-	7/7

Value not equal to 0:

The velocity value entered applies to axes traversed in JOG mode if revolutional feedrate (G95) is active for the relevant axis (SD41100 $SN_{JOG_{REV_{IS_{ACTIVE}}} = 1$). The axis velocity is active for

- continuous jogging
- incremental jogging (INC1, ... INCvar)
- handwheel traversing. The value entered is valid for all axes and must not exceed the maximum permissible axis velocity (MD32000 \$MA_MAX_AX_VELO).

Value = 0:

If 0 has been entered in the setting data, the active revolutional feedrate in JOG mode is MD32050 $MA_JOG_REV_VELO$ "revolutional feedrate with JOG".

Each axis can be given its own revolutional feedrate with this MD (axial MD).

SD irrelevant for

For axes if SD41100 \$SN_JOG_REV_IS_ACTIVE = 0

Application example(s)

The operator can define a JOG velocity for a particular application.

Related to

Axial SD41100 $SN_JG_REV_IS_ACTIVE$ (revolutional feedrate for JOG active)

Axial MD32050 \$MA_JOG_REV_VELO (revolutional feedrate with JOG) Axial MD32000 \$MA MAX AX VELO (maximum axis velocity)

41130	JOG_ROT_AX_SET_VELO	-	H1
rev/min	Axis velocity for rotary axes in JOG mode	DOUBLE	Immediately
-			
-	- 0.0 -	-	7/7

Description:

Value not equal to 0:

The velocity value entered applies to rotary axes traversed in JOG mode if they are traversed manually using the "Traversing keys plus or minus".

The axis velocity is active for

- continuous jogging
- incremental jogging (INC1, ... INCvar)

The value entered must not exceed the maximum permissible axis velocity (MD32000 $MA_MAX_AX_VELO$).

Value = 0:

The feedrate in JOG mode is the corresponding axis-specific MD32020 \$MA_JOG_VELO "Convetional axis velocity". In this way, it is possible to define a separate JOG velocity for every axis. Application example(s)

The operator can define a JOG velocity for a particular application.

Related to

MD32020 \$MA_JOG_VELO (JOG axis velocity)
MD32000 \$MA_MAX_AX_VELO (maximum axis velocity)

41200	JOG_SPIND_SET_VELO	-	H1
rev/min	Speed for spindle JOG mode	DOUBLE	Immediately
L			

Description:

Value not equal to 0:

The speed entered applies to spindles in JOG mode if they are traversed manually by the "Plus and minus traversing keys" or the handwheel. The speed is active for

- continuous jogging
- incremental jogging (INC1, ... INCvar)

Value = 0:

If 0 has been entered in the setting data, MD32020 MA_JOG_VELO (JOG axis velocity) acts as the JOG velocity. Each axis can thus be given its own JOG velocity with this MD (axis-specific MD).

The maximum speeds of the active gear stage (MD35130 $MA_GEAR_STEP_MAX_VELO_LIMIT$) are taken into account when traversing the spindle with JOG.

Related to

Axial MD32020 \$MA_JOG_VELO (JOG axis velocity)
MD35130 \$MA_GEAR_STEP_MAX_VELO_LIMIT (maximum speeds of the gear stages)

41300	CEC_TA	BLE_ENABLE	-	K3
-	Compen	sation table enable	BOOLEAN	Immediately
- 802d-cu3	2	FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE	-	3/3
802d-ng2	2	FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE	-	3/3
802d-ng3	2	FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE.	-	3/3
802d-tm1	2	FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE.	-	-1/7
802d-tm2	2	FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE.	-	3/3
802d-tm3	2	FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE.	-	3/3

1: The evaluation of the compensation table [t] is enabled.

The compensation table is now included in the calculation of the compensation value for the compensation axis.

The compensation axis $AN_CEC_OUTPUT_AXIS$ can be taken from the table configuration.

The effective total compensation value in the compensation axis can be adapted to the current machining by the targeted activation of tables (from NC part programm or PLC user program).

The function does not become active until the following conditions have been fulfilled:

- The option "Interpolatory compensation" is set
- The associated compensation tables in the NC user memory have been loaded and enabled (SD41300 \$SN CEC TABLE ENABLEt] = 1)
- The current position measuring system is referenced (NC/PLC interface signal V390x 0000.4 / .5 (Referenced/synchronized 1 or 2) = 1).
- 0: The evaluation of the sag compensation table [t] is not enabled.

Related to

MD18342 \$MN_MM_CEC_MAX_POINTS[t] Number of interpolation
points with sag compensation

SD41300 \$SN_CEC_TABLE_ENABLE[t] Evaluation of the sag compensation table t is enabled

NC/PLC interface signal V390x 0000.4 (Referenced/synchronized 1) $\,$

NC/PLC interface signal V390x 0000.5 (Referenced/synchronized 2)

41310	CEC_TA	ABLE_WEIGHT	-	K3
-	Weightin	ng factor compensation table	DOUBLE	Immediately
-				10.0
802d-cu3	2	1.0,1.0,1.0,1.0,1.0,1.0,1- .0,1.0,1.0		3/3
802d-ng2	2	1.0,1.0,1.0,1.0,1.0,1.0,1-	-	3/3
802d-ng3	2	1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,	-	3/3
802d-tm1	2	1.0,1.0,1.0,1.0,1.0,1-	-	-1/7
802d-tm2	2	.0,1.0,1.0 1.0,1.0,1.0,1.0,1.0,1.0,1	-	3/3
802d-tm3	2	.0,1.0,1.0 1.0,1.0,1.0,1.0,1.0,1.0,1- .0,1.0,1.0	-	3/3

Description:

The compensation value stored in the table [t] is multiplied by the weighting factor.

When selecting the weighting factor it should be ensured that the total compensation value in the compensation axis does not exceed the maximal value of

(MD18342 $MN_CEC_MAX_SUM$). With [t] = index of the compensation table (see MD18342 $MN_MM_CEC_MAX_POINTS$)

If, for example, the weight of the tools used on the machine or the workpieces to be machined are too different and this affects the error curve by changing the amplitude, this can be corrected by changing the weighting factor. In the case of sag compensation, the weighting factor in the table can be changed for specific tools or workpieces from the PLC user program or the NC program by overwriting the setting data. However, different compensation tables are to be used if the course of the error curve is substantially changed by the different weights.

Related to

 ${\tt SD41300~\$SN_CEC_TABLE_ENABLE[t]}~{\tt Evaluation}$ of the sag compensation table t is enabled

MD18342 \$MN_CEC_MAX_SUM sag compensation

Maximum compensation value for

41500	SW_CAN	M_MINUS_POS_TAB_1	-	N3
mm/inch, degrees	Trigger p	oints at falling cam 1-8	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	ŀ	7/7
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	7/7
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	7/7
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		

The cam positions of minus cams $1\,$ - $8\,$ are entered in this machine data.

The positions are entered in the machine coordinate system. Index [n] of the setting data addresses the cam pair: $n=0,\;1,\;\ldots,\;7\;\text{corresponds}\;\text{to}\;\text{cam pair}\;1,\;2,\;\ldots,\;8$ When the set switching points are overtraveled in the positive axis direction, the associated "minus" cam signals in the PLC interface (and any applied fast output signals) switch from 1 to 0.

41501	SW_CAI	M_PLUS_POS_TAB_1	-	N3
mm/inch, degrees	Trigger p	points at rising cam edge 1-8	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	7/7
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	7/7
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0	-	7/7
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		0.0.0		

Description:

The cam positions of plus cams $1\,-\,8$ are entered in this machine data.

The positions are entered in the machine coordinate system. Index [n] of the setting data addresses the cam pair: $n=0,\,1,\,\ldots\,,\,7$ corresponds to cam pair 1, 2, ..., 8 When the set switching points are overtraveled in the positive axis direction, the associated "plus" cam signals in the PLC interface (and any applied fast output signals) switch from 0 to 1.

41502	SW_CAI	M_MINUS_POS_TAB_2	-	N3
mm/inch, degrees	Trigger p	points at falling cam edge 9-16	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	0/0
-		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	0/0
-		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0.0.0		

Description:

The cam positions of minus cams 9--16 are entered in this machine data.

The positions are entered in the machine coordinate system.

Index [n] of the setting data addresses the cam pair:

n = 8, 9, ..., 15 corresponds to cam pair 9, 10, ..., 16

Switching points with falling edges of cams 9 - 16.

When the set switching points are overtraveled in the positive axis direction, the associated "minus" cam signals in the PLC interface (and any applied fast output signals) switch from 1 to 0.

41503	SW_CAI	M_PLUS_POS_TAB_2	-	N3
mm/inch, degrees	Trigger p	points at rising cam edge 9-16	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0	-	0/0
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		

Description:

The cam positions of plus cams 9-16 are entered in this machine data.

The positions are entered in the machine coordinate system. Index [n] of the setting data addresses the cam pair: $n=8,\,9,\,\ldots$, 15 corresponds to cam pair 9, 10, ..., 16 Switching points with rising edges of cams 9 - 16. When the set switching points are overtraveled in the positive axis direction, the associated "plus" cam signals in the PLC interface (and any applied fast output signals) switch from 0 to 1.

41504		M_MINUS_POS_TAB_3	-	N3
mm/inch, degrees	Trigger	points at falling cam edge 17-24	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0.0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0.0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0.0.0		

The cam positions of minus cams 17 - 24 are entered in this machine data.

The positions are entered in the machine coordinate system. Index [n] of the setting data addresses the cam pair: $n=0,\,1,\,\ldots\,,\,7$ corresponds to cam pair 17, 18, ..., 24 Switching points with falling edges of cams 17 - 24. When the set switching points are overtraveled in the positive axis direction, the associated "minus" cam signals in the PLC interface (and any applied fast output signals) switch from 1 to 0.

41505	SW_CA	M_PLUS_POS_TAB_3	-	N3
mm/inch, degrees	Trigger	points at rising cam edge 17-24	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.	-	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		

Description:

The cam positions of plus cams 17 - 24 are entered in this machine data.

The positions are entered in the machine coordinate system. Index [n] of the setting data addresses the cam pair: $n=0,1,\ldots,7$ corresponds to cam pair 17, 18, ..., 24 Switching points with rising edges of cams 17-24 When the set switching points are overtraveled in the positive axis direction, the associated "plus" cam signals in the PLC interface (and any applied fast output signals) switch from 0 to 1

41506		M_MINUS_POS_TAB_4	-	N3
mm/inch, degrees	Trigger p	points at falling cam edge 25-32	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	ŀ	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		

Description:

The cam positions of minus cams 25 - 32 are entered in this machine data.

The positions are entered in the machine coordinate system. Index [n] of the setting data addresses the cam pair: $n=8,\;9,\;\dots,\;15 \text{ corresponds to cam pair }25,\;26,\;\dots,\;32$ Switching points with falling edges of cams 25-32. When the set switching points are overtraveled in the positive axis direction, the associated "minus" cam signals in the PLC interface (and any applied fast output signals) switch from 1 to

41507	SW_CAN	M_PLUS_POS_TAB_4	-	N3
mm/inch, degrees	Trigger p	oints at rising cam edge 25-32	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0	-	0/0
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		

Description:

The cam positions of plus cams 25 - 32 are entered in this machine data.

The positions are entered in the machine coordinate system. Index [n] of the setting data addresses the cam pair: $n=8,\,9,\,\ldots$, 15 corresponds to cam pair 25, 26, ..., 32 Switching points with rising edges of cams 25 - 32. When the set switching points are overtraveled in the positive axis direction, the associated "plus" cam signals in the PLC interface (and any applied fast output signals) switch from 0 to 1.

41520	SW_CAI	M_MINUS_TIME_TAB_1	-	N3
s	Rate tim	e for '-' trigger points of cams 1-8	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	ŀ	7/7
		0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	7/7
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	7/7
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		

A lead or delay time can be assigned to each cam 1-8 in this setting data to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered.

Positive value: Lead time
Negative value: Delay time

Index [n] of the setting data addresses the cam pair: $n = 0, 1, \ldots, 7$ corresponds to cam pair 1, 2, ..., 8

This setting data is added to MD: MD10460 \$MN_SW_CAM_MINUS_LEAD_TIME[n].

Related to

MD10460 \$MN_SW_CAM_MINUS_LEAD_TIME[n] (lead or delay time on minus cams 1 - 16)

41521	SW_CAN	SW_CAM_PLUS_TIME_TAB_1		N3
S	Rate time	e for '+' trigger points of cams 1-8	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0-	-	7/7
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0-	-	7/7
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0-	-	7/7
		.0,0.0		
302d-tm1	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
302d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		

Description:

A lead or delay time can be assigned to each plus cam 1-8 in this setting data to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered.

Positive value: Lead time
Negative value: Delay time

Index [n] of the setting data addresses the cam pair: $n = 0, 1, \ldots, 7$ corresponds to cam pair 1, 2, ..., 8

This setting data is added to MD10461

\$MN_SW_CAM_PLUS_LEAD_TIME[n].

Related to

 $\label{eq:md10461 mn_sw_cam_plus_lead_time} $$\operatorname{MD}_{0461 \ \mbox{\ mn_sw_cam_plus_lead_time}}(lead\ or\ delay\ time\ on\ plus\ cams\ 1\ -\ 16)$

41522		M_MINUS_TIME_TAB_2	-	N3
s	Rate time	e for '-' trigger points of cams 9-16	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		

Description:

A lead or delay time can be assigned to each minus cam 9 - 16 in this setting data to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered. $\,$

Positive value: Lead time
Negative value: Delay time

Index [n] of the setting data addresses the cam pair: $n = 8, 9, \ldots, 15$ corresponds to cam pair 9, 10, ..., 16

This setting data is added to MD10460 \$MN_SW_CAM MINUS_LEAD_TIME[n+8].

Related to

MD10460 $MN_SW_CAM_MINUS_LEAD_TIME[n]$ (lead or delay time on minus cams 1 - 16)

41523	SW_CAN	M_PLUS_TIME_TAB_2	-	N3
s	Rate time	e for '+' trigger points of cams 9-16	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0-	ŀ	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		

Description:

A lead or delay time can be assigned to each plus cam 9 - 16 in this setting data to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered.

Positive value: Lead time
Negative value: Delay time

Index [n] of the setting data addresses the cam pair: $n = 8, 9, \ldots, 15$ corresponds to cam pair $9, 10, \ldots, 16$

This setting data is added to MD10461

\$MN_SW_CAM_PLUS_LEAD_TIME[n+8].

Related to

MD10461 $MN_SW_CAM_PLUS_LEAD_TIME[n]$ (lead or delay time on plus cams 1 - 16)

41524		M_MINUS_TIME_TAB_3	-	N3
s	Rate tim	e for '-' trigger points of cams 17-24	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	ŀ	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	0/0
_		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		

A lead or delay time can be assigned to each minus cam 17-24 in this setting data to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered. $\,$

Positive value: Lead time
Negative value: Delay time

Index [n] of the setting data addresses the cam pair: $n=0,\ 1,\ \dots$, 7 corresponds to cam pair 17, 18, ..., 24

This setting data is added to MD10460 $\,$

\$MN_SW_CAM_MINUS_LEAD_TIME[n].

Related to

MD10460 $MN_SW_CAM_MINUS_LEAD_TIME[n]$ (lead or delay time on minus cams 1 - 16)

41525	SW_CAN	M_PLUS_TIME_TAB_3	-	N3
S	Rate time for '+' trigger points of cams 17-24		DOUBLE	Immediately
-			•	
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0-	-	0/0
Ü		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		
302d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
Ì		.0,0.0		

Description:

A lead or delay time can be assigned to each plus cam 17-24 in this setting data to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered.

Positive value: Lead time
Negative value: Delay time

Index [n] of the setting data addresses the cam pair: $n = 0, 1, \ldots, 7$ corresponds to cam pair 17, 18, ..., 24

This setting data is added to MD10461

\$MN_SW_CAM_PLUS_LEAD_TIME[n].

Related to

MD10461 $MN_SW_CAM_PLUS_LEAD_TIME$ (lead or delay time on plus cams 1 - 16)

41526		M_MINUS_TIME_TAB_4	-	N3
s	Rate time	e for '-' trigger points of cams 25-32	DOUBLE	Immediately
-				
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0		
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0		
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0-	-	-1/7
		.0,0.0		

Description:

A lead or delay time can be assigned to each minus cam 25-32 in this setting data to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered.

Positive value: Lead time
Negative value: Delay time

Index [n] of the setting data addresses the cam pair: $n = 8, 9, \ldots, 15$ corresponds to cam pair 25, 26, ..., 32

This setting data is added to MD10460 \$MN_SW_CAM_MINUS_LEAD_TIME[n+8].

Related to

MD10460 $MN_SW_CAM_MINUS_LEAD_TIME[n]$ (lead or delay time on minus cams 1 - 16)

41527	SW_CAN	M_PLUS_TIME_TAB_4	-	N3
s	Rate time	e for '+' trigger points of cams 25-32	DOUBLE	Immediately
-		10.00.00.00.00.00		1878
802d-cu3	8	0.0,0.0,0.0,0.0,0.0,0.0,0- .0,0.0		0/0
802d-ng2	8	0.0,0.0,0.0,0.0,0.0,0.0,0- .0,0.0		0/0
802d-ng3	8	0.0,0.0,0.0,0.0,0.0,0.0,0- .0,0.0		0/0
802d-tm1	8	0.0,0.0,0.0,0.0,0.0,0.0,0- .0,0.0		-1/7
802d-tm2	8	0.0,0.0,0.0,0.0,0.0,0.0,0-		-1/7
802d-tm3	8	0.0,0.0,0.0,0.0,0.0,0.0,0-	-	-1/7

Description:

A lead or delay time can be assigned to each plus cam 25 - 32 in this setting data to compensate for delay times.

The switching edge of the associated cam signal is advanced or delayed by the time value entered.

Positive value: Lead time
Negative value: Delay time

Index [n] of the setting data addresses the cam pair:

n = 8, 9, ..., 15 corresponds to cam pair 25, 26, ..., 32

This setting data is added to MD10461

 $MN_SW_CAM_PLUS_LEAD_TIME[n+8].$

Related to

 $\label{eq:md10461} $$MN_SW_CAM_PLUS_LEAD_TIME[n]$ (lead or delay time on plus cams 1 - 16)$

41600	COMPA	R_THRESHOLD_1	-	A4
-	Threshol	d value of the 1st comparator	DOUBLE	Immediately
-				
-	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0.0.0		

Description:

COMPAR_THRESHOLD_1[b] defines the threshold values for the individual input bits [b] of comparator byte 1.

The output bit n of the 1st comparator is created by comparing the threshold value n according to the comparison type defined in bit n of COMPAR TYPE 1.

For example:

```
COMPAR_ASSIGN_ANA_INPUT_1[2] = 4
COMPAR_TRESHOLD_1[2] = 5000.0
COMPAR_TYPE_1 = 5
```

The 3rd output bit of comparator 1 is set if the input value at $AnalogIn \ 4$ is greater than or equal to 5 volts.

```
Index [b]: Bits 0 - 7
Related to ....

MD10530 $MN_COMPAR_ASSIGN_ANA_INPUT_1
MD10531 $MN_COMPAR_ASSIGN_ANA_INPUT_2
MD10540 $MN_COMPAR_TYPE_1
MD10541 $MN_COMPAR_TYPE_2
```

41601	COMPAR	R_THRESHOLD_2	-	A4
-	Threshol	d value of the 2nd comparator	DOUBLE	Immediately
-				
-	8	0.0,0.0,0.0,0.0,0.0,0.0,0	-	-1/7
		.0,0.0		

Description:

 ${\tt COMPAR_THRESHOLD_1[b]}$ defines the threshold values for the individual input bits [b] of comparator byte 1.

Output bit n of the 1st comparator is created by comparing the threshold value n according to the comparison type defined in bit n of COMPAR_TYPE_2.

```
Index [b]: Bits 0 - 7
Related to ....
  MD10530 $MN_COMPAR_ASSIGN_ANA_INPUT_1
  MD10531 $MN_COMPAR_ASSIGN_ANA_INPUT_2
  MD10540 $MN_COMPAR_TYPE_1
  MD10541 $MN COMPAR TYPE 2
```

3.1.2 Channel-specific setting data

42000	THREAD_START_ANGLE	-	K1
degrees	Starting angle for thread	DOUBLE	Immediately
-			10/0
802d-cu3	- 0.,0.,0.,0.,0.,0.,0.,0.	ŀ	3/3
	.,0.,0.,0		
802d-ng2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	ŀ	0/0
	.,0.,0.,0		
802d-ng3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	ŀ	0/0
	.,0.,0.,0		
802d-tm1	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	3/3
	.,0.,0.,0		
802d-tm2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	3/3
	.,0.,0.,0		
802d-tm3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	3/3
	.,0.,0.,0		

Description:

In the case of multiple thread cutting, the offset of the individual threads can be programmed with the aid of this setting data. This SD can be changed by the part program with the command SF. Note:

MD10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

42010	THREAD_RAM	P_DISP	-	V1
mm	Acceleration be	havior of axis when thread cutting	DOUBLE	Immediately
_				
802d-cu3	2	-1., -1.,-1., -1.,1.	999999.	3/3
		1., -1		
802d-ng2	2	-1., -1.,-1., -1.,1.	999999.	0/0
		1., -1		
802d-ng3	2	-1., -1.,-1., -1.,-1., -1.	999999.	0/0
		1., -1		
802d-tm1	2	-1., -1.,-1., -1.,-1., -1.,-	999999.	3/3
		1., -1		
802d-tm2	2	-1., -1.,-1., -1.,-1., -1.,-	999999.	3/3
		1., -1		
802d-tm3	2	-1., -1.,-1., -1.,-1., -1.	999999.	3/3
		1., -1		

Description:

The SD is active for thread cutting with G33 (G34, G35).

It features two elements that define the behavior of the thread axis during runup (1st element) and during deceleration/smoothing (2nd element).

The values have the same properties for thread run-in and thread $\operatorname{run-out}$:

<0:

The thread axis is started/decelerated with configured acceleration. Jerk is according to the current programming of BRISK/SOFT. Behavior is compatible with MD 20650__THREAD_START_IS_HARD = FALSE used until now.

Λ.

Starting/deceleration of the feed axis during thread cutting is stepped. Behavior is compatible with MD $_{20650}$ THREAD START IS HARD = TRUE used until now.

>0:

The maximum thread starting or deceleration path is specified. The specified distance can lead to acceleration overload of the axis. The SD is written from the block when DITR (displacement thread ramp) is programmed.

Note:

MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

42100	DRY_RUN_FEED	-	V1
mm/min	Dry run feedrate	DOUBLE	Immediately
-			
-	- 5000.,5000.,5000-	-	7/7
	.,5000.,5000		

Description:

The feedrate for the active dry run is entered in this setting data. The setting data can be altered on the operator panel in the "Parameters" operating area.

The entered dry run feedrate is always interpreted as a linear feed (G94). If the dry run feedrate is activated via the PLC interface, the dry run feedrate is used as the path feed after a reset instead of the programmed feed. The programmed velocity is used for traversing if it is greater than the velocity stored here.

Application example(s)

Program testing

Related to

NC/PLC interface signal V3200 0000.6 (Activate dry run feedrate)

NC/PLC interface signal V1700 0000.6 (Dry run feedrate selected)

42101	DRY_RUN_FEED_MODE	-	V1
-	Mode for dry run velocity	BYTE	Immediately
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0	12	7/7

Description:

This SD can be used to set the method of operation of the dry run velocity set by SD42100 \$SC DRY RUN FEED.

The following values are possible:

0:

The maximum of SD42100 $SC_DRY_RUN_FEED$ and the programmed velocity become active. This is the standard setting and corresponds to the behavior up to SW 5.

1:

The minimum of SD42100 $SC_DRY_RUN_FEED$ and the programmed velocity become active.

2:

 ${\tt SD42100~\$SC_DRY_RUN_FEED}$ becomes active directly, irrespective of the programmed velocity.

The values 3...9 are reserved for extensions.

10:

As configuration 0, except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63). These functions are executed as programmed.

11:

As configuration 1, except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63). These functions are executed as programmed.

12:

As configuration 2, except for thread cutting (G33, G34, G35) and tapping (G331, G332, G63). These functions are executed as programmed.

42110	DEFAULT_FEED	-	V1,FBFA
mm/min	Path feed default value	DOUBLE	Immediately
-			
-	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	ŀ	7/7
	00		

Description:

Default value for path feedrate, This setting data is evaluated when the part program starts taking into account the feedrate type active at this time (see MD20150 $MC_GCODE_RESET_VALUES$ and MD20154 $MC_GCODE_RESET_VALUES$).

42120	APPROACH_FEED	-	-
mm/min	Path feedrate in approach blocks	DOUBLE	Immediately
-		•	•
-	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	-	2/2
	.,0.,0.,0		

Description:

Default value for path feedrate in approach blocks (after repos., block search, SERUPRO etc).

The contents of this cotting data of

The contents of this settting data are only used when it is non-zero.

It is evaluated like an F word programmed for G94.

42122	OVR RAPID FACTOR	-	\$MN OVR FACTO
			R_RAPID_TRA,\$A
			C_OVR
%	Add. rapid traverse override can be specified through	DOUBLE	Immediately
	operation		
-			
h	- 100.,100.,100.,100-	-	7/7
	100 100		

Description:

Additional channel-specific rapid traverse override in %. The value is calculated to the path depending on OPI variable enablOvrRapidFactor. The value multiplies the other rapid traverse overrides (rapid traverse override of the machine control panel, override default through synchronized actions \$AC OVR).

42125	SERUPRO_SYNC_MASK	-	+
-	Ssynchronization in approach blocks	DWORD	Immediately
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	1/1

Description:

A synchronized approach can be set for the search type SERUPRO with the setting data SERUPRO SYNC MASK.

SERUPRO uses the function REPOS to move from the current machine position to the target block of the search. A synchronization of the channels can be forced between the reapproach block and the target block via SERUPRO_SYNC_MASK which would correspond to the use of wait markers.

Note:

The user cannot program wait markers between reapproach block and target block in a part program.

 ${\tt SERUPRO_SYNC_MASK}$ activates this intermal wait marker, and defines for which other channels this channel is to wait.

Example for channel 3: \$SC_SERUPRO_SYNC_MASK= 0x55

A new block is now inserted in the Serupro approach between the reapproach block and the target block, the function of which corresponds to the following programming: WAITM(101, 1,3,5,7), i.e. a wait mark synchronizes the channels 1, 3, 5 and 7.

The wait marks used internally cannot be explicitly programmed by the user.

NOTICE:

Similarly to the part program, the user can make the error of not setting the mark in a channel, so that the other channels naturally wait for ever!

Comment: The bit mask can contain a channel that does not exist (channel gaps) without a

deadlock occurring.

Example for channel 3: $SC_SERUPRO_SYNC_MASK = 0x55$ and channel 5 do not exist, so WAITM(101, 1,3,7) is set.

Note: The block content corresponds to "WAITM(101, 1,3,5,7)", the user does not see this block content, he sees REPOSA!

Note:

SERUPRO_SYNC_MASK is evaluated as soon as the part program command REPOSA is interpreted.

 ${\tt SERUPRO_SYNC_MASK}$ can still be changed if ${\tt SERUPRO}$ is in the state "search target found".

If REPOSA has already been executed, a change to SERUPRO_SYNC_MASK can only become active if a new REPOS is set. This occurs, for example, by:

- Starting a new ASUB.
- STOP-JOG-AUTO-START
- STOP select a new REPOS mode RMI/RMN/RME/RMB START

Comment:

If one use the prog. event for search and if the NCK is at alarm 10208 then a change of SERUPRO_SYNC_MASK is not active unless one sets a new REPOS.

 ${\tt SERUPRO_SYNC_MASK} \ == \ 0 \qquad {\tt A block is NOT inserted.}$

Note:

If the bit for the current channel is not set in SD42125

\$SC_SERUPRO_SYNC_MASK then a block is NOT inserted.

Example:

If $SC_SERUPRO_SYNC_MASK= 0xE$ is programmed in channel 1, then a block is NOT inserted.

This assignment is reserved for a future function!

42140	DEFAULT_SCALE_FACTOR_P	-	FBFA
-	Default scaling factor for address P	DWORD	Immediately
_			
802d-cu3	- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	7/7
802d-ng2	- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	-1/7
802d-ng3	- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	-1/7
802d-tm1	- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	7/7
802d-tm2	- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	7/7
802d-tm3	- 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	-	7/7

Description:

The value in this machine data is active if no scaling factor ${\tt P}$ has been programmed in the block.

Related to:

WEIGHTING FACTOR FOR SCALE

42150	DEFAULT_ROT_FACTOR_R	-	-
-	Default rotation factor for address R	DOUBLE	Immediately
_			
	- 0.,0.,0.,0.,0.,0.,0.,0.,0.,0- ,0.,0.,0		7/7

Description:

The value in this machine data is active if no factor for rotation ${\tt R}$ is programmed in the block.

42160	EXTERN	_FIXED_FEEDRATE_F1_F9	-	FBFA
-	Fixed fee	drates F1 - F9	DOUBLE	Immediately
-				
802d-cu3	10	0., 0., 0., 0., 0., 0., -	-	7/7
		0., 0., 0		
802d-ng2	10	0., 0., 0., 0., 0., 0., -	-	-1/7
		0., 0., 0		
802d-ng3	10	0., 0., 0., 0., 0., 0., -	-	-1/7
		0., 0., 0		
802d-tm1	10	0., 0., 0., 0., 0., 0., -	-	7/7
		0., 0., 0		
802d-tm2	10	0., 0., 0., 0., 0., 0., -	-	7/7
		0., 0., 0		
802d-tm3	10	0., 0., 0., 0., 0., 0., -	-	7/7
		0., 0., 0		

Description:

Fixed feedrate values for programming with F1 - F9. If the machine data $MC_{FEEDRATE_F1_F9_ON} = TRUE$ is set with the programming of F1 - F9, the feedrate values are read from SD42160

\$SC EXTERN FIXED FEEDRATE F1 F9[0] -

 $SC_EXTERN_FIXED_FEEDRATE_F1_F9[8],$ and activated as the machining feedrate.

The rapid traverse feedrate must be entered in SD42160 $SC_{TEN_{TIXED_{TEEDRATE}}}$ [0].

42162	EXTERN_DOUBLE_TURRET_DIST	-	FBFA
_	Double turret head tool distance	DOUBLE	Immediately
_			
802d-cu3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	7/7
	.,0.,0.,0		
802d-ng2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	-1/7
	.,0.,0.,0		
802d-ng3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	-1/7
	.,0.,0.,0		
802d-tm1	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	7/7
	.,0.,0.,0		
802d-tm2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	7/7
	.,0.,0.,0		
802d-tm3	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	-	7/7
	.,0.,0.,0		

Description:

Distance between both tools of a double turret head.

The distance is activated using G68 as additive zero point offset if MD10812 \$MN EXTERN DOUBLE TURRET ON is set to TRUE.

42200	SINGLEBLOCK2_STOPRE	-	BA
-	Activate SBL2 debug mode	BOOLEAN	Immediately
-			
_	- FALSE,FALSE,FALSE, - FALSE,FALSE,FALSE	-	7/7

Description:

Value = TRUE:

A preprocessing stop is made with every block if SBL2 (single block with stop after every block) is active. This suppresses the premachining of part program blocks. This variant of the SBL2 is not true-to-contour.

This means that a different contour characteristic might be generated as a result of the preprocessing stop than without single block or with SBL1.

Application: Debug mode for testing part programs.

42400	PUNCH	_DWELLTIME	-	N4
s	Dwell tin	ne for punching and nibbling	DOUBLE	Immediately
-				
802d-cu3	-	1.0,0.0,0.0,0.0,0.0,0.0,0	-	3/3
		.0,0.0,0.0		
802d-ng2	-	1.0,0.0,0.0,0.0,0.0,0.0	-	3/3
		.0,0.0,0.0		
802d-ng3	-	1.0,0.0,0.0,0.0,0.0,0.0	-	3/3
		.0,0.0,0.0		
802d-tm1	-	1.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
		.0,0.0,0.0		
802d-tm2	-	1.0,0.0,0.0,0.0,0.0,0.0,0-	-	0/0
		.0,0.0,0.0		
802d-tm3	-	1.0,0.0,0.0,0.0,0.0,0.0	<u> </u>	0/0
		.0,0.0,0.0		

Description:

This data sets the dwell time between reaching the position and triggering the stroke.

The set value is rounded to an integer multiple of the interpolation cycle. (This means that the value set here can only differ slightly from that which is actually executed.)

Note:

MD10710 \$MN_PROG_SD_RESET_SAVE_TAB can be set so that the value written by the part program is transferred into the active file system on reset (i.e. the value is retained even after the reset).

42402	NIBPUNCH_PRE_START_TIME	-	N4
S	Delay time (punch/nibble) with G603	DOUBLE	Immediately
-			
802d-cu3	02,0.0,0.0,0.0,0.0,0.0	-	3/3
	.0,0.0,0.0		
802d-ng2	02,0.0,0.0,0.0,0.0,0.0,0	-	3/3
	.0,0.0,0.0		
802d-ng3	02,0.0,0.0,0.0,0.0,0.0	-	3/3
	.0,0.0,0.0		
802d-tm1	02,0.0,0.0,0.0,0.0,0.0,0	-	0/0
	.0,0.0,0.0		
802d-tm2	02,0.0,0.0,0.0,0.0,0.0,0	-	0/0
	.0,0.0,0.0		
802d-tm3	02,0.0,0.0,0.0,0.0,0.0	-	0/0
	.0,0.0,0.0		

Description:

This setting data has exactly the same effect as MD26018 $MC_NIBBLE_PRE_START_TIME.$ Its primary purpose is to allow the pre-start time to be altered from the NC program so that it can be adapted to different metal sheet sizes and thicknesses. However, the setting data is active only when the machine data has been set to zero.

Related to NIBBLE PRESTART TIME

42404	MINTIME_BETWEEN_STROKES	-	N4
S	Minimum time between 2 strokes in seconds	DOUBLE	Immediately
-			
802d-cu3	- 0.0,0.0,0.0,0.0,0.0,0.0,0-	-	3/3
	.0,0.0,0.0		
802d-ng2	- 0.0,0.0,0.0,0.0,0.0,0.0	-	3/3
•	.0,0.0,0.0		
802d-ng3	- 0.0,0.0,0.0,0.0,0.0,0.0	-	3/3
-	.0,0.0,0.0		
302d-tm1	- 0.0,0.0,0.0,0.0,0.0,0.0	-	0/0
	.0,0.0,0.0		
302d-tm2	- 0.0,0.0,0.0,0.0,0.0,0.0	-	0/0
	.0,0.0,0.0		
802d-tm3	- 0.0,0.0,0.0,0.0,0.0,0.0,0	-	0/0
	.0,0.0,0.0		

Description: Minimum time between 2 strokes in seconds

42440	FRAME_OFFSET_INCR_PROG	-	K1,K2
-	Traversing from zero offset with incr. programming	BOOLEAN	Immediately
-			
-	- TRUE,TRUE,TRUE,TR - UE,TRUE,TRUE,TRUE	-	7/7

Description:

- 0: When incremental programming is used on an axis, only the programmed position delta is traversed after a frame change. Zero offsets in FRAMES are only traversed when an absolute position is specified.
- 1: When incremental programming is used on an axis, changes to zero offsets are traversed after a frame change (standard response up to software version 3).

Related to

SD42442 \$SC_TOOL_OFFSET_INCR_PROG

42442	TOOL_OFFSET_INCR_PROG	-	W1,K1	
-	Traversing from zero offset with incr. programming	BOOLEAN	Immediately	
-				
-	TRUE,TRUE,TRUE,TR - UE,TRUE,TRUE,TRUE 	-	7/7	

Description:

- 0: When incremental programming is used on an axis, only the programmed position delta is traversed after a frame change. Tool length offsets in FRAMES are only traversed when an absolute position is specified.
- 1: When incremental programming is used on an axis, changes to tool length offsets are traversed after a tool change (standard response up to SW version 3).

Related to

SD42440 \$SC_FRAME_OFFSET_INCR_PROG

42444	TARGET_BLOCK_INCR_PROG	-	BA
-	Set down mode after search run with calculation	BOOLEAN	Immediately
-			
-	- TRUE,TRUE,TRUE,TRUE UE,TRUE,TRUE,TRUE		7/7
	ļ		

Description:

If the first programming of an axis after "Search run with calculation to end of block" is incremental, the incremental value is added as a function of SD42444 \$SC_TARGET_BLOCK_INCR_PROG to the value accumulated up to the search target :

 ${
m SD}={
m TRUE}:$ Incremental value is added to accumulated position ${
m SD}={
m FALSE}:$ Incremental value is added to current actual value The setting data is evaluated on NC start for output of the action blocks.

42450	CONTPREC	-	B1,K6			
mm	Contour accuracy	DOUBLE	Immediately			
-						
802d-cu3	- 0.1,0.1,0.1,0.1,0.1,0.1,00.000001 .1,0.1,0.1	999999.	3/3			
802d-ng2	- 0.1,0.1,0.1,0.1,0.1,0.1,00.000001 1,0.1,0.1	999999.	0/0			
802d-ng3	- 0.1,0.1,0.1,0.1,0.1,0.1,00.000001 .1,0.1,0.1	999999.	0/0			
302d-tm1	- 0.1,0.1,0.1,0.1,0.1,0.1,0 ⁰ .000001 1,0.1,0.1	999999.	0/0			
802d-tm2	- 0.1,0.1,0.1,0.1,0.1,0.1,0 ⁰ .000001 1,0.1,0.1	999999.	0/0			
802d-tm3	- 0.1,0.1,0.1,0.1,0.1,0.1,00.000001 ,1,0.1,0.1	999999.	0/0			

Description:

Contour accuracy. This setting data can be used to define the accuracy to be maintained for the path of the geometry axes on curved contours. The lower the value and the lower the servogain factor of the geometry axes, the greater the reduction of path feed on curved contours.

Related to

MD20470 \$MC_CPREC_WITH_FFW SD42460 \$SC_MINFEED

42460	MINFEED	-	B1,K6
mm/min	Minimum path feedrate for CPRECON	DOUBLE	Immediately
-			
-	- 1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,0.000001	999999.	0/0
	.,1.,1.,1		

Description:

Minimum path feedrate with the "Contour accuracy" function active. The feedrate is not limited to below this value unless a lower F value has been programmed or the axis dynamics do not permit it.

Related to

MD20470 \$MC_CPREC_WITH_FFW SD42450 \$SC CONTPREC

42466	SMOOTH_ORI_TOL	-	B1
degrees	Maximum deviation of tool orientation during smoothing.	DOUBLE	Immediately
-			
-	- 0.05,0.05,0.05,0.05,0.0 0.000001	90.	0/0
	5,0.05,0.05		

Description:

This setting data defines the maximum tool orientation tolerance during smoothing.

The data determines the maximum permissible

angular displacement of the tool orientation.

This data only applies if an orientation tranformation is active.

Related to:

MD20480 \$MC_SMOOTHING_MODE, SD42465 \$SC_SMOOTH_CONTUR_TOL

42470	CRIT_S	PLINE_ANGLE	-	W1,PGA
degrees	Corner limit angle for compressor		DOUBLE	Immediately
-				
802d-cu3	-	36.0,36.0,36.0,36.0,36.	89.0	3/3
		0,36.0,36.0		
802d-ng2	-	36.0,36.0,36.0,36.0,36.	89.0	0/0
		0,36.0,36.0		
802d-ng3	-	36.0,36.0,36.0,36.0,36.	89.0	0/0
		0,36.0,36.0		
802d-tm1	-	36.0,36.0,36.0,36.0,36.	89.0	0/0
		0,36.0,36.0		
802d-tm2	-	36.0,36.0,36.0,36.0,36. 0.0	89.0	0/0
		0,36.0,36.0		
802d-tm3	-	36.0,36.0,36.0,36.0,36. 0.0	89.0	3/3
		0,36.0,36.0		

Description:

The setting data defines the limit angle from which the compressor COMPCAD interprets a block transition as a corner. Practical values lie between 10 and 40 degrees. Values from 0 to 89 degrees inclusive are permitted.

The angle only serves as an approximate measure for corner detection. The compressor can also classify flatter block transitions as corners and eliminate larger angles as outliers on account of plausibility considerations.

42477	COMPRESS_ORI_ROT_TOL	-	F2,PGA
degrees	Maximum deviation of tool rotation with compressor	DOUBLE	Immediately
-			
-	- 0.05,0.05,0.05,0.05,0.0 0.000001	90.	0/0
	5,0.05,0.05		

Description:

This setting data defines the maximum tolerance in the compressor for turning the tool orientation. This data defines the maximum permissible angular displacement of the tool rotation.

This data is only active if an orientation transformation is

Turning the tool orientation is only possible with 6-axis machines.

42480	STOP_CL	JTCOM_STOPRE	-	W1
-	Alarm res	ponse with tool radius compensation and p	preproc. BOOLEAN	Immediately
	stop			
-				
	-	TRUE,TRUE,TRUE,TR - UE,TRUE,TRUE,TRUE	-	3/3

Description:

If this setting data is TRUE, block execution is stopped by preprocessing stop and active tool radius compensation, and does not resume until after a user acknowledgement (START).

If it is FALSE, machining is not interrupted at such a program point.

42490	CUTCOM_G40_STOPRE	-	W1
-	Retraction behavior of tool radius compensation with prep.	BOOLEAN	Immediately
	stop		
-			
-	FALSE,FALSE,F FALSE,FALSE	-	3/3
1			

Description:

FALSE:

If there is a preprocessing stop (either programmed or generated internally by the control) before the deselection block (G40) when tool radius compensation is active, then firstly the starting point of the deselection block is approached from the last end point before the preprocessing stop. The deselection block itself is then executed, i.e. the deselection block is usually replaced by two traversing blocks. Tool radius compensation is no longer active in these blocks. The behavior is thus identical with that before the introduction of this setting data.

TRUE:

If there is a preprocessing stop (either programmed or generated internally by the control) before the deselection block (G40) when tool radius compensation is active, the end point of the deselection point is traversed in a straight line from the last end point before the preprocessing stop.

42494	CUTCOM_ACT_DEACT_CTRL	-	W1
-	Approach & retraction behavior with 2-1/2D tool radius	DWORD	Immediately
	compens.		
-			
-	- 2222,2222,2222,222,2	-	3/3
	222,2222,2222		

Description:

This setting data controls the approach and retraction behavior with tool radius compensation if the activation or deactivation block does not contain any traversing information. It is only evaluated with $2-1/2D\ TRC$

(CUT2D or CUT2DF).

The decimal coding is as follows:

The decimal	coding is as lollows:
N N N N	
direction	Approach behavior for tools with tool point
1 1 1	(turning tools)
	Approach behavior for tools without tool point
direction	
1 1	(milling tools)
1 1	Retract behavior for tools with tool point direc-
tion	
	(turning tools)
	Retract behavior for tools without tool point direc
tion	
	(milling tools)

If the position in question contains a 1, approach or retraction is always performed, even if G41/G42 or G40 stands alone in a block.

For example:

N100 x10 y0

N110 G41

N120 x20

If a tool radius of 10mm is assumed in the above example, position $\rm x10y10$ is approached in block N110.

If the position in question contains the value 2, the approach or retraction movement is only performed if at least one geometry axis is programmed in the activation/deactivation block. To obtain the same results as the above example with this setting, the program must be altered as follows:

N100 x10 y0

N110 G41 x10

N120 x20

If axis information x10 is missing in block N110, activation of TRC is delayed by one block, i.e. the activation block would now be N120

If the position in question contains a 3, retraction is not performed in a deactivation block (G40) if only the geometry axis perpendicular to the compensation plane is programmed. In this case, the motion perpendicular to the compensation plane is performed first. This is followed by the retraction motion in the compensation plane. In this case, the block after G40 must contain motion information in the compensation plane. The approach motions for values 2 and 3 are identical.

If the position in question contains a value other than 1, 2 or 3, i.e. in particular the value 0, an approach or retraction movement is not performed in a block that does not contain any traversing information.

About the term "Tools with tool point direction":

These are tools with tool numbers between 400 and 599 (turning and grinding tools), whose tool point direction has a value between 1 and 8. Turning and grinding tools with tool point direction 0 or 9 or other undefined values are treated like milling tools.

Note:

If the value of this setting data is changed within a program, we recommend programming a preprocessing stop (stopre) before the description to avoid the new value being used in program sections before that point. The opposite case is not serious, i.e. if the setting data is written, subsequent NC blocks will definitely access the new value.

42496	CUTCOM_CLSD_CONT	-	-
-	Tool radius compensation behavior with closed contour	BOOLEAN	Immediately
		•	
-	- FALSE,FALSE,F	-	3/3
	FALSE,FALSE,FALSE		

Description: FALSE:

If two intersections are created on correction of the inner side of an (almost) closed contour consisting of two successive circle blocks or a circle and a linear block, the intersection that lies on the first part contour nearer to the block end will be selected as per the default behavior.

A contour will be considered as (almost) closed if the distance between the starting point of the first block and the end point of the second block is smaller than 10% of the active compensation radius, but not larger than 1000 path increments (corresponds to 1mm to 3 decimal places).

TRUE:

Under the same condition as described above, the intersection that lies on the first part contour nearer to block start is selected.

42500	SD_MA	X_PATH_ACCEL	-	B2
m/s²	maximu	m path acceleration	DOUBLE	Immediately
-				
802d-cu3	-	10000.,10000.,10000.,11.0e-3	-	3/3
		0000.,10000		
802d-ng2	-	10000.,10000.,10000.,11.0e-3	-	1/1
		0000.,10000		
802d-ng3	-	10000.,10000.,10000.,11.0e-3	-	1/1
		0000.,10000		
802d-tm1	-	10000.,10000.,10000.,11.0e-3	-	1/1
		0000.,10000		
802d-tm2	-	10000.,10000.,10000.,11.0e-3	-	1/1
		0000.,10000		
802d-tm3	-	10000.,10000.,10000.,11.0e-3	-	3/3
		0000.,10000		

Description:

Setting data for additional limitation of (tangential) path $\operatorname{accel-eration}$

Related to ...

MD32300 \$MA_MAX_AX_ACCEL

SD42502 \$SC_IS_SD_MAX_PATH_ACCEL

42502	IS_SD_MAX_PATH_ACCEL	-	B2
-	Evaluate SD42500 SC_SD_MAX_PATH_ACCEL	BOOLEAN	Immediately
-		T	10/0
802d-cu3	- FALSE,FALSE, -	Ť.	3/3
	FALSE,FALSE,.		
802d-ng2	- FALSE,FALSE,FALSE,	-	1/1
· ·	FALSE,FALSE,FALSE		
802d-ng3		-	1/1
3.	FALSE,FALSE,FALSE		
802d-tm1	- FALSE,FALSE,FALSE, -	-	1/1
	FALSE,FALSE		
302d-tm2		-	1/1
	FALSE,FALSE,FALSE		
802d-tm3	- FALSE,FALSE,FALSE, -	-	3/3
	FALSE,FALSE,FALSE		

Description:

SD42500 \$SC_SD_MAX_PATH_ACCEL is included in the limit calculations if SD42502 \$SC_IS_SD_MAX_PATH_ACCEL=TRUE

Related to ...

SD42500 \$SC_SD_MAX_PATH_ACCEL

42510	SD_MAX_PATH_JERK	-	B2
m/s³	maximum path-related jerk as setting data	DOUBLE	Immediately
-			
802d-cu3	- 100000.,100000.,100001.e-9 0.,10000		3/3
802d-ng2	- 100000.,100000.,100001.e-9 0.,100000	-	1/1
802d-ng3	- 100000.,100000.,100001.e-9 0.,100000	-	1/1
802d-tm1	- 100000.,100000.,100001.e-9 0.,100000	-	1/1
802d-tm2	- 100000.,100000.,100001.e-9 0.,100000	-	1/1
802d-tm3	- 100000.,100000.,100001.e-9 0.,100000	-	3/3

Description:

As well as MD20600 $MC_{MAX}PATH_{JERK}$, the maximum path-related jerk can also limit the jerk.

Related to ...

MD20600 \$MC_MAX_PATH_JERK SD42512 \$SC_IS_SD_MAX_PATH_JERK

42512	IS_SD_MAX_PATH_JERK	-	B2
-	Evaluate SD42510 SD_MAX_PATH_JERK	BOOLEAN	Immediately
- 802d-cu3	 		13/3
002u-cu3	FALSE,FALSE,FALSE,F		3/3
802d-ng2	FALSE,FALSE,FALSE,	-	1/1
•	FALSE,FALSE,.		
802d-ng3	FALSE,FALSE,FALSE,	-	1/1
	FALSE,FALSE,FALSE		
802d-tm1	FALSE,FALSE,FALSE,	-	1/1
	FALSE,FALSE		
802d-tm2	- FALSE,FALSE,FALSE,	-	1/1
	FALSE,FALSE,FALSE		
802d-tm3	FALSE,FALSE,FALSE,	-	3/3
	FALSE,FALSE		

Description:

 $\tt SD42510~\$SC_SD_MAX_PATH_JERK$ is included in the limit calculations if $\tt SD42512~\$SC_IS_SD_MAX_PATH_JERK=TRUE$

Related to ...

SD42510 \$SC_SD_MAX_PATH_JERK (SD for additional limitation of (tangential) path jerk)

42520	CORNE	R_SLOWDOWN_START	-	-
mm	Start of	feed reduction at G62.	DOUBLE	Immediately
-				
802d-cu3	-	0.,0.,0.,0.,0.,0.,0.,0.	ŀ	3/3
		.,0.,0.,0		
802d-ng2	-	0.,0.,0.,0.,0.,0.,0.,0.	-	1/1
		.,0.,0.,0		
802d-ng3	-	0.,0.,0.,0.,0.,0.,0.,0.	-	1/1
		.,0.,0.,0		
802d-tm1	-	0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
		.,0.,0.,0		
802d-tm2	-	0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
		.,0.,0.,0		
802d-tm3	-	0.,0.,0.,0.,0.,0.,0.,0.,0-	-	3/3
		000		

Description:

Traverse path distance from which the feed is reduced before the corner with G62.

42522	CORNER_SLOWDOWN_END	-	-
mm	End of feed reduction at G62.	DOUBLE	Immediately
802d-cu3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	3/3
	.,0.,0.,0		
802d-ng2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
802d-ng3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
802d-tm1	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
802d-tm2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
802d-tm3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	3/3
i	00		

Description:

Traverse path distance up to which the feed remains reduced after a corner with $\mathsf{G62}$.

42524	CORNER_SLOWDOWN_OVR	-	-
%	Feed override reduction at G62	DOUBLE	Immediately
-			
802d-cu3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	ŀ	3/3
	.,0.,0.,0		
802d-ng2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
802d-ng3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
802d-tm1	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
802d-tm2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
802d-tm3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	3/3
	.,0.,0.,0		

Description: Override used to multiply the feed at the corner with G62.

42526	CORNER_SLOWDOWN_CRIT	-	-
degrees	Corner detection at G62	DOUBLE	Immediately
-			
802d-cu3	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	3/3
	.,0.,0.,0		
302d-ng2	- 0.,0.,0.,0.,0.,0.,0.,0.,0-	-	1/1
	.,0.,0.,0		
302d-ng3	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	-	1/1
	.,0.,0.,0		
302d-tm1	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	-	1/1
	.,0.,0.,0		
302d-tm2	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	-	1/1
	.,0.,0.,0		
302d-tm3	- 0.,0.,0.,0.,0.,0.,0.,0.	-	3/3
	.,0.,0.,0		

Description:

Angle from which a corner is taken into account when reducing the feed with $\ensuremath{\text{G62}}$.

For example SD42526 $SC_CORNER_SLOWDOWN_CRIT = 90$ means that all corners of 90 degrees or a more acute angle are traversed slower with G62.

42528	CUTCOM_DECEL_LIMIT	-	-
	Feed lowering on circles with tool radius compensation	DOUBLE	Immediately
802d-cu3	- 0.,0.,0.,0.,0.,0.,0.,0.,0.00.	1.	3/3
	.,0.,0.,0		
802d-ng2	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	1.	1/1
	.,0.,0.,0		
802d-ng3	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	1.	1/1
	.,0.,0.,0		
802d-tm1	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	1.	1/1
	.,0.,0.,0		
802d-tm2	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	1.	1/1
	.,0.,0.,0		
802d-tm3	- 0.,0.,0.,0.,0.,0.,0.,0.,0.	1.	3/3
	.,0.,0.,0		

Description:

The setting data limits feed lowering of the tool center point on concave circle segments with tool radius compensation active and CFC or CFIN selected.

With CFC, the feed is defined at the contour. On concave circular arcs, feed lowering of the tool center point is created by the ratio of the contour curvature to the tool center point path curvature. The setting data is limiting this effect, reducing backing off and overheating of the tool.

For contours with varying curvatures, a mid-range curvature is used.

0: Provides the previous behavior: If the ratio between contour radius and tool center point path radius is less than or equal to 0.01 the feed is applied to the tool center point path. Less pronounced feed reductions are executed.

>0: Feed lowering is limited to the programmed factor. At 0.01, this means that the feed of the tool center point path is possibly only 1 percent of the programmed feed value.

1: On concave contours, the tool center point feed equals the programmed feed (the behavior then corresponds to CFTCP).

42600	JOG_FEED_PER_REV_SOURCE		-	V1
-	Control revolutional feedrate in JO	G	DWORD	Immediately
-	_	_	_	
-	- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	,0,0,0-3	31	1/1

Description:

The revolutional feedrate in JOG mode for geometry axes on which a frame with rotation acts.

0= No revolutional feedrate is active.

>0= Machine axis index of the rotary axis/spindle from which the revolutional feedrate is derived.

-1= The revolutional feedrate is derived from the master spindle of the channel in which the axis/spindle is active.

-2= The revolutional feedrate is derived from the axis with machine axis index == 0.

 $^{-3=}$ The revolutional feedrate is derived from the master spindle of the channel in which the axis/spindle is active. No revolutional feedrate is active if the master spindle is at a standstill.

Related to

SD43300: \$SA_ASSIGN_FEED_PER_REV_SOURCE (revolutional feedrate
for position axes/spindles)

42660	ORI_JOG_MODE	-	-
-	Definition of virtual kinematics for JOG	DWORD	Immediately
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0	5	0/0
	,0,0,0		

Description:

This SD can be used to define virtual kinematics, which become active for the manual travel of orientations.

This setting data is evaluated only by the generic 5/6-axis transformation. This data has no meaning for OEM transformations.

The following setting options are available:

- 0: The virtual kinematics are defined by the transformation.
- 1: Euler angles are traversed during jog, that is the 1st axis turns round the Z direction, the 2nd axis turns around the X direction and, if present, the 3rd axis turns aound the new Z direction.
- 2: RPY angles are traversed during jog with the turning sequence XYZ, that is the 1st axis turns around the x direction, the 2nd axis turns around the Y direction and, if present, the 3rd axis turns around the new Z direction.
- 3: RPY angles are traversed during jog with the turning sequence ZYX, that is the 1st axis turns around the Z direction, the 2nd axis turns around the Y direction and, if present, the 3rd axis turns around the new X direction.
- 4: The turning sequence of the rotary axes is set by means of MD21120 \mbox{MC} ORIAX TURN TAB 1.
- 5: The turning sequence of the rotary axes is set by means of MD21130 MC ORIAX TURN TAB 2.

42690	JOG_CIRCLE_CENTRE	-	-
mm	Center of the circle	DOUBLE	Immediately
-			
-	3 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		7/7

Description:

This setting data is used to define the circle center point in the workpiece coordinate system during JOG of circles.

Only the relevant center point coordinates of the geometry axes in the active plane are evaluated, not the coordinate of the geometry axis vertical to the plane. This setting data is written via the user interface.

By default the coordinate of an axis with diameter programming is in the diameter. This can be changed with MD20360 \pm TOOL PARAMETER DEF MASK Bit 13 = 1 by indicating a radius.

42691	JOG_CIRCLE_RADIUS	-	-
mm	Circle radius	DOUBLE	Immediately
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0		7/7

Description:

With this setting data, the circle radius in the WCS, the maximum circle during inner machining or the minimum circle during outer machining are defined when jogging circles. This setting data is written via the user interface.

42692	JOG_CIRCLE_MODE	-	-
-	JOG of circles mode	DWORD	Immediately
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0	0xf	7/7
	,0,0,0		

Description:

This setting data sets the following during JOG of circles:

Bit 0 = 0:

Travel to + creates traversing on a circular path in counterclockwise direction; travel to - creates traversing in clockwise direction.

Bit. 0 = 1:

Travel to + creates traversing on a circular path in clockwise direction; travel to - creates traversing in counterclockwise direction.

Bit 1 = 0:

The tool radius is not taken into account in checking the limitation produced by the specified circle or by the circle segment limited by the start and end angles.

Bit 1 = 1:

The tool radius is taken into account in checking the limitation produced by the specified circle or by the circle segment limited by the start and end angles.

Bit 2 = 0

Internal machining is performed. The circle radius in SD42691 \$SC JOG CIRCLE RADIUS is the maximum possible radius.

Bit 2 = 1:

External machining is performed. The circle radius in SD42691 $SC_JOG_CIRCLE_RADIUS$ is the minimum possible radius.

Bit 3 = 0:

Given a full circle, the radius is enlarged starting from the circle center point in the direction of the ordinate (2nd geometry axis) of the plane.

Bit 3 = 1:

Given a full circle, the radius is enlarged starting from the circle center point in the direction of the abscissa (1st geometry axis) of the plane.

This setting data should be written via the user interface.

42693	JOG_CIRCLE_START_ANGLE	-	-
degrees	Circle start angle	DOUBLE	Immediately
-			
_	- 0,0,0,0,0,0,0,0,0,0,0,0 10,0,0	360	7/7

Description:

This setting data defines the start angle during JOG of circles. The start angle refers to the abscissa of the current plane. Traversing is only possible within the range

between the start and the end angle. SD42692 \$SC_JOG_CIRCLE_MODE bit 0 defines the direction from the start to the end angle. If start and end angle equal zero, no limitation is active.

This setting data is written via the user interface.

42694	JOG_CIRCLE_END_ANGLE	-	-
degrees	Circle end angle	DOUBLE	Immediately
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0	360	7/7
	0,0,0		

Description:

This setting data defines the end angle during JOG of circles. The end angle refers to the abscissa of the current plane. Traversing is only possible within the range

between the start and the end angle. SD42692 \$SC_JOG_CIRCLE_MODE bit 0 defines the direction from the start to the end angle. If start and end angle equal zero, no limitation is active. This setting data is written via the user interface.

42750	ABSBLOCK_ENABLE	-	K1
-	Enable base block display	BOOLEAN	Immediately
-		•	•
-	TRUE,TRUE,TRUE,TR - UE,TRUE,TRUE,TRUE	-	1/1

Description:

Value 0: Disable block display with absolute values (basic block display)

Value 1: Enable block display with absolute values (basic block display)

42900	MIRROR_TOOL_LENGTH	-	W1
-	Sign change of tool length with mirror image machining	BOOLEAN	Immediately
-			
-	FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE	-	0/0

Description: TRUE:

If a frame with mirror image machining is active, the tool components

(\$TC_DP3[..., ...] to \$TC_DP5[..., ...]) and the components of the base dimensions

($TC_DP21[..., ...]$ to $TC_DP23[..., ...]$) whose associated axes are mirrored, are also mirrored, i.e. their sign is inverted. The wear values

are not mirrored. If the wear values are to be mirrored too, ${\tt SD42910}$ \$SC MIRROR TOOL WEAR must be set.

FALSE:

The sign for tool length components is unaffected by whether a frame with mirror image machining is active.

42910	MIRROR_TOOL_WEAR	-	W1
-	Sign change of tool wear with mirror image machining	BOOLEAN	Immediately
-			
-	- FALSE,FALSE,FALSE, I FALSE,FALSE,FALSE	-	0/0

Description: TRUE:

If a frame with mirror image machining is activated, the signs of the wear values of the components in question are inverted. The wear values of the components that are not assigned to mirrored axes remain unchanged.

FALSE:

The signs for wear values are unaffected by whether a frame with mirror image machining is active.

42920	WEAR_SIGN_CUTPOS	-	W1
-	Sign of tool wear depending on tool point direction	BOOLEAN	Immediately
-		•	•
-	- FALSE,FALSE,FALSE,- FALSE,FALSE,FALSE		0/0

Description: TRUE:

In the case of tools with a relevant tool point direction (turning and grinding tools), the sign for wear of the tool length components depends on the tool point direction.

The sign is inverted in the following cases (marked with an X):

Tool	point	direction	Length	1	Length	2
1						
2				X		
3				X		X
4						Χ
5						
6						
7				X		
8						X
9						

The sign for wear value of length ${\bf 3}$ is not influenced by this setting data.

The SD42930 \$SC_WEAR_SIGN acts in addition to this setting data. FALSE:

The sign for wear of the tool length components is unaffected by the tool point direction.

42930	WEAR_SIGN	-	W1
-	Sign of wear	BOOLEAN	Immediately
-			
	- FALSE,FALSE, - FALSE,FALSE,FALSE	-	0/0

Description:

TRUE:

The sign for wear of the tool length components and the tool radius are inverted, i.e. if a positive value in entered, the total dimension is decreased.

FALSE:

The sign for wear of the tool length components and the tool radius is not inverted.

42935	WEAR_TRANSFORM		-	W1,W4
-	Transformations for tool components		DWORD	Immediately
-				
-	- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	,		0/0

Description:

This setting data is bit-coded.

It determines which of the three wear components

wear

(\$TC_DP12 - \$TC_DP14),

additive offsets fine (\$TC_SCPx3 - \$TC_SCPx5),

and additive offsets coarse (\$TC_ECPx3 - \$TC_ECPx5)

are subject to adapter transformation and transformation by an orientable tool holder, if one of the two G codes TOWMCS or TOWWCS from G code group 56 is active. If initial-setting G code TOWSTD is active, this setting data will not become active.

Then, the following assignment is valid:

Bit 0 = TRUE: Do not apply transformations to \$TC DP12 - \$TC DP14.

Bit 1 = TRUE: Do not apply transformations to TC_SCPx3 - TC_SCPx5 .

Bit 2 = TRUE: Do not apply transformations to TC_ECPx3 - CCPx5.

The bits not mentioned here are (currently) not assigned.

42940	TOOL_LENGTH_CONST	-	W1
-	Change of tool length components with change of active	DWORD	Immediately
	plane		
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	-	3/3

Description:

If this setting data is not equal to 0, the assignment of tool length components (length, wear, base dimensions) to geometry axes is not changed when the machining plane (G17 - G19) is changed. The assignment of tool length components to geometry axes can be derived from the value of the setting data acc. to the following tables.

A distinction is made between turning and grinding tools (tool types 400 to 599) and other tools (typically milling tools) in the assignment.

Representation of this information in tables assumes that geometry axes 1 to 3 are called X, Y and Z. For assignment of an offset to an axis, not the axis identifier but the axis sequence is relevant.

Assignment for turning tools and grinding tools (tool types 400 to 599):

Content	Length 1	Length 2	Length	3
17	Y	X		Z
18*	X	Z		Υ
19	Z	Y		Χ
-17	X	Y		Z
-18	Z	X		Υ
-19	Y	Z		Χ

* Any value which is not 0 and is not one of the six values listed, is treated as value 18.

For values that are the same but with a different sign, assignment of length 3 is always the same, lengths 1 and 2 are reversed. Assignment for all tools which are neither turning nor grinding tools (tool types < 400 or > 599):

Content	Length 1	Length 2	Length 3
17*	Z	Y	X
18	Y	X	Z
19	X	Z	Y
-17	Z	X	Y
-18	Y	Z	X
-19	X	Y	Z

 * Any value which is not 0 and is not one of the six values listed, is treated as value 17.

For values that are the same but with a different sign, assignment of length 1 is always the same, lengths 2 and 3 are reversed.

42950	TOOL_LENGTH_TYPE	-	W1
-	Assignment of tool length compensation independent	dent of tool DWORD	Immediately
	type		
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0,0	-	3/3
	.0.0.0		

Description:

This setting data defines the assignment of the tool length components to the geometry axes independently of the tool type. It can assume any value between 0 and 2. Any other value is interpreted as 0.

Value

- 0: Standard assignment. A distinction is made between turning and grinding tools (tool types 400 to 599) and other tools (milling tools).
- 1: The assignment of the tool length components is independent of the actual tool type, always as for milling tools.
- 2. The assignment of the tool length components is independent of the actual tool type, always as for turning tools.

The setting data also affects the wear values assigned to the length components.

If SD42940 $SC_{TOOL}_{LENGTH}_{CONST}$ is set, the tables defined there access the table for milling and turning tools defined by SD42950 $SC_{TOOL}_{LENGTH}_{TYPE}$ irrespective of the actual tool type, if the value of the table is not equal to 0.

42960	TOOL_TEMP_COMP	-	W1
-	Temperature compensation for tool	DOUBLE	Immediately
-			
-	3 0.0, 0.0, 0.0,0.0, 0.0, - 0.0	-	0/0

Description:

Temperature compensation value for the tool. The compensation value acts as vector according to the current rotation of the tool direction.

This setting data will only be evaluated, if temperature compensation has been activated for tools with MD20390 $\,$ SMC TOOL TEMP COMP ON.

Apart from that, the temperature compensation type must be set in bit 2 for the "Compensation in tool direction" MD32750 $MA_TEP_COMP_TYPE$.

The "Temperature compensation" is an option that has to be previously enabled.

42974	TOCARR_FINE_CORRECTION	C08	-
-	Fine offset TCARR ON / OFF	BOOLEAN	Immediately
		•	
-	- FALSE,FALSE,FALSE, I- FALSE,FALSE,FALSE	-	0/0
	<u>.</u>		

Description: TRUE

On activating an orientable tool holder, the fine offset values are considered.

FALSE:

On activating an orientable tool holder, the fine offset are not considered.

42980	TOFRAME_MODE	-	K2
-	Frame definition at TOFRAME, TOROT and PAROT	DWORD	Immediately
-			
-	- 1000,1000,1000,1000,1	-	0/0
	000,1000,1000		

Description:

This setting data defines the direction of the X or Y axis in the case of frame definition by means of TOFRAME, TOROT or PAROT.

In the case of these frame definitions, the Z direction is uniquely defined, the rotation around the Z axis is free at first. This free rotation can be defined by this setting data so that the newly defined frame deviates as little as possible from a previously active frame. In all cases in which the setting data is not zero, an active frame remains unchanged if the Z directions of the old and the new frame are the same.

- 0: The orientation of the coordinate system is determined by the value of the machine data MD21110 $MC_XAXIS_IN_OLD_X_Z_PLANE$.
- 1: The new X direction is selected so that it lies in the X-Z plane of the old coordinate system. The angular difference between the old and new Y axes is minimal with this setting.
- 2: The new Y direction is selected so that it lies in the Y-Z plane of the old coordinate system. The angular difference between the old and new X axes is minimal with this setting.
- 3: The average of the two settings resulting from $1\ \mathrm{and}\ 2$ is selected.

Addition of 100:

In the case of a plane change from G17 to G18 or G19, a tool matrix is generated, in which the new axis directions are parallel to the old directions. The axes are correspondingly swapped cyclically (standard transformation with plane changes). If the hundreds digit equals zero, a matrix is supplied in the cases of G18 and G19 which is derived from the unit matrix by simply rotating through 90 degrees around the X axis (G18) or through 90 degrees around the Y axis (G19). Thus in each case one axis is antiparallel to an initial axis. This setting is required to remain compatible with old software versions.

Addition of 1000:

The tool-frame is linked to any active basic frames and settable frames. The response is thus compatible with earlier software versions (before 5.3). If the thousands digit is not set, the tool frame is calculated so that any active basic frames and settable frames are taken into account.

Addition of 2000:

The tool frame is still correctly formed if the frames in the frame chain after the TOOLFRAME contain any values (rotations and translations). This mode is only possible if the system frame for the tool frame is present. MD21110 \$MC_X_AXIS_IN_OLD_X_Z_PLANE is no longer evaluated. All values in the units digit of this setting data that are not equal to 1 or 2 are handled as if the value was three. In particular, the behavior with 2000 is identical to that with 2003. TOFRAME sets the zero point of the workpiece coordinate system to the current position.

42984	CUTDIRMOD		C08	-
-	Modification of \$P_A	D[2] or \$P_AD[11]	STRING	Immediately
-				
802d-cu3	-	-	-	1/1
802d-ng2	-	-	-	0/0
302d-ng3	-	-	-	0/0
802d-tm1	-	-	-	0/0
302d-tm2	-	-	-	0/0
802d-tm3	-	-	-	1/1

Description:

States whether the tool point direction and cutting direction are to be modified on reading the corresponding system variables PAD[2] and PAD[11].

Modification is made by rotating the vector of the tool point direction or cutting direction by a specific angle in the active machining plane (G17-G19). The resulting output value is always the tool point direction or cutting direction created by the rotation or to which the rotated value is closest. the angle of rotation can be defined by one of the following six options:

- 1: The string is empty. The stated data are output unchanged.
- 2: The contents of the string is "P_TOTFRAME". The resulting rotation is determined from the total frame.
- 3: The contents of the string is a valid frame name (e.g. $P_NCBFRAME[3]$). The resulting rotation is then calculated from this frame.
- 4: The contents of the string has the form "Frame1 : Frame2". The resulting rotation is determined from the part frame chain that is created by chaining all frames from Frame1 to Frame2 (in each case inclusive). Frame1 and Frame2 are valid frame names such as P_{FRAME} or P_{FRAME} or P_{FRAME}
- 5: The contents of the frame is the valid name of a rotary axis (machine axis). The resulting rotation is determined from the programmed end position of this rotary axis. Additionally, an offset can be stated (in degrees, e.g. "A+90).
- 6: The rotation is programmed explicitly (in degrees). Optionally, the first character of the string can be written as sign (+ or -). A plus sign will not have any effect on the angle calculation, but a minus sign will invert the sign of the calculated angle.

42990	MAX_BLOCKS_IN_IPOBUFFER	-	K1
-	maximum number of blocks in IPO buffer	DWORD	Immediately
802d-cu3		-	2/2
	1,-1,-1,-1		
802d-ng2		ŀ	1/1
	1,-1,-1,-1		
802d-ng3	1,-1,-1,-1,-1,-1,-	-	2/2
	1,-1,-1,-1		
802d-tm1		ŀ	1/1
	1,-1,-1,-1		
802d-tm2	1,-1,-1,-1,-1,-1,-	-	1/1
	1,-1,-1,-1		
802d-tm3	1,-1,-1,-1,-1,-1,-	-	2/2
	1,-1,-1,-1		

Description:

This setting data can be used to limit the maximum number of blocks in the interpolation buffer to the maximum number specified in MD28060 $MC_MM_IPO_BUFFER_SIZE$.

A negative value means that no limitation of the number of blocks is active in the interpolation buffer, and the number of blocks is determined solely by MD28060 $MC_MM_IPO_BUFFER_SIZE$ (default setting).

42995	CONE_ANGLE	-	-
-	Taper angle	DOUBLE	Immediately
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	90	7/7

Description:

This setting data writes the taper angle for taper turning. This setting data is written via the operator interface.

42996	JOG_GEOAX_MODE_MASK	-	-
-	JOG of geometry axis mode	DWORD	Immediately
-			
-	- 0,0,0,0,0,0,0,0,0,0,0,0,0 0,0,0	0x7	7/7

Description:

This setting data sets the following during JOG of geometry axes: Bit 0 = 1:

A traversing request for the 1st geometry axis is inverted, i.e.

a traversing request to + triggers a traversing motion to - .

Bit 1 = 1 :

A traversing request for the 2nd geometry axis is inverted, i.e.

a traversing request to + triggers a traversing motion to -.

Bit 2 = 1:

A traversing request for the 3rd geometry axis is inverted, i.e.

a traversing request to + triggers a traversing motion to -.

3.1.3 Axis specific setting data

43120	DEFAUL	DEFAULT_SCALE_FACTOR_AXIS		-	FBFA
-	Axial def	fault scaling factor with G51 active		DWORD	Immediately
-					
802d-cu3	-	1	-	-	7/7
802d-ng2	-	1	-	-	0/0
802d-ng3	-	1	-	-	0/0
802d-tm1	-	1	-	-	7/7
802d-tm2	-	1	-	-	7/7
802d-tm3	-	1	-	-	7/7

Description:

If no axial scaling factor I, J, or K is programmed in the G51 block, SD43120 $SA_DEFAULT_SCALE_FACTOR_AXIS$ is active. The scaling factor is only active if MD22914 $MC_AXES_SCALE_ENABLE$ is set. Related to:

MD22914 \$MC_AXES_SCALE_ENABLE,
MD22910 \$MC WEIGHTING FACTOR FOR SCALE

43200	SPIND_S	SPIND_S -		
rev/min	Speed for spindle start by VDI	Speed for spindle start by VDI		
-				
-	- 0.0	-	ŀ	7/7

Description:

Spindle speed at spindle start by NC/PLC interface signals V380x 5006.1 (Spindle start clockwise rotation) and V380x 5006.2 (Spindle start counterclockwise rotation).

Example: $$SA_SPIND_S[S1] = 600$

Spindle 1 is started at a speed of 600 rpm upon detection of the positive edge of one of the above-mentioned VDI starting signals. Speed programming values are entered in the SD by setting bit 4=1 in MD35035 $MA_SPIND_FUNCTION_MASK$.

The SD becomes active in JOG mode as a default speed by setting bit 5=1 in MD35035 \$MA_SPIND_FUNCTION_MASK (exception: the value is zero).

Related to:

MD35035 \$MA_SPIND_FUNCTION_MASK
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43202	SPIND_CONSTCUT_S		-	S1
m/min	Const cut speed for spindle start by VDI		DOUBLE	Immediately
-				
-	- 0.0	-	-	7/7

Description:

Definition of the constant cutting speed for the master spindle. The setting data is evaluated at spindle start by the NC/PLC interface signals V380x 5006.1 (Spindle start clockwise rotation) and V380x 5006.2 (Spindle start counterclockwise rotation).

Cutting speed programming values are entered in the SD by setting bit 8=1 in MD35035 \$MA SPIND FUNCTION MASK.

Related to:

MD35035 \$MA_SPIND_FUNCTION_MASK
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43206	SPIND_SPEED_TYPE	A06	-
-	Spindle speed type for spindle start through VDI	DWORD	Immediately
-			
-	- 94 93	972	7/7

Description:

Definition of the spindle speed type for the master spindle.

The range of values and the functionality correspond to the 15th G group "feed type".

Permissible values are the G values: 93, 94, 95, 96, 961, 97, and 971.

The stated values make a functional distinction between the following variants:

==> 93, 94, 95, 97 and 971: The spindle is started at the speed in SD 43200 \$SA SPIND S.

==> 96 and 961: The speed of the spindle is derived from the cutting speed of SD 43202 $SA_SPIND_CONSTCUT_S$ and the radius of the transverse axis.

The default value is 94 (corresponds to G94).

The default value becomes active if the SD is written with impermissible values.

43210	SPIND_MIN_VELO_G25		-	S1
rev/min	Programmed spindle speed limitation G25		DOUBLE	Immediately
-				
-	- 0.0 -	•		7/7

Description:

A minimum spindle speed limit below which the spindle must not fall is entered in SPIND_MIN_VELO_G25. The NCK limits the set spindle speed to this value if it is too low.

The spindle speed may only fall below the minimum as a result of:

- Spindle offset 0%
- M5
- S0
- NC/PLC interface signal V380x 0004.3 (Spindle stop)
- NC/PLC interface signal V380x 0002.1 (Servo enable)
- NC/PLC interface signal V3300 0003.7 (Channel status: Reset)
- NC/PLC interface signal V380x 0002.2 (Delete distance-to-go/Spindle reset)
- NC/PLC interface signal V380x 2002.5 (Oscillation speed)
- Cancel S value

Related to:

MD10709 \$MN_PROG_SD_POWERON_INIT_TAB MD10710 \$MN PROG SD RESET SAVE TAB

43220	SPIND_MAX_VELO_G26	-	S1
rev/min	Programmable upper spindle speed limitation G26	DOUBLE	Immediately
-			
_	- 1000.0	-	7/7

Description:

A maximum spindle speed is entered in SD43220 \$SA_SPIND_MAX_VELO_G26, which the spindle must not exceed. The NCK limits an excessive spindle speed setpoint to this value.

SD irrelevant for \dots

all spindle modes except open-loop control mode.

Special cases, errors,

The value in SD43210 $SA_SPIND_MIN_VELO_G26$ can be altered by means of:

- ullet G26 S.... in the part program
- Operator commands via HMI

The value in SD43210 \$SA_SPIND_MIN_VELO_G26 is retained after a reset or Power Off.

Related to

SD43210 \$SA_SPIND_MIN_VELO_G25 (programmed spindle speed limit
G25)

 $\mathtt{SD43230}~\$\mathtt{SA_SPIND_MAX_VELO_LIMS}$ (programmed spindle speed limit $\mathtt{G96/961})$

MD10709 \$MN_PROG_SD_POWERON_INIT_TAB MD10710 \$MN PROG SD RESET SAVE TAB

43230	SPIND_I	SPIND_MAX_VELO_LIMS -			S1,Z1
rev/min	Spindle s	Spindle speed limitation with G96			Immediately
-					
_	-	100.0	-	-	7/7

Description:

At a constant cutting rate (G96 and G97), an extra limitation entered in SPIND_MAX_VELO_LIMS is operative in addition to the continually applied limits. Furthermore, this can be described in SPIND_MAX_VELO_LIMS in the part program with LIMS=....

MD 10710 $MN_PROG_D_RESET_SAVE_TAB$ can be set so that the value written by the part program is transferred into the active file system on reset (that is the value is retained after reset).

Related to

 ${\tt SD43210~\$SA_SPIND_MIN_VELO_G25}$ (programmed spindle speed limit G25)

 ${\tt SD43230~\$SA_SPIND_MAX_VELO_LIMS}$ (programmed spindle speed limit with G96/961)

MD10709 \$MN_PROG_SD_POWERON_INIT_TAB MD10710 \$MN_PROG_SD_RESET SAVE TAB

43240	M19_SPOS		-, A12	S1
degrees	Spindle position for spindle positioning w	ith M19.	DOUBLE	Immediately
-				
-	- 0.0 -	10000000.0	10000000.0	7/7

Description:

Spindle position in [DEGREES] for spindle positioning with M19. The position approach mode is defined in $SA_M19_SPOSMODE$. Default positions must lie in the range 0 <= pos < MD30330 \$MA MODULO RANGE.

Path defaults (SD43250 $SA_{19}SPOSMODE = 2$) can be positive or negative and are only limited by the input format.

43250	M19_SP	OSMODE		-, A12	S1
-	Spindle _l M19.	Spindle position approach mode for spindle positioning with M19.		ing with DWORD	Immediately
-					
-	-	0	0	5	7/7

Description:

Spindle position approach mode for spindle positioning with M19.

In which signify:

- 0: DC (default) approach position on the shortest path.
- 1: AC approach position normally.
- 2: IC $\,\,$ approach incrementally (as path), sign gives the traversing direction
- 3: DC approach position on the shortest path.
- 4: ACP approach position from the positive direction.
- 5: ACN approach position from the negative direction.

43300	ASSIGN_FEED_PER_REV_SOURCE	-	V1,P2,S1
-	Revolutional feedrate for positioning axes/spindles	DWORD	Immediately
CTEQ		·	•
-	- 0 -3	31	1/1

Description:

- 0= No revolutional feedrate is active.
- >0= Machine axis index of the rotary axis/spindle, from which the revolutional feedrate is derived.
- -1= The revolutional feedrate is derived from the master spindle of the channel in which the axis/spindle is active
- -2= The revolutional feedrate is derived from the axis with machine axis index == 0 or the axis with an index in MD10002 \$MN_AXCONF_LOGIC_MACHAX_TAB == 0.
- $^{-3}$ = The revolutional feedrate is derived from the master spindle of the channel in which the axis/spindle is active. No revolutional feedrate is active if the master spindle is at a standstill.

Related to

 $\tt SD42600~\$SC_JOG_FEED_PER_REV_SOURCE$ (revolutional feedrate for geometry axes on which a frame with rotation acts in JOG mode.)

MD10709 \$MN_PROG_SD_POWERON_INIT_TAB MD10710 \$MN PROG SD RESET SAVE TAB

43320	JOG_POSITION		-	-
mm, degrees	JOG position		DOUBLE	Immediately
-				
-	- 0.0	-	-	7/7

Description:

Position to be approached in JOG. Depending on MD10735 \$MN_JOG_MODE_MASK bit 4 axial frames and, with an axis configured as geometry axis, the tool length offset are considered.

43340	EXTERN_REF_POSITION_G30_1		-, A12	FBFA
-	Reference point position for G30.1		DOUBLE	Immediately
-				
-	- 0.0	-	-	7/7

Description:

Reference point position for G30.1.

This setting data will be evaluated in CYCLE328.

43400	WORKAREA_PLUS_ENABLE	-	A3
-	Working area limitation active in positive direction	BOOLEAN	Immediately
CTEQ		<u>.</u>	
-	- FALSE -	-	7/7

Description:

- 1: The working area limitation of the axis concerned is active in the positive direction.
- 0: The working area limitation of the axis concerned is switched off in the positive direction.

The setting data is parameterized via the operator panel in the operating area "Parameters" by activating/deactivating the working area limitation.

SD irrelevant for

G code: WALIMOF

43410	WORKAREA_MINUS_ENABLE	-	A3
-	Working area limitation active in the negative direction	BOOLEAN	Immediately
CTEQ			
-	- FALSE -	-	7/7

Description:

- 1: The working area limitation of the axis concerned is active in the negative direction.
- 0: The working area limitation of the axis concerned is switched off in the negative direction.

The setting data is parameterized via the operator panel in the operating area "Parameters" by activating/deactivating the working area limitation.

SD irrelevant for

G code: WALIMOF

43420	WORKAREA_LIMIT_PLUS		-	A3
mm, degrees	Working area limitation plus		DOUBLE	Immediately
-				
-	- 1.0e+8	-	-	7/7

Description:

The working area defined in machine (MCS) in the positive direction of the axis concerned can be limited with axial working area limitation.

The setting data can be changed on the operator panel in the operating area "Parameters".

The positive working area limitation can be changed in the program with ${\sf G26}$.

SD irrelevant for

G code: WALIMOF
Related to

SD43400 \$SA WORKAREA PLUS ENABLE

MD10709 \$MN PROG SD POWERON INIT TAB

MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43430	WORKAREA_LIMIT_MINUS		-	A3
mm, degrees	Working area limitation minus		DOUBLE	Immediately
-				
-	1.0e+8	-	-	7/7

Description:

The working area defined in machine (MCS) in the negative direction of the axis concerned can be limited with axial working area limitation.

The setting data can be changed on the operator panel in the operating area "Parameters".

The negative working area limitation can be changed in the program with $\ensuremath{\mathsf{G25}}$.

SD irrelevant for

G code: WALIMOF

Related to

SD43410 \$SA_WORKAREA_MINUS_ENABLE
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43500	FIXED_STOP_SWITCH		-	F1	
-	Selection	Selection of travel to fixed stop		BYTE	Immediately
-					<u> </u>
802d-cu3	-	0	0	1	2/2
802d-ng2	-	0	0	1	2/2
802d-ng3	-	0	0	1	2/2
802d-tm1	-	0	0	1	0/0
802d-tm2	-	0	0	1	2/2
802d-tm3	-	0	0	1	2/2

Description:

The "Travel to fixed stop" function can be selected and deselected with this setting data.

SD=0 Deselect "Travel to fixed stop"

SD=1 Select "Travel to fixed stop"

The setting date can be overwritten by the part program using the command FXS[x]=1/0.

43510	FIXED_S	FIXED_STOP_TORQUE		-	F1
%	Fixed st	Fixed stop clamping torque		DOUBLE	Immediately
-					
802d-cu3	-	5.0	0.0	800.0	2/2
802d-ng2	-	5.0	0.0	800.0	1/1
802d-ng3	-	5.0	0.0	800.0	1/1
802d-tm1	-	5.0	0.0	800.0	0/0
802d-tm2	-	5.0	0.0	800.0	2/2
802d-tm3	-	5.0	0.0	800.0	2/2

Description:

The clamping torque is entered in this setting data as a % of the maximum motor torque (corresponds to % of max. current value with FDD).

Please note that a clamping torque greater than 100% may only be present for a short time, otherwise the motor will be damaged. When selecting the function "Travel to fixed stop" through programming FXS[.], the default setting of the MD37010 \$MA_FIXED_STOP_TORQUE_DEF applies until it is programmed with FXST[.].

The FXST[x] command effects a block-synchronous change to this setting data. It can also be changed by the user or via the PLC.

The SD is already operative as the stop is approached.

The fixed stop is considered reached if under MD37060 $MA_FIXED_STOP_ACKN_MASK$,

Bit 1 = 0: (no acknowledgement required) the NC/PLC interface signal V390x 0002.5 (fixed stop reached) is set by the NC.

Bit 1 = 1: (acknowledgement required) the NC/PLC interface signal V390x 0002.5 (fixed stop reached) is set by the NC and is acknowledged with the NC/PLC interface signal V380x 0001.1 (acknowledge fixed stop reached).

Related to

MD37010 $\texttt{$MA_FIXED_STOP_TORQUE_DEF}(\texttt{default}$ setting for clamping torque)

43520	FIXED_STOP_WINDOW	FIXED_STOP_WINDOW -		F1
mm, degrees	Fixed stop monitoring windov	Fixed stop monitoring window		Immediately
-				
_	- 1.0	-	ŀ	0/0

Description:

The fixed stop monitoring window is entered in this setting data. The setting data is active only if the fixed stop has been reached.

The fixed stop is considered reached when,

- with MD37060 \$MA_FIXED_STOP_ACKN_MASK, bit 1 = 0 (no acknowl-edgment required) interface signal (Festanschlag erreicht) von der NC gesetzt wird
- with MD37060 \$MA_FIXED_STOP_ACKN_MASK, bit 1 = 1 (acknowledgment required) interface signal (Festanschlag erreicht) von der NC gesetzt wird und mit dem Nahtstellensignal (Festanschlag erreicht quittieren) quittiert wird

If the position at which the fixed stop was detected leaves the tolerance band by more than the amount specified in SD43520 \$SA_FIXED_STOP_WINDOW, then alarm 20093 "Fixed stop monitoring has responded" is output and the "FXS" function is deselected.

The status of the setting data is indicated on the operator panel in the "Parameters" area.

The ${\tt FXSW[x]}$ command effects a block-synchronous change to this setting data. It can also be changed by the user or via the PLC.

The value is otherwise transferred from MD37020 $MA_FIXED_STOP_WINDOW_DEF$ to the setting data when "Travel to fixed stop" is active.

Related to

MD37020 \$MA_FIXED_STOP_WINDOW_DEF (default setting for fixed stop monitoring window)

43600	POBRAKE_BLOCK_EXCHANGE		A06, A10	K1
%	Block change criterion 'braking ramp'		DOUBLE	Immediately
-				
-	- 0.0	0	100.0	1/1

Description:

Specifies the application time at single axis interpolation for the block change criterion braking ramp: At 100%, the block change criterion is fulfilled at the time of application of the braking ramp. At 0%, the block change criterion is identical with IPOENDA. Note:

MD10710 \$MN_PROG_SD_RESET_SAVE_TAB can be set so that the value written by the part program is transferred into the active file system on reset (i.e. the value is retained even after reset).

43610	ADISPOSA_VALUE	A06, A10	P2
mm, degrees	Tolerance window 'braking ramp'	DOUBLE	Immediately
-			
-	- 0.0	-	1/1

Description:

In case of single-axis interpolation, this value defines the size of the tolerance window which the axis must have reached in order to enable a block change in case of the block-change criterion 'braking ramp with tolerance window valid' and when reaching the corresponding % value of the braking ramp (SD43600 \$SA_IPOBRAKE_BLOCK_EXCHANGE).

Note:

By means of the MD 10710 $MN_PROG_DRESET_SAVE_TAB$, the user can specify that the value written by the part program is transferred into the active file system in case of a reset (i.e. the value is retained even after the reset).

43700	OSCILL	OSCILL_REVERSE_POS1		-	P5
mm, degrees	Oscillatio	on reversal point 1		DOUBLE	Immediately
-					
802d-cu3	-	0.0	-	ŀ	7/7
802d-ng2	-	0.0	-	-	7/7
802d-ng3	-	0.0	-	-	7/7
802d-tm1	-	0.0	-	-	0/0
802d-tm2	-	0.0	-	-	0/0
802d-tm3	-	0.0	-	-	0/0

Description:

Position of the oscillating axis at reversal point 1.

Note:

MD10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after RESET.)

Application example(s)

NC language: OSP1[Axis]=Position

Related to

SD43710 \$SA_OSCILL_REVERSE_POS2
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN PROG SD RESET SAVE TAB

43710	OSCILL_R	OSCILL_REVERSE_POS2			P5
mm, degrees	Oscillation	reversal point 2		DOUBLE	Immediately
-					
802d-cu3	-	0.0	-	ŀ	7/7
802d-ng2	-	0.0	-	-	7/7
802d-ng3	-	0.0	-	-	7/7
802d-tm1	-	0.0	-	-	0/0
802d-tm2	-	0.0	-	-	0/0
802d-tm3	-	0.0	-	-	0/0

Description:

Position of the oscillating axis at reversal point 2.

Note:

MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

Application example(s)

NC language: OSP2[Axis]=Position

Related to

SD43700 \$SA_OSCILL_REVERSE_POS1
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43720	OSCILL_	OSCILL_DWELL_TIME1			P5
s	Hold time	e at oscillation reversa	I point 1	DOUBLE	Immediately
-					
802d-cu3	-	0.0	-	-	7/7
802d-ng2	-	0.0	-	-	7/7
802d-ng3	-	0.0	-	-	7/7
802d-tm1	-	0.0	-	-	0/0
802d-tm2	-	0.0	-	-	0/0
802d-tm3	-	0.0	-	-	0/0

Description:

Hold time of the oscillating axis at reversal point 1.

Note:

MD 10710 $MD = PROG_SD_RESET_SAVE_TAB$ can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.) Application example(s)

NC language: OST1[Axis]=Position

Related to

SD43730 \$SA_OSCILL_DWELL_TIME2
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43730	OSCILL_DWELL_TIME2			-	P5
S	Hold tim	ne at oscillation reversal point 2		DOUBLE	Immediately
-				<u>.</u>	
802d-cu3	-	0.0	-	-	7/7
802d-ng2	-	0.0	-	-	7/7
802d-ng3	-	0.0	-	-	7/7
802d-tm1	-	0.0	-	-	0/0
802d-tm2	-	0.0	-	-	0/0
802d-tm3	-	0.0	-	-	0/0

Description:

Hold time of the oscillating axis at reversal point 2.

Note:

MD 10710 $MD = PROG_SD_RESET_SAVE_TAB$ can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.) Application example(s)

NC language: OST2[Axis]=Position

Related to

SD43720 \$SA_OSCILL_DWELL_TIME1
MD10709 \$MN_PROG_SD_POWERON_INIT_TAB
MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43740	OSCILL_VELO			-	P5
mm/min, rev/min	Feedrate of r	eciprocating axis	3	DOUBLE	Immediately
-				<u>. </u>	
802d-cu3	-	0.0	-	-	7/7
802d-ng2	-	0.0	-	-	7/7
802d-ng3	-	0.0	-	-	7/7
802d-tm1	-	0.0	-	-	0/0
802d-tm2	-	0.0	-	-	0/0
802d-tm3	-	0.0	_	Ļ	0/0

Description:

Feed rate of the oscillating axis

Note:

MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

Application example(s)
 NC language: FA[Axis]=F value
Related to
 MD10709 \$MN_PROG_SD_POWERON_INIT_TAB

MD10710 \$MN PROG SD RESET SAVE TAB

43750	OSCILL_NUM_SPARK_CYCLES Number of spark-out strokes			-	P5
-				DWORD	Immediately
-					
802d-cu3	-	0	-	-	7/7
802d-ng2	-	0	-	-	7/7
802d-ng3	-	0	-	-	7/7
802d-tm1	-	0	-	-	0/0
802d-tm2	-	0	-	-	0/0
802d-tm3	-	D	_	-	0/0

Description:

Number of sparking-out strokes performed after ending the oscillating movement

Application example(s)

NC language: OSNSC[Axis]=Stroke number

Note:

MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

Related to

MD10709 \$MN_PROG_SD_POWERON_INIT_TAB MD10710 \$MN PROG SD RESET SAVE TAB

43760	OSCILL_END_POS			-	P5
mm, degrees	End position	n of the reciprocat	ing axis	DOUBLE	Immediately
-		-			
802d-cu3	-	0.0	-	-	7/7
802d-ng2	-	0.0	-	-	7/7
802d-ng3	-	0.0	-	-	7/7
802d-tm1	-	0.0	-	-	0/0
802d-tm2	-	0.0	-	-	0/0
802d-tm3	-	0.0	_	-	0/0

Description:

Position the oscillating axis travels to after ending the sparking-out strokes.

Note:

MD 10710 $MN_PROG_SD_RESET_SAVE_TAB$ can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.) Application example(s)

NC language: OSE[Axis]=Position

Related to

MD10709 \$MN_PROG_SD_POWERON_INIT_TAB MD10710 \$MN_PROG_SD_RESET_SAVE_TAB

43770	OSCILL	OSCILL_CTRL_MASK			P5
_	Oscillation	Oscillation sequence control mask			Immediately
-					
802d-cu3	-	0	-	-	7/7
802d-ng2	-	0	-	-	7/7
802d-ng3	-	0	-	-	7/7
802d-tm1	-	0	-	-	0/0
802d-tm2	-	0	-	-	0/0
802d-tm3	-	0	-	-	0/0

Description: Bit mask: | Meaning in OSCILL_CTRL_MASK | 0: Stop at the next reversal point if the 0 (LSB) - 1oscillating movement is switched off | 1: Stop at reversal point 1 if the oscillating movement is switched off | 2: Stop at reversal point 2 if the oscillating movement is switched off | 3: Do not approach a reversal point when the oscillating movement is switched off if no sparking-out strokes are programmed | 1: Approach end position after sparking out | 1: If the oscillating movement is aborted by delete distance-to-go, then the sparking-out strokes are to be executed afterwards and the end position approached if necessary | 1: If the oscillating movement is aborted by delete distance-to-go, then the corresponding reversal point is approached on switch off | 1: Changed feedrate does not become active until the next reversal point | 1: Path override is active if the feed rate is 0, | otherwise speed override is active | 1: In the case of rotary axes DC (shortest path) ______

| 1: Execute sparking-out stroke as single stroke not

Setting data

43780	OSCILL_IS_ACTIVE Activate oscillation movement			-	P5
-				BOOLEAN	Immediately
-					
802d-cu3	-	FALSE	-	+	7/7
802d-ng2	-	FALSE	-	-	7/7
802d-ng3	-	FALSE	-	-	7/7
802d-tm1	-	FALSE	-	-	0/0
802d-tm2	-	FALSE	-	-	0/0
802d-tm3	-	FALSE	-	-	0/0

Description:

Switching the oscillating movement on and off

Note:

MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

Application example(s)

NC language: OS[Axis]=1, OS[Axis]=0

Related to

MD10709 \$MN_PROG_SD_POWERON_INIT_TAB MD10710 \$MN PROG SD RESET SAVE TAB

43790	OSCILL_START_POS			-	-
mm, degrees	, degrees Start position of reciprocating axis			DOUBLE	Immediately
-					
802d-cu3	-	0.0	-	-	7/7
802d-ng2	-	0.0	-	-	7/7
802d-ng3	-	0.0	-	-	7/7
802d-tm1	-	0.0	-	-	0/0
802d-tm2	-	0.0	-	-	0/0
802d-tm3	-	0.0	-	-	0/0

Description:

Position approached by the oscillating axis at the start of oscillation if this is set in SD43770 \$SA_OSCILL_CTRL_MASK.

Note:

MD 10710 \$MN_PROG_SD_RESET_SAVE_TAB can be be set so that the value written by the part program is transferred to the active file system on reset (that is the value is retained after reset.)

Setting data

43900	TEMP_COMP_ABS_VALUE		-	K3
-	Position-independent temperature compe	nsation value	DOUBLE	Immediately
-				
-	- 0.0 -			0/0

Description:

The position-independent temperature compensation value is defined by SD43900 \$SA TEMP COMP ABS VALUE.

_

The machine axis traverses this additional compensation value as soon as the position-independent temperature compensation has been activated (MD32750 \$MA TEMP COMP TYPE = 1 oder 3).

SD irrelevant for

 $MD32750 \ \ MA_TEMP_COMP_TYPE = 0 \ or \ 2$

Related to

MD32750 \$MA_TEMP_COMP_TYPETemperature compensation type MD32760 \$MA_COMP_ADD_VELO_FACTOR Velocity overshoot caused by compensation

43910	TEMP_COMP_SLOPE	-	K3
-	Lead angle for position-dependent temperature compensation	DOUBLE	Immediately
-			
-	- 0.0	t	0/0

Description:

In the case of position-dependent temperature compensation, the error curve characteristic of the temperature-dependent actual-value deviation can often be approximated by a straight line. This straight line is defined by a reference point P_0 and a slope tanß.

 ${\tt SD43910~\$SA_TEMP_COMP_SLOPE}$ defines the slope tanß. This slope can be changed by the PLC user program as a function of the current temperature.

The axis traverses additionally the compensation value calculated for the current actual position as soon as the position-dependent temperature compensation becomes active (MD32750 \pm TEMP COMP TYPE = 2 or 3).

MD32760 \$MA_COMP_ADD_VELO_FACTOR limits the maximum angle of slope tanA_max of the error curve. This maximum angle of slope cannot be exceeded.

SD irrelevant for

MD32750 MA TEMP COMP TYPE = 0 or 1

Special cases, errors,

When SD43910 \$SA_TEMP_COMP_SLOPE is greater than tanß_max, the slope tanß_max is used to calculate the position-dependent temperature compensation value internally. No alarm is output.

Related to

MD32750 \$MA_TEMP_COMP_TYPE Temperature compensation type SD43920 \$SA_TEMP_COMP_REF_POSITION Reference position for position-dependent temperature compensation

MD32760 \$MA_COMP_ADD_VELO_FACTOR Velocity overshoot caused by compensation

Setting data

43920	TEMP_COMP_REF_POSITION	-	K3
-	Ref. position of position-dependent temperature compensation	DOUBLE	Immediately
-		•	
-	- 0.0 -	-	0/0

Description:

In the case of position-dependent temperature compensation, the error curve characteristic of the temperature-dependent actual-value deviation can often be approximated by a straight line. This straight line is defined by a reference point P_0 and a slope tank.

 $\tt SD43920\ \$SA_TEMP_COMP_REF_POSITION\ defines$ the position of the reference point P_0. This reference position can be changed by the PLC user program as a function of the current temperature.

The axis traverses additionally the compensation value calculated for the current actual position as soon as the position-dependent temperature compensation becomes active (MD32750 $\,$

 $MA_TEMP_COMP_TYPE = 2 or 3).$

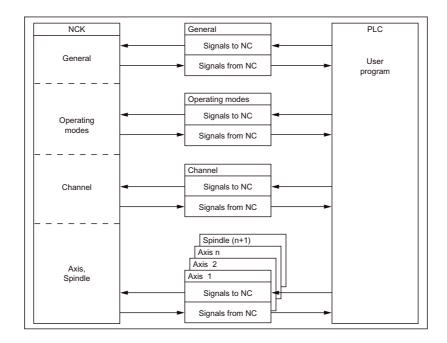
SD irrelevant for

 $MD32750 \ \ MA_TEMP_COMP_TYPE = 0 \ or 1$

Related to

MD32750 \$MA_TEMP_COMP_TYPE Temperature compensation type SD43910 \$SA_TEMP_COMP_SLOPE Angle of slope for position-dependent temperature compensation

Interface Signals


4.1 General

Interfaces

The exchange of signals and data between the PLC user program and

- NCK (core of numerical control)
- HMI sl (display unit)

takes places through various data areas. The PLC user program does not have to handle the exchange of data and signals. From the users point of view, this takes place automatically.

Cyclical signal exchange

The control and status signals of the PLC/NCK interface are updated cyclically.

- General signals
- · Operating mode signals
- Channel signals
- Axis/spindle signals

Signals from/to HMI

4.2 Signals from/to HMI

4.2.1 Program-control signals from HMI

V1700 0000.5	M01 selec	ected		
Interface signal Signal(s) f		from HMI> PLC		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0> 1	_	control Activate M1 has been selected on the operator interface. This activate the function.		
Signal state 0 or signal transition 1> 0	Program (control Activate M1 has not been s	elected via the operator interface.	
Related to	IS "Activate M01" IS "M0/M1 active"			
Note for the reader:	802D sl D	escription of Functions: K1		

V1700 0000.6 Dry run fe		Ory run feedrate selected		
Interface signal Signal(s		nal(s) from HMI> PLC		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal status 1 or edge	Dry run fe	edrate is selected.		
transition 0> 1		nstead of the programmed feedrate, the dry run feedrate entered in SD 42100: DRY_RUN_FEED is effective.		
PLC		When activating the dry run feedrate, the signal is automatically entered in the PLC interface and transferred by the PLC basic program to the PLC interface signal "Activate dry run feedrate".		
transition 1 > 0		Dry run feedrate is not selected.		
		The programmed feedrate is effective.		
Related to	IS "Activate dry run feedrate" (V3200 0000.6)			
SD: DF		SD: DRY_RUN_FEED (dry run feedrate)		
Note for the reader:	802D sl Description of Functions: V1, K1			

Application example(s)	This signal is used if no separate rapid traverse override switch exists.			
Signal state 0 or signal transition 1> 0	Program control -Feed override for rapid traverse- has not been selected via the operator interface.			
	The interface signal (IS) "Feedrate override selected for rapid traverse" is automatically entered in the PLC interface by the operator panel and transferred by the PLC basic program to the PLC interface signal "Rapid traverse override effective". Furthermore, the IS "Feedrate override" (VB3200 0004) is copied by the PLC basic program into the IS "Rapid traverse override" (VB3200 0005).			
Signal status 1 or edge transition 0> 1	The feedrate override switch is also to act as a rapid traverse override switch. Overrides more than 100 % are limited to the maximum value of 100 % rapid traverse override.			
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:			
Interface signal	Signal(s) from HMI> PLC			
V1700 0001.3	Feed override for rapid traverse selected			

Note for the reader: 802D sl Description of Functions: V1	
---	--

V1700 0001.7	Program t	test selected			
Interface signal	Interface signal Signal(s) f		from HMI> PLC		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:		
		control Program test has been selected via the operator interface. s not activate the function.			
Signal state 0 or signal transition 1> 0	Program of interface.	control Program test has not bee	en selected via the operator		
Related to	IS "Activate program test" IS "Program test active"				
Note for the reader:	802D sl Description of Functions: K1				

V1700 0002 V1700 0003.0 to .1	Skip block selected Program tes	est selected""#		
Interface signal	Signal(s) from HMI> PLC	gnal(s) from HMI> PLC		
Edge evaluation: no	Signal(s) updated: c	cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	Program control -skip block- has does not activate the function.	as been selected via the operator interface. Th		
Signal state 0 or signal transition 1> 0	Program control -skip block- has	as not been selected via the operator interface		
Related to	IS "Activate skip block"			
Note for the reader:	802D sl Description of Functions	ns: K1		

V1700 0003.7 ***	Measuring in JOG active		
Interface signal	Signal(s) to PLC (HMI> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	The "Tool measuring in JOG" function is activated by HMI. Note: This signal remains set when changing to AUTOMATIC mode in this function. The HMI maintains the JOG image in the display. Only the active mode display changes.		
Signal state 0 or signal transition 1> 0	The "Tool measuring" function is not active.		
Note for the reader:	802D sl Description of Functions: M5		

Signals from/to HMI

4.2.2 Signals from HMI

V1800 0000.0	AUTOMATIC mode		
Interface signal	Signal(s) to PLC (HMI> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	AUTOMATIC mode has been selected by the HMI. The signal status 1 is active for only one PLC cycle.		
Signal state 0	AUTOMATIC mode is not selected by the HMI.		
Signal irrelevant for	if "Change mode disable" signal		
•••			
Note for the reader:	802D sl Description of Functions: M5		

V1800 0000.1	MDA mode			
Interface signal	Signal(s) to PLC (HMI> PLC)			
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or signal transition 0> 1	MDA mode has been selected by the HMI. The signal status 1 is active for only one PLC cycle.			
Signal state 0	MDA mode is not selected by the HMI.			
Signal irrelevant for	if "Change mode disable" signal			
Note for the reader:	802D sl D	802D sl Description of Functions: M5		

V1800 0000.2	JOG mode				
Interface signal	Signal(s) to PLC (HMI> PLC)				
Edge evaluation: yes	'	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or signal transition 0> 1	JOG mode has been selected by the HMI. The signal status 1 is active for only one PLC cycle.				
Signal state 0	JOG mode is not selected by the HMI.				
Signal irrelevant for	if "Change mode disable" signal				
Note for the reader:	802D sl D	802D sl Description of Functions: M5			

V1800 0000.4	Mode group changeover disable				
Interface signal	Signal(s)	Signal(s) to PLC (HMI> PLC)			
Edge evaluation: yes		Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or signal	Request b	Request by MMC: The current active mode (JOG, MDA or AUTOMATIC)			
transition 0> 1	should not be changed.				
	The signal status is active for only one PLC cycle.				
Signal state 0	The mode can be changed.				
Note for the reader:	802D sl D	802D sl Description of Functions: M5			

V1800 0000.6 ***	Start mea	Start measuring in JOG				
Interface signal	Signal(s) to PLC (HMI> PLC)					
Edge evaluation: yes		Signal(s) updated: cyclic Signal(s) valid from SW:				
Signal state 1 or signal transition 0> 1		Request to PLC by HMI to start the measuring program with NC start. The signal status 1 is active for only one PLC cycle only.				
Signal state 0						
Note for the reader:	802D sl Description of Functions: M5					

V1800 0001.2	Machine function REF		
Interface signal	Signal(s) to PLC (HMI> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	The REF machine function is selected from within JOG mode. The signal status 1 is active for only one PLC cycle only.		
Signal state 0	Machine function REF is not selected.		
Signal irrelevant for	if JOG mode is not active.		
Note for the reader:	802D sl Description of Functions: M5		

4.2.3 Signals from operator panel

V1900 0000.6	Simulation activ			
Interface signal	Signal(s) from HMI> PLC			
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or signal transition 0> 1	The -simulation- function has been selected via the operator interface.			
Signal state 0 or signal transition 1> 0	The -simulation- function has not been selected via the operator interface.			
Related to				
Note for the reader:	802D sl Description of Functions: K1			

Signals from/to HMI

4.2.4 General selection/status signals from HMI

V1900 0003.7 V1900 0004.7	Machine a	xis	for handwheel 1 for handwheel 2	!	
Interface signal	Signal(s) fr	om NC	(HMI -> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic		Signal(s) valid from SW:
Signal state 1 or signal transition 0>	operator pa	The operator has assigned an axis to the handwheel (1, 2, 3) directly on the operator panel. This axis is a machine axis - not a geometry axis (axis in the WCS). For further information see IS "Axis number".			
Signal state 0 or signal transition 1>	The operator has assigned an axis to the handwheel (1, 2, 3) directly on the operator panel. This axis is a geometry axis (axis in the WCS).				
0	For further information see IS "Axis number".				
Related to	IS "Axis number" (V1900 0003.0 to .4, ff)				
Note for the reader:	802D sl Description of Functions: H1				

V1900 1003.0 to .2	Axis number	for handwheel 1	
V1900 1004.0 to .2		for handwheel 2	
Interface signal	Signal(s) from	NC (HMI -> PLC)	
Edge evaluation: no	Sig	nal(s) updated: cyclic	Signal(s) valid from SW:
Significance of signal	panel. To do so The PLC user 'machine axis of interface signa The "Activate has the PLC user popending on	o, he defines the required axis interface provides the number or geometry axis' ("machine ax ls. nandwheel" interface signal for program.	of the axis plus the information is" interface signal) as HMI the defined axis must be set from signal "machine axis", either the

Signals from/to HMI

	The following must be noted when assigning the axis designation to the axis number:					
	 IS "Machine axis" = 1; i.e. machine axis - not geometry axis: The assignment is made via MD 10000: AXCONF_MACHAX_NAME_TAB[n] (machine axis name). 					
	The assignme (geometry axi	• IS "Machine axis" = 0; i.e. geometry axis (axis in WCS): The assignment is made via MD 20060: AXCONF_GEOAX_NAME_TAB[n] (geometry axis name in channel). IS "Channel number geometry axis handwheel n" defines the channel assigned to the handwheel.				
	The following co	oding applies	to the axis nu	mber:		
	Bit 2	Bit 1	Bit 0	axis number		
	0	0	0	-		
	0	0	1	1		
	0	1	0	2		
	0	1	1	3		
	1	1 0 0 4				
	1	0	1	5		
	Note: Bit 3 and bit 4 must always be left with value =0.					
Related to						
	IS "Machine axi	IS "Machine axis" (V1900 1003.7 ff)				
	IS "Activate handwheel" 1 to 3 /geometry axes 1, 2, 3 (V3200 1000.0 to .2, V3200 1004.0 to .2, V3200 1008.0 to .2)					
	IS "Activate handwheel" 1 to 3 /machine axes (V380x 0004.0 to .2)					
	MD 10000: AXC	CONF_MACH	AX_NAME_T	AB [n] (machine axis name)		
	MD 20060: AXC channel)	ONF_GEOA	X_NAME_TA	B[n] (name of the geometry axis in the		
Note for the reader:	802D sl Descrip	tion of Functi	ons: H1			

4.2.5 General selection/status signals to HMI

V1900 5001.0	Update the tool list			
Interface signal	Signal(s) from channel (PLC> HMI)			
Edge evaluation: yes	'	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	Tool displ	Tool display is updated		
Signal state 0 or signal transition 1> 0	No effect			
Note for the reader:	802D sl Description of Functions: W1			

V1900 5002.0	Enabling machine tool measuring in JOG		
Interface signal	Signal(s) from NCK (PLC \rightarrow HMI)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0> 1	Measuring	in JOG function can be activated.	

Auxiliary function transfer from NC channel

Signal state 0 or signal	Measuring in JOG is not possible.	
transition 1> 0		
Note for the reader:	802D sl Description of Functions: M5	

VD1900 5004	Tool number for tool measuring in JOG		
Interface signal	Signal(s) to HMI (PLC> HMI)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Value > 0 (DWORD)	Input of T number from PLC for entering measurement results to HMI. The number entered in the HMI screen is used as offset number D.		
Value = 0	No specification of the T no. by PLC		
Signal irrelevant for	if IS "Measuring in JOG active" (V1700 0003.7) is not set.		
Note for the reader:	802D sl Description of Functions: M5		

4.3 Auxiliary function transfer from NC channel

V2500 0004. 0 to .4	M function Change 1 to 5		
V2500 0006.0	S function Change 1		
V2500 0008.0	T function	n Change 1	
V2500 0010.0	D function	n Change 1	
V2500 0012.0 to .2	H function	n Change 1 to 3	
Interface signal	Signal(s) from channel (NCK -> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1	An M, S, T, D or H function has been output to the interface with a new value together with the associated change signal. In this case, the change signal indicates that the appropriate value is valid. The change signals are only valid for one PLC cycle! That means that there is a pending change for this cycle if the signal is 1.		
Signal state 0	The value of the data concerned is not valid.		
Note for the reader:	802D sl Description of Functions: H2		

VB2500 1000 to			
VB2500 1012	Decoded M signals: M0 - M99		
Interface signal	Signal(s) from channel (NCK -> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1	The dynamic M signal bits are set by decoded M functions.		
Signal state 0	With a general auxiliary function output, dynamic M signal bits are acknowledged by the PLC system program after the complete AWP routine has been executed once.		
Application example(s)	clockwise rotation, switch coolant ON/OFF		
Related to	specific" (VD370x 0000)		
Note for the reader:	802D sl Description of Functions: H2		

Note for the reader:	802D sl Description of Functions: H2		
Special cases, errors,	When T0 is selected, the current tool is removed from the tool holder but not replaced by a new tool (default configuration by machine manufacturer).		
Application example(s)	Control of automatic tool selection.		
Signal state 0	After PLC power-up.All auxiliary functions are deleted before a new function is entered.		
Signal state 1	The T function programmed in an NC block is made available here as soon as the T change signal is applied. Value range of T function: 0-32000; integer The T function remains valid until it is overwritten by a new T function.		
Edge evaluation: no	Signal(s) updated: Job controlled Signal(s) valid from SW: by NCK		
Interface signal	Signal(s) from channel (NCK -> PLC)		
VD2500 2000	T function 1		

VD2500 3000	M function 1		
VD2500 3008	M function 2		
VD2500 3016	M function 3		
VD2500 3024	M function 4		
VD2500 3032	M function 5		
VB2500 3004	Extended address M function 1		
VB2500 3012	Extended address M function 2		
VB2500 3020	Extended address M function 3		
VB2500 3028	Extended address M function 4		
VB2500 3036	Extended address M function 5		
Interface signal	Signal(s) from channel (NCK -> PLC)		
Edge evaluation: no	Signal(s) updated: Job controlled Signal(s) valid from SW: by NCK		
Signal state 1	Up to 5 M functions programmed in an NC block are made available here simultaneously as soon as the M change signals are applied.		
	Value range of the M functions: 0 to 99; integer		
	Value range of extended address: 1-2; integer (spindle number)		
	The M functions remain valid until they are overwritten by new M functions.		
Signal state 0	After PLC power-up.		
	All auxiliary functions are deleted before a new function is entered.		
Dolotod to			
Related to	IS "S function for the spindle (REAL), axis-specific" (VD370x 0000)		
Note for the reader:	802D sl Description of Functions: H2		

VD2500 4000	S function 1			
VD2500 4008	S function	2		
VB2500 4004	Extended	Extended address S function 1		
VB2500 4012	Extended address S function 2			
Interface signal	Signal(s) from channel (NCK -> PLC)			
Edge evaluation: no	Signal(s) updated: Job controlled by NCK Signal(s) valid from SW:		Signal(s) valid from SW:	

Auxiliary function transfer from NC channel

Signal state 1	The S function programmed in an NC block (speed or cutting value with G96) is made available here as soon as the S change signal is applied.	
	Value range of the S function: : Floating point (REAL format/4-byte)	
	Value range of extended address: 1-2; integer (spindle number)	
	The S function remains valid until it is overwritten by a new S function.	
Signal state 0	After PLC power-up.	
	All auxiliary functions are deleted before a new function is entered.	
Related to	specific" (VD370x 0004)	
Note for the reader:	802D sl Description of Functions: H2	

VD2500 5000	D function 1		
Interface signal	Signal(s) from channel (NCK -> PLC)		
Edge evaluation: no		Signal(s) updated: Job controlled by NCK	Signal(s) valid from SW:
Signal state 1	The D function programmed in an NC block is made available here as soon as the D change signal is applied. Value range of D function: 0-9; integer The D function remains valid until it is overwritten by a new D function.		
Signal state 0	After PLC power-up.All auxiliary functions are deleted before a new function is entered.		
Application example(s)			
Special cases, errors,	D0 is reserved for deselecting the current tool offset.		
Note for the reader:	802D sl Description of Functions: H2		

H function 1		
H function 2		
H function 3		
Extended address H function 1		
Extended address H function 2		
Extended address H function 3		
Signal(s) from channel (NCK -> PLC)		
Signal(s) updated: Job controlled by NCK Signal(s) valid from SW:		
Up to 3 H functions programmed in an NC block are made available here simultaneously as soon as the H change signals are applied.		
Value range of the H functions: Floating point (REAL format/4-byte)		
Value range of extended address: 0 to 99; integer		
The H functions remain valid until they are overwritten by new H functions.		
After PLC power-up.		
All auxiliary functions are deleted before a new function is entered.		
Switching functions on the machine.		
802D sl Description of Functions: H2		

4.4 NC signals

4.4.1 General signals to NC

V2600 0000.1	EMERGENCY STOP		
Interface signal	Signal(s) to NC (PLC> NC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The NC is switched to the EMERGENCY STOP state and the EMERGENCY STOP procedure is started on the NC.		
Signal state 0 or	The NC is not in the EMERGENCY STOP state.		
signal transition 1>	 The EMERGENCY STOP state is (still) active but can be reset with IS "Acknowledge EMERGENCY STOP" and IS "reset". 		
Related to	IS "Acknowledge EMERGENCY STOP" (V2600 0000.2) IS "EMERGENCY STOP active" (V2700 0000.1)		

V2600 0000.2	Acknowledge EMERGENCY STOP		
Interface signal	Signal(s) to NC (PLC> NC)		
Edge evaluation: no	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0> 1	The EMERGENCY STOP state is reset only if IS STOP" followed by IS "Reset" (V3000 0000.7) are respect that IS "Acknowledge EMERGENCY STO (together) for a long enough period for IS "EMER 0000.1) to be reset. By resetting the EMERGENCY STOP state: • the "EMERGENCY STOP active" interface sign • the controller enable is switched in • IS "Position control active" is set • Ready" is set • Alarm 3000 is canceled • the part program is no longer processed	e set. It must be noted in this DP" and IS "Reset" must be set GENCY STOP active" (V2600	
Related to	IS "EMERGENCY STOP" (V2600 0000.1) IS "EMERGENCY STOP active" (V2700 0000.1) IS "Reset" (V3000 0000.7)		

V2600 0001.0	INC inputs in mode group range active		
Interface signal	Signal(s) to NCK (PLC -> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The IS "INC1", "INC10",, "continuous" in the operating mode range are used as input signals (V3000 0002.0 to .6).		
Signal state 0 or signal transition 1> 0		as input signals (V3000 0002.0 to .6). The IS "INC1", "INC10",, "continuous" in the axis and geometry axis range used as input signals.	

NC signals

Related to	IS "Machine function INC1 to continuous" in operating mode range (V3000 0002.0 to .6)	
	IS "Machine function INC1,,continuous"	
	for geometry axis 1 (V3200 1001.0 to .6)	
	for geometry axis 2 (V3200 1005.0 to .6)	
	for geometry axis 3 (V3200 1009.0 to .6)	
	IS "Machine function INC1,,continuous" in axis range (V380x 0005.0 to .6)	
Note for the reader:	802D sl Description of Functions: H1	

4.4.2 General signals from NC

V2700 0000.1	EMERGENCY STOP active		
Interface signal	Signal(s) to NC (PLC> NC)		
Edge evaluation: no	li .	Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The NC is	s in the EMERGENCY STOP state.	
Related to	IS "EMERGENCY STOP" (V2600 0000.1) IS "Acknowledge EMERGENCY STOP" (V2600 0000.2)		

V2700 0001.0	Probe 1 is actuated	
Interface signal	Signal(s) from NCK (NCK \rightarrow PLC)	
Edge evaluation: no	Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	Probe 1 is actuated	
Signal state 0 or signal transition 1> 0	Probe 1 is not actuated	
Note for the reader:	802D sl Description of Functions: M5	

V2700 0001.7	INCH dimension system		
Interface signal	Signal(s) to NC (PLC> NC)		
Edge evaluation: no	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1	The NC works with the inch dimension system.		
Signal state 0	The NC works with the metric dimension system.		
Note for the reader:	802D sl Description of Functions: G2		

1/0700 0004 0 1: 7	1 A 4°		
V2700 0004.0 to .7	Minus cam signals 1-32		
Interface signal	Signal(s) from NCK (NCK> PLC)		
Edge evaluation: no		Signal(s) updated: cyclically	Signal(s) valid from SW release:
Signal status 1 or edge transition 0>	The switching edges of the minus cam signals 1-32 are created independently of the direction of traversing of the (rotary) axis and transferred to the PLC interface at the IPO clock. Linear axis:		
	The minus cam signal switches from 0 to 1 when the axis overtravels the minus cam in the negative axis direction.		
	Modulo rotary axis:		
	 The minus cam signal changes the levels at each positive edge of the plus cam signal. 		
Signal status 0 or	Linear axis:		
edge transition 1>	 The minus cam signal switches from 1 to 0 when the axis overtravels the minus cam in the positive axis direction. 		
	Modulo rotary axis:		
	 The minus cam signal changes the levels at each positive edge of the plus cam signal. 		

V2700 0008.0 to .7	Plus cam signals 1-32		
Interface signal	Signal(s) from NCK (NCK> PLC)		
Edge evaluation: no	•	Signal(s) updated: cyclically	Signal(s) valid from SW release:
Signal status 1 or edge transition 0>		hing edges of the plus cam signals on of traversing of the (rotary) axis a clock.	
	Linear axi	S:	
	-	lus cam signal switches from 0 to 1 the positive direction.	when the axis overtravels the plus
	Modulo ro	otary axis:	
	-	lus cam signal switches from 0 to 1 am in the positive axis direction.	when the axis overtravels the
	The described behavior of the plus cam applies under the following cond Plus cam - minus cam < 180 degrees If this condition is not fulfilled or the minus cam is greater than the plus complete behavior of the plus cam signal is inverted. The behavior of the minus can signal remains unchanged.		
Signal status 0 or	Linear axi	S:	
edge transition 1>	 The plus cam signal switches from 1 to 0 when the axis overtravels the plus cam in the negative direction. 		
	Modulo ro	otary axis:	
	 The plus cam signal switches back from 1 to 0 when the axis overtravels the plus cam in the positive axis direction. 		
	The described behavior of the plus cam applies under the following condition: Plus cam - minus cam < 180 degrees		
	If this condition is not fulfilled or the minus cam is greater than the plus cam, the behavior of the plus cam signal is inverted. The behavior of the minus cam signal remains unchanged.		

Mode signals

4.5 Mode signals

V3000 0000.0	AUTOMATIC mode		
Interface signal	Signal(s) to NCK (PLC> NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	AUTOMATIC mode is selected by the PLC program.		
Signal state 0 or signal transition 1>	AUTOMATIC mode is not selected by the PLC program.		
Signal irrelevant for	if "Mode group changeover disable" signal		
Related to	IS "Active mode AUTOMATIC"		
Note for the reader:	802D sl Description of Functions: K1		

V3000 0000.1	MDA mode			
Interface signal	Signal(s) to NCK (PLC> NCK)			
Edge evaluation: no	1	Signal(s) updated:	cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	MDA mode is selected by the PLC program.			
Signal state 0 or signal transition 1> 0	MDA mode is not selected by the PLC program.			
Signal irrelevant for	if "Mode group changeover disable" signal			
Related to	IS "Active mode MDA"			
Note for the reader:	802D sl Description of Functions: K1			

V3000 0000.2	JOG mode		
Interface signal	Signal(s) to NCK (PLC> NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	JOG mode	e is selected by the PLC program.	
Signal state 0 or signal transition 1> 0	JOG mode is not selected by the PLC program.		
Signal irrelevant for	if "Mode g	roup changeover disable" signal	
Related to	IS "Active mode JOG"		
Note for the reader:	802D sl D	escription of Functions: K1	

V3000 0000.4	Mode group changeover disable		
Interface signal	Signal(s) to NCK (PLC> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0> 1	The currently active mode (JOG, MDA or AUT)	OMATIC) cannot be changed.	
Signal state 0	The mode can be changed.		
Note for the reader:	802D sl Description of Functions: K1		

V3000 0000.7	Reset		
Interface signal	Signal(s) to NCK (PLC> NCK)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The channel must change to the "RESET" status. The current program is then in program status "aborted". All moving axes and spindles are decelerated to zero speed according to their acceleration ramp without contour violation. The initial settings are set (e.g. for G functions). The alarms are cleared if they are not POWER ON alarms.		
Signal state 0 or signal transition 1> 0	Channel status and program run are not affected by this signal.		
Related to	IS "Channel reset" IS "All channels in reset state"		
Special cases, errors,	An alarm which cancels IS "802 ready" ensures that the channel is no longer in the Reset state. In order to switch to another operating mode, a "reset" must then be initiated.		
Note for the reader:	802D sl Description of Functions: K1		

V3000 0001.2	Machine function REF			
Interface signal	Signal(s) to	Signal(s) to NCK (PLC> NCK)		
Edge evaluation: no		Signal(s) updated:	cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0> 1	Machine function REF is activated in JOG mode.			
Signal state 0 or signal transition 1> 0	Machine function REF is not activated.			
Signal irrelevant for	if JOG mod	de is not active.		
Note for the reader:	802D sl Description of Functions: K1			

Mode signals

V3000 0002.0 to .6	Machine function INC1, INC10, INC100, INC1000, INC10000, INCvar, continuous			
Interface signal	Signal(s) to	o modes (PLC -> NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0 > 1	This input range is only used if the "INC inputs in mode group range active" interface signal (V2600 0001.0) is set . The signals then apply to all axes and geometry axes.			
	IS "INC" defines how many increments the axis traverses when the traversing key is pressed or the handwheel turned one detent position. JOG mode must be active. With "INCvar" the value in the general SD 41010: JOG_VAR_INCR_SIZE applies. In "continuous mode" the associated axis can be traversed with the plus or minus traversing key according to how the traverse key is pressed. As soon as the selected machine function becomes active, this is signaled to the PLC interface (IS "Active machine function INC1;"). If several machine function signals (INC1, INC or "Continuous jogging") are selected at the interface simultaneously, no machine function is activated by the control.			
		IS "INC" or "continuous" for chang stive for at least one PLC cycle. A sta		
Signal state 0 or signal transition 1 > 0	machine fu If an axis is	ne function in question is not selecte inction is required. s currently traversing an increment, the function is deselected or changed	this movement is also aborted if	
Related to	IS "INC inp	outs in mode group range active" (V2 e function INC1,, continuous"		
	for ged	ometry axis 1 (V3200 1001.0 to .6) ometry axis 2 (V3200 1005.0 to .6) ometry axis 3 (V3200 1009.0 to .6)		
		e function INC1,, continuous" in a machine function INC1,, continuou		
	for ged for ged	ometry axis1 (V3300 1001.0 to .6) ometry axis 2 (V3300 1005.0 to .6) ometry axis 3 (V3300 1005.0 to .6)		
	IS "Active r	machine function INC1,, continuou	us" in axis range (V390x 0005.0 to	
Note for the reader:	802D sl De	escription of Functions: H1		

V3100 0000.0	Active mode AUTOMATIC			
Interface signal	Signal(s) f	Signal(s) from NCK (NCK> PLC)		
Edge evaluation: no		Signal(s) updated:	cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	AUTOMATIC mode is active.			
Signal state 0 or signal transition 1> 0	AUTOMA [*]	TIC mode is not activ	e.	
Note for the reader:	802D sl D	escription of Function	ns: K1	

V3100 0000.1	Active mode MDA			
Interface signal	Signal(s) from NCK (NCK> PLC)			
Edge evaluation:		Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	MDA mode is active.			
Signal state 0 or signal transition 1> 0	MDA mode is not active.			
Note for the reader:	802D sl Description of Functions: K1			

06/2009

V3100 0000.2	Active mo	Active mode JOG		
Interface signal	Signal(s)	Signal(s) from NCK (NCK> PLC)		
Edge evaluation: no	'	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	JOG mode is active.			
Signal state 0 or signal transition 1> 0	JOG mode is not active.			
Note for the reader:	802D sl Description of Functions: K1			

V3100 0000.3	802 READ	Υ		
Interface signal	Signal(s) from NCK (NCK> PLC)			
Edge evaluation: no		Signal(s) updated:	cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	_	w ready and part pr		oltages are present. The mode processed and axes traversed in
Signal state 0 or signal transition 1> 0	The mode group/channel is not ready. Possible causes of this are: - A serious axis or spindle alarm is active - Hardware fault - Mode group incorrectly configured (machine data)			
	If the mode group ready signal changes to the "0" state - the axis and spindle drives are decelerated with max. braking current to zero speed, - the signals from the PLC to the NCK are switched to the inactive state (initial setting).			
Special cases, errors,	An alarm which cancels IS "802 READY" ensures that the channel is no longer in the Reset state. In order to switch to another operating mode, a "reset" must then be initiated. (V3000 0000.7)			
Note for the reader:	802D sl Description of Functions: K1			

V3100 0001.2	Active machine function REF			
Interface signal	Signal(s) f	Signal(s) from NCK (NCK> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	Machine f	unction REF is active in JOG.		
Signal state 0 or signal transition 1> 0	Machine f	unction REF is not active.		
Note for the reader:	802D sl D	escription of Functions: K1		

4.6 Channel-specific signals

4.6.1 Signals to channel

V3200 0000.4	Activate single block		
Interface signal	Signal(s) t	o channel (PLC> NCK)	
Edge evaluation: no	ı.	Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	In the AUTOMATIC mode the program is processed in the single-block mode; in MDA only 1 block can be entered in any case.		
Signal state 0 or signal transition 1> 0	No effect		
Application	-	~	ngle block mode in order to monitor the
example(s)		program steps more exactly.	
Special cases, errors,	 Intermediate blocks can be inserted if tool radius compensation (G41,G42) is selected. 		
	In a seri selected	•	k is effective only if "dry run feedrate" is
	Pure calculation blocks are not processed in the single step in "Single block coarse" but only in "Single block fine". The preselection is made via softkey "Program control".		
Related to	_	-block selected"	
	•	ım status stopped"	
References	Subsection NO TAG		
Note for the reader:	802D sl Description of Functions: K1		
V3200 000.5	Activate M1		
Interface signal	Signal(s) to channel (PLC> NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:

Signal state 1 or signal transition 0>	M1 programmed in the part program leads to a programmed stop when processed in AUTOMATIC or MDA mode.
Signal state 0 or signal transition 1> 0	M1 programmed in the part program does not lead to a programmed stop.
Related to	IS "M01 selected" (V1700 0000.5) IS "M0/M1 active" (V3300 0000.5)
Note for the reader:	802D sl Description of Functions: K1

V3200 0000.6	Activate dry run feedrate		
Interface signal	Signal(s) to channel (PLC \rightarrow NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	Instead of the programmed feedrate (for G1, G2, G3, CIP, CT), the dry run feedrate defined in SD 42100: DRY_RUN_FEED is used if the dry run feedrate is larger than the programmed feedrate.		
	This interface signal is evaluated on an NC start when the channel is in the "Reset" state.		
	When selected on the PLC, the "Activate dry run feedrate" interface signal is required to be set by the PLC user program.		
Signal state 0 or signal transition 1> 0	The programmed feedrate is used for traversing. Active after Reset.		
Application example(s)	Testing a workpiece program with an increased feedrate.		
Related to	IS "Dry run feedrate selected" (V1700 0000.6) SD 42100: DRY_RUN_FEED (Dry run feedrate)		
Note for the reader:	802D sl Description of Functions: V1		

V3200 0001.0	Activate referencing				
Interface signal	Signal(s) to channel (PLC -> NCK)				
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:				
Signal state 1 or signal transition 0> 1	Channel-specific referencing is started with the "Activate referencing" interface signal. The control acknowledges a successful start with the îReferencing activeî interface signal. Each machine axis assigned to the channel can be referenced with channel-specific referencing (this is achieved internally on the control by simulating the plus/minus travel keys). The axis-specific MD 34110: REFP_CYCLE_NR (axis sequence for channel-specific referencing) can be used to define the sequence in which the machine data are referenced. If all axes entered in MD: REFP_CYCLE_NR have reached their reference point, the "all axes referenced" interface signal (V3300 0004.2) is enabled.				
Application example(s)	If the machine axes are to be referenced in a particular sequence, the following options are available:				
	• up				
	the PLC must check the sequence when starting or define it itself.				
	specific referencing function is used.				
Related to	"Referencing active" interface signal (V3300 0001.0) "All axes referenced" interface signal (V3300 0004.2)				
Note for the reader:	802D sl Description of Functions: R1				

V3200 0001.7	Activate program test		
Interface signal	Signal(s) to channel (PLC> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	Axis disable is set internally for all axes (not spindle). Therefore the machine axes do not move when a part program block or a part program is being processed. The axis movements are simulated on the operator interface with changing axis position values. The axis position values for the display are generated from the calculated setpoints. The part program is processed in the normal way.		
Signal state 0 or signal transition 1> 0	Part program processing is not affected by the function program test		
Related to	IS "Program test selected" IS "Program test active"		
Note for the reader:	802D sl Description of Functions: K1		

V3200 0002.0 to .7	Skip block		
Interface signal	Signal(s) to channel (PLC> NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	Blocks marked in the part program with an oblique (/) are skipped. If there is a series of skip blocks, this signal is only active if it is pending before decoding of the first block of the series, ideally before NC start .		if it is pending before decoding of
Signal state 0 or signal transition 1> 0	The marked part program blocks are not skipped.		
Related to	IS "Skip block selected"		
Note for the reader:	802D sl Description of Functions: K1		

V3200 0003.0	Stroke disable			
Interface signal	Signal(s) to the channel (PLC->NCK)			
Edge evaluation:	l	Signal(s) updated:		Signal(s) valid from SW release:
Signal status 1 or edge transition 0>	This signal is used to enable the punching strokes via the PLC. 1-signal: The stroke is disabled; no punching stroke must be initiated by the NC.			
Signal status 0 or edge transition 1> 0	0-signal: Stroke enable is provided; if no enable signal is set, no punching strok can be executed by the NC.		le signal is set, no punching stroke	

V3200 0003.1	Stroke initiated manually		
Interface signal	Signal(s) to the channel (PLC->NCK)		
Edge evaluation:	Signal(s) u	ipdated:	Signal(s) valid from SW release:
Signal status 1 or	This signal can be us	sed to initiate a single s	roke in the manual mode.
signal transition 0>	1-signal: A manual stroke is executed.		
Signal status 0 or	0-signal: No effect		
signal transition 1>			

V3200 0003.2	Stroke suppressed	
Interface signal	Signal(s) to the channel (PLC->NCK)	
Edge evaluation:	Signal(s) updated:	Signal(s) valid from SW release:
Signal status 1 or edge transition 0> 1	The signal merely prevents the stroke. The machine will nevertheless traverse. If the automatic path distribution is active, it also remains active. Merely the "Initiate stroke" signal is suppressed. The machine will traverse in the "stop and go" mode. The step length is defined by the path segmentation. 1-signal: The stroke suppression is active.	
Signal status 0 or signal transition 1> 0	0-signal: The stroke suppression is not active.	

V3200 0003.3	Stroke does not run		
Interface signal	Signal(s) to the channel (PLC->NCK)		
Edge evaluation:	Signal(s) updated:	Signal(s) valid from SW release:	
Signal status 1 or edge transition 0> 1	The NC reacts to this signal with immediate motion stop. If a motion or another action is interrupted due to this signal, an alarm is issued.		
	Physically, the signal for the CNC is identically to the "Stroke active" signal, i.e. the system is switched such that the two signals are connected to the same NC input via an AND operation. 1-signal: Stroke does not run (corresponds to the "Stroke enable" signal)		
Signal status 0 or signal transition 1> 0	0-signal: Stroke running (corresponds to the "Stroke enable" signal)		

V3200 0003.4	Delayed stroke		
Interface signal	Signal(s) to the channel (PLC->NCK)		
Edge evaluation:	Signal(s) updated:	Signal(s) valid from SW release:	
Signal status 1 or edge transition 0> 1	This signal can be used to activate a "Delayed stroke". In respect of its function, this signal corresponds to a programming of PDELAYON. Any further PLC signals not complying with the standard are not evaluated by the NCK. Except for the manual stroke initiation, the evaluation of the signals is limited to PON active. 1-signal: Delayed stroke is active		
Signal status 0 or edge transition 1> 0	0-signal: Delayed stroke is not active		

V3200 0003.5	Manual stroke initiation		
Interface signal	Signal(s) to the channel (PLC->NCK)		
Edge evaluation:	•	Signal(s) updated:	Signal(s) valid from SW release:
Signal status 1 or edge transition 0>	-> PLC IS "Manual stroke initiation acknowledgment" (DB21, DBX38.1). 1-signal: Manual stroke initiation is active		dgment" (DB21, DBX38.1).
Signal status 0 or edge transition 1> 0	0-signal: Manual stroke initiation is not active		

VB3200 0004	Feedrate override		
Interface signal	Signal(s) to channel (PLC \rightarrow NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal			
transition 0> 1	Gray coding f	or Feedrate override	
	Switch	Code	Feedrate override
	position		
	1	00001	0.0
	2	00011	0.01
	3	00010	0.02
	4	00110	0.04
	5	00111	0.06
	6	00101	0.08
	7	00100	0.10
	8	01100	0.20
	9	01101	0.30
	10	01111	0.40
	11	01110	0.50
	12	01010	0.60
	13	01011	0.70
	14	01001	0.75
	15	01000	0.80
	16	11000	0.85
	17	11001	0.90
	18	11011	0.95
	19	11010	1.00
	20	11110	1.05
	21	11111	1.10
	22	11101	1.15
	23	11100	1.20
	24	10100	1.20
	25	10101	1.20
	26 27	10111	1.20
	28	10110	1.20 1.20
	28	10010 10011	1.20
	30	10001	1.20
	31	10001	1.20
Deletedte			1.20
Related to	IS "Feedrate override active" (V3200 0006.7)		
Note for the reader:	802D SI Desc	ription of Functions: V1	

VB3200 0005	Rapid traverse override		
Interface signal	Signal(s) to channel (PLC \rightarrow NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Special cases, errors,	The feed disa	ble is inactive when G33 is active.	
Signal state 1 or signal			
transition 0> 1	1 -	orRapid traverse override	
	Switch	Code	Rapid traverse override
	position		factor
	1	00001	0.0
	2	00011	0.01
	3	00010	0.02
	4	00110	0.04
	5	00111	0.06
	6	00101	0.08
	7	00100	0.10
	8	01100	0.20
	9	01101	0.30
	10	01111	0.40
	11	01110	0.50
	12	01010	0.60
	13	01011	0.70
	14	01001	0.75
	15	01000	0.80
	16	11000	0.85
	17	11001	0.90
	18	11011	0.95
	19	11010	1.00
	20	11110	1.00
	21 22	11111 11101	1.00 1.00
	23	11100	1.00
	23	10100	1.00
	25	10100	1.00
	26	10111	1.00
	27	10110	1.00
	28	10010	1.00
	29	10011	1.00
	30	10001	1.00
	31	10000	1.00
Related to	IS "Rapid traverse override active" (V3200 0006.6)		
Note for the reader:	802D sl Description of Functions: V1		
INOLE IOI LIIE IEAUEI.	002D 31 DESC	inpuon or i uncuons. Vi	

V3200 0006.0	Feed disable		
Interface signal	Signal(s) to channel (PLC \rightarrow NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The signal is active on a channel in all operating modes.		
1	 The signal disables all axes interpolating relative to each other as long as G33 (thread) is not active. All axes are brought to a standstill with adherence to the path contour. When the feed disable is canceled (0 signal), the interrupted part program is continued. 		
	The position control is retained, i.e. the following error is eliminated.		
	 If a travel request is issued for an axis with an active "Feed disable", The pending travel request is executed immediately when the "Feed disable" is canceled. 		
	If the axis is interpolating in relation to others, this also applies to these axes.		
Signal state 0 or	The feedrate is enabled for all axes on the channel.		
signal transition 1>	• If a travel request ("Travel command") exists for an axis or group of axes when the "Feed disable" is canceled, this is executed immediately.		
Special cases, errors,	The feed disable is inactive when G33 is active.		
Note for the reader:	802D sl Description of Functions: V1		

V3200 0006.1	Read-in disable		
Interface signal	Signal(s) to channel (PLC> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	Data transfer of the next block into the interpolator is disabled. This signal is only active in modes AUTOMATIC and MDA.		
Signal state 0 or signal transition 1> 0	Data transfer of the next block into the interpolator is enabled. This signal is only active in modes AUTOMATIC and MDA.		
Application			
example(s)	In a case where an auxiliary function has to have been executed before the next block can be processed (e.g. for a tool change), automatic block change must be inhibited with read-in disable.		
	1 N20 T N21 G X M		
	3		
	4		
	N20 T , N21		
	7 8 9 10 9		
	1 Reading into buffer 6 Output of the auxiliary function		
	2 Reading into buffer 7 Data transfer into the interpolator		
	3 Read-in disable signal 8 Read-in disable for tool change		
	4 Data transfer 9 Query point of the read-in enable		
	5 Contents of the interpolator 6 Remove read-in disable		
Related to	IS "Program status running"		
Note for the reader:	802D sl Description of Functions: K1		

V3200 0006.4	Program level abort			
Interface signal	Signal(s) t	Signal(s) to channel (PLC> NCK)		
Edge evaluation: yes		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0> 1	(subroutin	signal transition 0 -> 1 the current p e level) is immediately aborted. Pro one level higher after the exit poin	ocessing of the part program	
Signal state 0 or signal transition 1> 0	No effect			
Special cases, errors,	The main program level cannot be aborted with this IS, only with IS "Reset".			
Note for the reader:	802D sl D	escription of Functions: K1		

V3200 0006.6	Rapid traverse override active		
Interface signal	Signal(s) to channel (PLC \rightarrow NCK)		
Edge evaluation: no	Signal(s) up	dated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The rapid traverse override between 0 and a maximum of 100% entered in the PLC interface is channelspecific.		
Signal state 0 or	The rapid traverse override entered in the PLC interface is ignored.		
signal transition 1>	If the rapid traverse override is not active, an override factor of 100% is used internally on the NC.		
	Note:		
	exception. In this case,	te 1st switch position of the gray-coded interface for the value represents an ception. In this case, this override factor is also used with "Rapid traverse erride inactive" and 0% is issued as the override value for axes.	
Special cases, errors,	The rapid traverse override is inactive if G33 is active.		
Related to	IS "Rapid traverse override" (V3200 0005)		
Note for the reader:	802D sl Description of Functions: V1		

V3200 0006.7	Feedrate override active		
Interface signal	Signal(s) to channel (PLC \rightarrow NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The feedrate override between 0 and a maximum of 120% entered in the PLC interface is active for the path feedrate and therefore automatically for the related axes. In JOG mode, the feedrate override acts directly on the axes.		
Signal state 0 or signal transition 1> 0	The feedrate override entered in the PLC interface is ignored. If the feedrate override is not active, an override factor of 100% is used internally on the NC.		
	Note:		
	The 1st switch position of the gray-coded interface for the value represents an exception. In this case, this override factor is also used with "Feedrate override inactive" and 0% is issued as the override value for axes (acts the same as "Feed disable").		
Special cases, errors,	The feedrate override is inactive if G33 is active.		
Related to	IS "Feedrate override" (V3200 0004)		
Note for the reader:	802D sl Description of Functions: V1		

V3200 0007.0	NC start disable			
Interface signal	Signal(s) t	Signal(s) to channel (PLC> NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	IS "NC Sta	art" is ineffective		
Signal state 0 or signal transition 1> 0	IS "NC Start" is effective.			
Application example(s)	This signal is used to suppress renewed program processing because, for example, there is no lubricant.			
Related to	IS "NC Start"			
Note for the reader:	802D sl Description of Functions: K1			

V3200 0007.1	NC Start		
Interface signal	Signal(s) to channel (PLC> NCK)		
Edge evaluation: yes	Signal(s) updated: cyclic	Signal(s) valid from SW status	
Signal state 1 or signal transition 0>	AUTOMATIC mode: The selected NC program If data are transferred from the PLC to the NC the data are calculated immediately on NC St	in the "Program interrupted" state,	
	MDA mode: The entered part program blocks continued.	are released for execution or	
Signal state 0 or signal transition 1> 0	No effect		
Related to	IS "NC Start disable"		
Note for the reader:	802D sl Description of Functions: K1		

V3200 0007.2	NC Stop at block limit		
Interface signal	Signal(s) to channel (PLC> NCK)		
Edge evaluation: no	'	Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The current NC program is stopped after the current part program block has been processed. Otherwise as for IS "NC Stop".		
Signal state 0 or signal transition 1> 0	No effect		
Related to	IS "NC Stop" IS "NC Stop axes plus spindles" IS "Program status stopped" IS "Channel status interrupted"		
Note for the reader:	802D sl D	escription of Functions: K1	

V3200 0007.3	NC stop
Interface signal	Signal(s) to channel (PLC> NCK)
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The current NC program is stopped immediately, the current block is not completed. Only the axes without contour violation are stopped. Distances to go are traversed only after a renewed start. The program status changes to "stopped", the channel status changes to "interrupted".
Signal state 0 or signal transition 1> 0	No effect
Application	
example(s)	On NC start the program is continued at the point of interruption. IS "NC Start" Program running Axis running Block processed
Special cases, errors, Related to Note for the reader:	The signal NC stop must be active for at least one PLC cycle. IS "NC Stop at block limit" IS "NC Stop axes plus spindles" IS "Program status stopped" IS "Channel status interrupted" 802D sl Description of Functions: K1

V3200 0007.4	NC Stop axes plus spindles
Interface signal	Signal(s) to channel (PLC> NCK)
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:
Signal state 1 or signal transition 0>	—go are not completed until a start signal is given. The axes and the spindle are stopped. They are brought to a controlled standstill, however. The program status changes to stopped, the channel status changes to interrupted.
Signal state 0 or signal transition 1> 0	No effect
Signal irrelevant for	Channel status Reset Program status aborted
Special cases, errors,	· ·
	All axes and spindles that were not caused to move by a program or program block (e.g. axes are moved by pressing the travel keys on the machine control panel) are not decelerated to zero speed with "NC stop axes plus spindles". The program is continued at the interrupted place with NC Start.
	The signal "NC stop axes plus spindles" must be pending for at least one PLC cycle.
	Signal NC Stop axes
	Signal NC Start
	Program running
	Axis running
	Spindle running
	Block processed —
Related to	IS "NC Stop at block limit" IS "NC Stop" IS "Program status stopped" IS "Channel status interrupted"
Note for the reader:	802D sl Description of Functions: K1

V3200 0013.5	Deactivate workpiece counter		
Interface signal	Signal(s) to channel (PLC> NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The workp	iece count monitoring is turned	off with activated tool monitoring.

Signal state 0 or	No effect
signal transition 1>	
0	
Related to	
Note for the reader:	802D sl Description of Functions: W1

V3200 1000.0 to .1	Activate handwheel (1 to 3)	for geometry	axis 1
V3200 1004.0 to .1	, , , , , , , , , , , , , , , , , , ,	for geometry a	
V3200 1008.0 to .1		for geometry a	
Interface signal	Signal(s) to channel (PLC -> NO	CK)	
Edge evaluation: no	Signal(s) updated: o	cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	These machine data determine handwheel 1, 2, 3 or no handwh	_	eometry axis is assigned to
1	Only one handwheel can be ass	signed to an ax	kis at any one time.
	If several "Activate handwheel" interface signals are set, priority "Handwheel 1" before "Handwheel 2" before "Handwheel 3" applies.		
	Note: Three geometry axes can to 3!	be traversed s	simultaneously with handwheels 1
Signal state 0 or signal transition 1> 0	Neither handwheel 1, 2 nor 3 is	assigned to th	is geometry axis.
Application example(s)	The PLC user program can use turning the handwheel on the ge		signal to disable the influence of
Related to	IS "Handwheel active" 1 to 3	for geometry	v axis 1: V3300 1000.0 to .2 v axis 2: V3300 1004.0 to .2 v axis 3: V3300 1008.0 to .2
Note for the reader:	802D sl Description of Functions		

V3200 1000.3 V3200 1004.3 V3200 1008.3	Feed stopGeo-axes (axes in the WCS)		
Interface signal	Signal(s) to channel (PLC \rightarrow NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or	The signal is only active in JOG mode (axes traversed in the WCS).		
signal transition 0>	The signal triggers a feed stop for the axis. Traversing axes are brought to a standstill under controlled braking (ramp stop). No alarm is output.		
	 The position control is retained, i.e. the following error is eliminated. If a travel request is issued for an axis with an active "Feed stop", the request is retained. This pending travel request is executed immediately after the "Feed stop" is canceled. 		
Signal state 0 or	The feedrate is enabled for the axis.		
signal transition 1>	 If a travel request ("Travel command") is active when the "Feed stop" is canceled, this is executed immediately. 		
Note for the reader:	802D sl Description of Functions: V1		

06/2009 Interface Signals

V3200 1000.4 V3200 1004.4 V3200 1008.4	Traverse key disable for geometry axis 1 for geometry axis 2 for geometry axis 3		
Interface signal	Signal(s) to channel (PLC -> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The traverse keys plus and minus have no effect on the geometry axes in question. It is thus not possible to traverse the geometry axis in JOG with the traverse keys on the machine control panel. If the traverse key disable is activated during a traverse movement, the geometry		
	axis is stopped.		
Signal state 0	Traverse keys plus and minus are enabled.		
Application example(s)	It is thus possible, depending on the operating mode, to disable manual traverse of the geometry axis in JOG mode with the traverse keys from the PLC user program.		
Related to	IS "Traverse key plus" and " minus" for geometry axis 1 (V3200 1000.7 and .6) for geometry axis 2 (V3200 1004.7 and .6)		
	for geometry axis 3 (V3200 1008.7 and .6)		
Note for the reader:	802D sl Description of Functions: H1		

V3200 1000.5 V3200 1004.5 V3200 1008.5	Rapid traverse override for geometry axis 1 for geometry axis 2		
Interface signal	for geometry axis 3 Signal(s) to channel (PLC -> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	If the PLC interface signal "Rapid traverse override" is set together with "Traverse key plus" and "Traverse key minus", the geometry axis in question traverses at rapid traverse set for JOG on the assigned machine axis (e.g.: X -> X1). The rapid traverse velocity is defined in MD 32010: JOG_VELO_RAPID. Rapid traverse override is active in the following JOG modes: Continuous traversing Incremental traversing If rapid traverse override is active, the velocity can be modified with the rapid traverse override switch.		
Signal state 0 or signal transition 1> 0	The geometry axis traverses at the defined JOG velocity (SD: JOG_SET_VELO or MD: JOG_VELO).		
Note for the reader:	802D sl Description of Functions: H1, V1		

V3200 1000.7 and .6	Traverse keys plus and minus	for geometr	ry axis 1
V3200 1004.7 and .6	for geometry axis 2		
V3200 1008.7 and .6	for geometry axis 3		
Interface signal	Signal(s) to channel (PLC -> NCK)		
Edge evaluation: yes	Signal(s) updated: c	yclic	Signal(s) valid from SW:

Signal state 1 or	The selected axis can be traversed in both directions in JOG mode with the			
signal transition 0>	traverse keys plus and minus.			
1				
	Incremental traversing			
	With signal 1 the axis starts to traverse at the set increment. If the signal changes to the 0 state before the increment is traversed, the traversing movement is interrupted. When the signal state changes to 1 again the movement is continued. The axis can be stopped and started several times as described above until the increment has been completely traversed.			
	Continuous traversal			
	If no INC measure is selected, and "continuous" is, the axis travels for as long as the traverse key is pressed.			
	If both traverse signals (plus and minus) are set at the same time, no movem occurs, or any current movement is aborted!			
	The effect of the traverse keys can be disabled for every axis individually with the PLC interface signal "Traverse key disable".			
	Notice! In contrast to machine axes, for geometry axes, only one geometry axis can be traversed at any one time using the traversing keys. Alarm 20062 is triggered if an attempt is made to traverse more than one axis with the traverse keys.			
Signal state 0 or signal transition 1>	No traverse			
Signal irrelevant for	Operating modes AUTOMATIC and MDA			
Special cases, errors,	The geometry axis cannot be traversed in JOG mode:			
	If it is already being traversed via the axis-specific PLC interface (as a machine axis).			
	If another geometry axis is already being traversed with the traverse keys.			
	Alarm 20062 "Axis already active" is output.			
Related to	IS "Traverse key plus" and "Traverse key minus" for the machine axes (V380x 0004.7 and .6)			
	IS "Traverse key disable" for geometry axis 1 (V3200 1000.4)			
	for geometry axis 2 (V3200 1004.4)			
	for geometry axis 3 (V3200 1008.4)			
Note for the reader:	802D sl Description of Functions: H1			

V3200 1001.0 to .6	for geometry axis 1		
V3200 1005.0 to .6	for geometry axis 2		
V3200 1009.0 to .6	for geometry axis 3		
Interface signal	Signal(s) to channel (PLC -> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic	Signal(s) valid from SW:	

Signal state 1 or signal transition 0>	This input range is only used if IS "INC inputs in mode group range active" (V2600 0001.0) is not set . The interface signals INC define how many increments the geometry axis traverses when the traverse key is pressed or the handwheel is turned one detent position. JOG mode must be active.
	With "INCvar" the value in the general SD 41010: JOG_VAR_INCR_SIZE applies. In mode "continuous" the associated geometry axis can be traversed with the plus or minus traversing key according to how the traverse key is pressed.
	As soon as the selected machine function becomes active, this is signaled to the PLC interface (interface signal "Active machine function INC1;").
	If several machine function signals (INC1, INC or "Continuous jogging") are selected at the interface simultaneously, no machine function is activated by the control. Note:
	The input IS "INC" or "continuous" for changing an active machine function must be active for at least one PLC cycle. A static application is not required.
Signal state 0 or signal transition 1>	The machine function in question is not selected. No change to the active machine function is requested.
0	If an axis is currently traversing an increment, this movement is also aborted if this machine function is deselected or changed over.
Related to	IS "Active machine function INC1," for geometry axis 1 (V3300 1001.06) for geometry axis 2 (V3300 1005.06) for geometry axis 3 (V3300 1005.06) IS "INC inputs in the mode group area active" (V2600 0001.0)
Note for the reader:	802D sl Description of Functions: H1

4.6.2 Signals from the channel

V3300 0000.3	Action block active		
Interface signal	Signal(s) f	Signal(s) from channel (NCK> PLC)	
Edge evaluation: no	'	Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>		rch: Output with accumulated auxilia ection NO TAG)	ary function outputs in progress
Application example(s)			
Note for the reader:	802D sl D	escription of Functions: K1	

V3300 0000.4	Approach block active			
Interface signal	Signal(s) f	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no	ı	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>		rch with calculation/on contour: Star n NO TAG)	rt block in progress (see	

Application	
example(s)	
Note for the reader:	802D sl Description of Functions: K1

V3300 0000.5	M0/M1 active		
Interface signal	Signal(s) f	rom channel (NCK> PLC)	
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	output and - M0 is sto - M1 is sto	rogram block has been processed, if bred in the working memory bred in the working memory and IS "am status changes to stopped.	·
Signal state 0 or signal transition 1> 0	- With IS "NC Start" - On program abort as a result of Reset		
Related to	IS "Activate M01" IS "M01 selected"		
Note for the reader:	802D sl Description of Functions: K1		

V3300 0000.6	Last action block active		
Interface signal	Signal(s) f	rom channel (NCK -> PLC)	
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>		ch: Last block of the output with one see Subsection NO TAG)	collected auxiliary function outputs in
Application example(s)			
Note for the reader:	802D sl De	escription of Functions: K1	

V3300 0001.0	Referencing active			
Interface signal	Signal(s) f	Signal(s) from channel (NCK -> PLC)		
Edge evaluation: yes		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	Channel-specific referencing is operational.			
Signal state 0 or	Channel-specific referencing has been completed			
signal transition 1>	Axis-specific referencing running			
	No referencing active			
Signal irrelevant for	Spindles			
Related to	"Activate referencing" interface signal (V3200 0001.0)			
Note for the reader:	802D sl Description of Functions: R1			

V3300 0001.2	Revolutional feedrate active		
Interface signal	Signal(s) from channel (NCK \rightarrow PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		

Signal state 1 or signal transition 0>	When programming G95 (revolutional feedrate) in the AUTOMATIC mode.
Application example(s)	
Related to	
Note for the reader:	802D sl Description of Functions: V1

V3300 0001.4	Block search active		
Interface signal	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no	ll .	Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0> 1	interface.		elected and started on the operator
Signal state 0 or signal transition 1> 0	The block search function is not active.		
Application example(s)	The block search function makes it possible to jump to a certain block within a part program and to start processing the part program at this block.		
Note for the reader:	802D sl Description of Functions: K1		

V3300 0001.5	M2/M30 active		
Interface signal	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	NC block with M2 is completely processed. If traversing motions are also programmed in this block, the signal is not output until the target position is reached.		
Signal state 0 or signal transition 1> 0	No program end or abortStatus after power-up of control systemStart of an NC program		
	Data transfer to working memory Block processed NC block with M2 M change signal (1 PLC cycle time) IS "M2/M30 active"		
Application example(s)	The PLC can detect the end of program processing with this signal and react appropriately.		

	 The functions M2 and M30 have equal priority. Only M2 should be used. IS "M2/M30 active" is applied statically at the end of a program. Not suitable for automatic follow-on functions such as workpiece counting, bar feed, etc. M2 must be programmed in a separate block and the word M2 or the
	decoded M signal used for these functions. - No auxiliary functions leading to read-in stop may be written in the last block of a program.
Note for the reader:	802D sl Description of Functions: K1

V3300 0001.6	Transformation active		
Interface signal	Signal(s) from NCK channel (NCK->PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	The NC command TRANSMIT or TRACYL is programmed in the part program. The corresponding block has been processed by the NC and a transformation is now active.		
Signal state 0 Edge change 1>0	No transformation is active.		
Note for the reader:	802D sl Description of Functions: M1		

V3300 0001.7	Program test active		
Interface signal	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0> 1	Program control "Program test" is active. Axis disable is set internally for all axes (not spindles). Therefore the machine axes do not move when a part program block or a part program is being processed. The axis movements are simulated on the operator interface with changing axis position values. The axis position values for the display are generated from the calculated setpoints. The part program is processed in the normal way.		
Signal state 0 or signal transition 1> 0	Program control Program test is not active.		
Related to	IS "Activate program test" IS "Program test selected"		
Note for the reader:	802D sl Description of Functions: K1		

V3300 0003.0	Program s	Program status running		
Interface signal	Signal(s) from channel (NCK> PLC)			
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	The part program has been started with IS "NC start" and is running.			
Signal state 0 or signal transition 1> 0	 Program stopped by M00/M01 or NC Stop or mode change. The block is executed in single-block mode. End of program reached (M2) Program abort by Reset Current block cannot be processed 			

Special cases, errors,	The IS "Program status running" does not change to 0 if workpiece machining is stopped by the following events:
	 Output of feed disable or spindle disable IS "Read-in disable" Feed override to 0% Response of the spindle and axis monitoring
Note for the reader:	802D sl Description of Functions: K1

V3300 0003.2	Program status stopped		
Interface signal	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The NC part program has been stopped by "NC stop", "NC stop axes plus spindles", "NC stop at block limit", programmed M0 or M1 or single block mode.		
Signal state 0 or signal transition 1> 0	Program status "stopped" is not active.		
Related to	IS "NC Stop" IS "NC Stop axes plus spindles" IS "NC Stop at block limit"		
Note for the reader:	802D sl Description of Functions: K1		

V3300 0003.3	Program status interrupted			
Interface signal	Signal(s) f	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	When changing from AUTOMATIC or MDA mode (when program has stopped) after JOG the program status switches to "interrupted". The program can be continued at the point of interruption in AUTOMATIC or MDA mode when "NC start" is operated.			
Signal state 0 or signal transition 1> 0	Program s	tatus interrupted is not active.		
Special cases, errors,	IS "Program status interrupted" signifies that the part program can be continued after an NC start.			
Note for the reader:	802D sl Description of Functions: K1			

V3300 0003.4	Program status aborted			
Interface signal	Signal(s) f	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	The program has been selected but not started or the current program was aborted with Reset.		tarted or the current program was	
Signal state 0 or signal transition 1> 0	Program s	Program status interrupted is not active.		
Related to	IS "Reset"			
Note for the reader:	802D sl Description of Functions: K1			

V3300 0003.5	Channel status active		
Interface signal	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or	In this cha	nnel	
signal transition 0>	 a part program or block is currently being processed in AUTOMATIC or MDA mode or 		
	at least one axis is		
being traversed in JOG mode.			
Signal state 0 or signal transition 1> 0	"Channel status interrupted" or "Channel status Reset" is active.		
Note for the reader:	802D sl Description of Functions: K1		

V3300 0003.6	Channel status interrupted		
Interface signal	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The NC part program in AUTOMATIC or MDA mode can be stopped by "NC stop", "NC stop axes plus spindles", "NC stop at block limit", programmed M0 or M1 or single block mode. With NC start the part program or the interrupted traversing movement can be continued.		
Signal state 0 or signal transition 1> 0	"Channel status active" or "Channel status Reset" is active.		
Note for the reader:	802D sl D	escription of Functions: K1	

V3300 0003.7	Channel status rese		
Interface signal	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The signal changes to 1 as soon as the channel goes into Reset status, i.e. no processing taking place.		
Signal state 0 or signal transition 1> 0	The signal changes to 0 if processing is taking place in the channel, e.g. execution of a part program or block search		
Note for the reader:	802D sl Description of Functions: K1		

V3300 0004.2	All axes referenced			
Interface signal	Signal(s) fi	Signal(s) from channel (PLC -> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW: 1.1		Signal(s) valid from SW: 1.1	
Signal state 1 or signal transition 0>	All axes referenced. (Note for axes requiring referencing: MD 34110: REFP_CYCLE_NR, MD 20700: REFP_NC_START_LOCK)			
Signal state 0 or signal transition 1> 0	One or more axes on the channel have not been referenced.			

Special cases, errors,	The spindles of the channel have no effect on this interface signal.
Related to	"Referenced/synchronizing 1" interface signal (V390x 0000.4)
Note for the reader:	802D sl Description of Functions: R1

V3300 0004.3	All axes stationary		
Data block	Signal(s) f	rom channel (NCK -> PLC)	
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	All axes assigned to the channel are stationary with interpolator end. No other traversing movements are active.		
Note for the reader:	802D sl Description of Functions: B1		

V3300 0006.0	Stroke initiation active		
Interface signal	Signal(s) from channel (NCK -> PLC)		
Edge evaluation:	Signal(s) updated: Signal(s) valid from S		Signal(s) valid from SW release:
Signal status 1 or	This signal indicates an active stroke initiation.		
signal transition 0>	1-signal: The stroke initiation is active.		
Signal status 0 or	0-signal: The stroke initiation is not active.		
signal transition 1>			

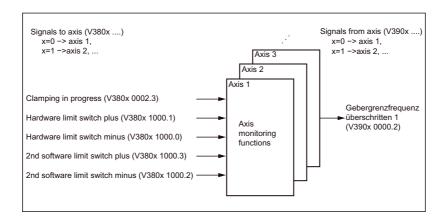
V3300 0006.1	Acknowledgment of manual stroke initiation		
Interface signal	Signal(s) from channel (NCK -> PLC)		
Edge evaluation:	Signal(s) updated: Signal(s) valid from SW release:		
Signal status 1 or	This signal indicates whether a manual stroke was initiated.		
signal transition 0> 1	1-signal: A manual stroke was initiated.		
Signal status 0 or	0-signal: No manual stroke was initiated.		
signal transition 1> 0			

V3300 0008 V3300 0009	Machine-related protection zone 1 (10) preactivated		
Interface signal	Signal(s) from the channel (NCK> PLC)		
Edge evaluation: no	Signal(s) updated: cyclically		
Signal status 1 or edge transition> 0>1	The machine-related protection zone 1 (10) is preactivated in the current block. (The preactivation was performed in the part program.) Thus, the protection zone can be activated or deactivated in the PLC user program using the interface signal DB21, DBX8.0 - DBX9.1 ("Activate machine-related protection zone 1 (10)").		
Signal status 0 or edge transition> 1> 0	The machine-related protection zone 1 (10) is deactivated in the current block. (The deactivation was performed in the part program.) Thus, the protection zone can be deactivated or set inactive in the PLC user program using the interface signal DB21, DBX8.0 - DBX9.1 ("Activate machine-related protection zone 1 (10)").		
Related to	DB21, DBX8.0 - DBX9.1 ("Activate machine-related protection zone 1 (10)").		

V3300 0010	Channel-specific protection zone 1 (10) preactivated Signal(s) from the channel (NCK> PLC)	
V3300 0011 Interface signal		
Edge evaluation: no		Signal(s) updated: cyclically
Signal status 1 or edge transition> 0> 1	The channel-specific protection zone 1 (10) is preactivated in the current block. (The preactivation was performed in the part program.) Thus, the protection zone can be activated or deactivated in the PLC user program using the interface signal DB21, DBX10.0 - DBX11.1 ("Activate channel-specific protection zone 1 (10)").	
Signal status 0 or edge transition> 1> 0	The channel-specific protection zone 1 (10) is deactivated in the current block. (The deactivation was performed in the part program.) Thus, the protection zone can be deactivated or set inactive in the PLC user program using the interface signal DB21, DBX10.0 - DBX11.1 ("Activate channel-specific protection zone 1 (10)").	
Related to with	DB21, DBX10.0 - DBX11.1 ("Activate channel-specific protection zone 1 (10)").	

V3300 0012 V3300 0013 Interface signal		ted protection zone 1 (10) violated n the channel (NCK> PLC)
Edge evaluation: no	0.9(0)	Signal(s) updated: cyclically
Signal status 1 or edge transition> 0> 1	block or in the	I, machine-related protection zone 1 (10) is violated in the current current JOG motion. The preactivated, machine-related protection would be violated in the current block if it would be set active by
Signal status 0 or edge transition> 1	The activated, machine-related protection zone 1 (10) is not violated in the current block. The preactivated, machine-related protection zone 1 (10) wo not be violated in the current block if it would be set active by the PLC.	
Application example(s)	work space w	e signal (IS) can be used to check before swinging parts into the whether the tool or the workpiece is in the machine-related ne of the part to be swung in.

V3300 0014 V3300 0015	Channel-specific protection zone 1 (10) violated	
Interface signal	Signal(s) from the channel (NCK> PLC)	
Edge evaluation: no	Signal(s) updated: cyclically	
Signal status 1 or edge transition> 0	The activated, channel-specific protection zone 1 (10) is violated in the current block. The preactivated, channel-specific protection zone 1 (10) would be violated in the current block if it would be set active by the PLC.	
Signal status 0 or edge transition> 1	The activated, channel-specific protection zone 1 (10) is not violated in the current block. The preactivated, channel-specific protection zone 1 (10) would not be violated in the current block if it would be set active by the PLC.	
Application example(s)	This interface signal (IS) can be used to check before swinging parts into the work space whether the tool or the workpiece is in the channel-specific protection zone of the part to be swung in.	


V3300 1000.0 to .1 V3300 1004.0 to .1 V3300 1008.0 to .1	Handwheel active (1 to 2) for geometry axis 1 for geometry axis 2 for geometry axis 3		
Interface signal	Signal(s) from channel (NCK -> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	These PLC interface signals report whether this geometry axis is assigned to handwheel 1, 2 or 3 or to no handwheel.		
1	Only one handwheel can be assigned to an axis at any one time.		
	If several "Activate handwheel" interface signals are set, priority "Handwheel 1" before "Handwheel 2" before "Handwheel 3" applies.		
	If the assignment is active, the geometry axis can be traversed with the handwheel in JOG mode.		
Signal state 0 or signal transition 1> 0	Neither handwheel 1, 2 nor 3 is assigned to this geometry axis.		
Related to	IS "Activate handwheel" (V3200 1000.0 to .2, V3200 1004.0 to .2, V3200 1008.0 to .2)		
Note for the reader:	802D sl Description of Functions: H1		

V3300 1000.7 and .6 V3300 1004.7 and .6	Travel command plus and minus for geometry axis for geometry axis 1 for geometry axis 2			
V3300 1008.7 and .6	for geometry axis 3			
Interface signal	Signal(s) from channel (NCK -> PLC)			
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or	A traverse movement of the axis is to be executed in one or the other direction.			
signal transition 0>	Depending on the mode selected, the command is triggered in different ways:			
1	JOG mode: with the plus or minus traverse key			
	REF submode: with the traverse key that takes the axis to the reference point			
	AUTO/MDA mode: the program block containing a coordinate value for the			
	axis in question is executed.			
Signal state 0 or	A travel command in the relevant axis direction has not been given or a traverse			
signal transition 1>	movement has been completed.			
0	JOG mode:			
	Cancelation of traverse key			
	While ending traversing with the handwheel.			
	REF submode:			
	When the reference point is reached			
	AUTO/MDA mode:			
	The program block has been executed (and the next block does not contain any coordinate values for the axis in question)			
	Abort with "RESET", etc.			
	IS "Axis disable" is active			
Application	To release clamping of axes with clamping			
example(s)	Note:			
	If the clamping is not released until the travel command is given, these axes cannot be operated under continuous path control!			

Related to	, , , , , , , , , , , , , , , , , , ,	for geometry axis 1 (V3200 1000.7 and
	.6)	
		for geometry axis 2 (V3200 1004.7 and .6)
		for geometry axis 3 (V3200 1008.7 and .6)
Note for the reader:	802D sl Description of Functions: H1	

	Active machine function INC1,, continuous		
V3300 1001.0,, .6 V3300 1005.0,, .6 V3300 1009.0,, .6	for geometry axis 1 for geometry axis 2 for geometry axis 3		
Interface signal	Signal(s) from channel (NCK -> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1 Signal state 0 or signal transition 1> 0	The PLC interface receives a signal stating which JOG mode machine function is active for the geometry axes. The machine function in question is not active.		
Related to	IS "Machine function INC1,, continuous" for geometry axis 1 (V3200 1001.06) for geometry axis 2 (V3200 1005.06) for geometry axis 3 (V3200 1009.06)		
Note for the reader:	802D sl Description of Functions: H1		

V3300 4001.1	Workpiece setpoint reached		
Interface signal	Signal(s) from channel (NCK> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The required number of workpieces is reached. According to setting in MD 27880: PART_COUNTER: Bit 1 = 0: when \$AC_REQUIRED_PARTS equal to \$AC_ACTUAL_PARTS Bit 1 = 1: when \$AC_REQUIRED_PARTS equal to \$AC_SPECIAL_PARTS		
Signal state 0 or signal transition 1> 0	The required number of workpieces is not reached.		
Note for the reader:	802D sl Description of Functions: K1		

PLC interface signals for axis monitoring functions

4.7.1 Transferred axis-specific M and S functions

VD370x 0000	M function for spindle		
Interface signal	Signals from axis/spindle (NCK -> PLC), axis-specific		
Edge evaluation:	Signal(s) updated: cyclic	Signal(s) valid from SW:	
	Generally the M functions are output in V250 V25001 range these only remain valid for new function is output.	•	
	In this IS "M function for spindle" selected spindle M functions are available to the PLC as a current integer value.		
	• M3 > value: 3		
	• M4 > value: 4		
	• M5 > value: 5		
Related to	specific IS auxiliary function transfer from NC chann	el (V2500)	
Note for the reader:	802D sl Description of Functions: S1		

VD370x 0004	S function for spindle		
Interface signal	Signals from axis/spindle (NCK -> PLC), axis-specific		
Edge evaluation:	Signal(s) updated: cyclic Signal(s) valid from SW:		
	Generally the S function is transferred to the PLC channel-specific in VD2500 4000 as a floating point value.		
	In this IS îS function for spindleî the floating point value is output to the PLC on an axis-specific basis:		
	S as the spindle speed in rpm (programmed value)		
	S as the constant cutting speed in m/min or ft/min for G96		
	The following S functions are not output here:		
	S as the programmed Spindle speed limiting G25		
	S as the programmed Spindle speed limiting G26		
	S as the dwell time in spindle revolutions		
Related to	specific		
Note for the reader:	802D sl Description of Functions: S1		

4.7.2 Signals to axis/spindle

VB380x 0000	Feedrate override (axis-specific)			
Interface signal	Signal(s) to axis (PLC \rightarrow NCK)			
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid fron			
Signal state 1 or signal transition 0> 1	The axis-specific feedrate override is defined via the PLC in gray coding.			
	Gray coding for axis-specific feedrate override			
	Switch Code		Axial feedrate over ride	
	position		factor	
	1	00001	0.0	
	2	00011	0.01	
	3	00010	0.02	
	4	00110	0.04	
	5	00111	0.06	
	6	00101	0.08	
	7	00100	0.10	
	8	01100	0.20	
	9	01101	0.30	
	10	01111	0.40	
	11	01110	0.50	
	12 13	01010 01011	0.60 0.70	
	14	01001	0.75	
	15	01000	0.75	
	16	11000	0.85	
	17	11001	0.90	
	18	11011	0.95	
	19	11010	1.00	
	20	11110	1.05	
	21	11111	1.10	
	22	11101	1.15	
	23	11100	1.20	
	24	10100	1.20	
	25	10101	1.20	
	26	10111	1.20	
	27	10110	1.20	
	28	10010	1.20	
	29	10011	1.20	
	30	10001	1.20	
	31	10000	1.20	
Related to	IS "Override active" (V380x 0001.7)			
Note for the reader:	802D sl Description of Functions: V1			

V380x 0001.1	Acknowledge fixed stop reached		
Interface signal	Signal(s) to axis/spindle (PLC \rightarrow NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	Meaning after the fixed stop has been reached IS "Fixed stop reached" = 1		
1	 → The axis pushes against the fixed stop with the clamping torque → The fixed stop monitoring window is activated → A block change is performed. 		
Signal state 0	Meaning after the fixed stop has been reached IS "Fixed stop reached" = 1		
	 → The axis pushes against the fixed stop with the clamping torque → The fixed stop monitoring window is activated → No block change is performed and channel alarm "Wait: Auxiliary function acknowledgment missing" is displayed. 		
Edge change 1>0			
	Meaning once the fixed stop has been reached: IS "Fixed stop reached" = 1 The function is aborted, the alarm "20094 axis %1 Function aborted" is		
	displayed.		
	Meaning when function is deselected "FXS = Torque limiting and monitoring of the fixed sto		
IS irrelevant for	MD 37060: FIXED_STOP_ACKN_MASK (mo for travel to fixed stop) = 0 or 1 (for values >1,		
Related to	MD 37060: FIXED_STOP_ACKN_MASK (mo for travel to fixed stop) IS "Fixed stop reached"	nitoring of PLC acknowledgments	
Note for the reader:	802D sl Description of Functions: F1		

V380x 0001.2	Sensor for fixed stop			
Interface signal	Signal(s)	Signal(s) to axis/spindle (PLC \rightarrow NCK)		
Edge evaluation: no	I.	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	Fixed stop	o is reached.		
Signal state 0 or signal transition 1> 0	Fixed stop is not reached.			
Related to	The signal is effective only if MD 37040: FIXED_STOP_BY_SENSOR is set to 1.			
Note for the reader:	802D sl Description of Functions: F1			

V380x 0001.7	Override active		
Interface signal	Signal(s) to axis/spindle (PLC \rightarrow NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	Feedrate override active (for axes): The axis-specific feedrate override between 0 and a maximum of 120% entered in the PLC interface is used.		
	Spindle override active (for spindle):		
	The spindle override of 50 to a maximum of 120% is used.		

Signal state 0 or	The existing axis-specific feedrate override or spindle override is not active.		
signal transition 1>	If the feedrate override is inactive, 100% is used as the internal override factor.		
0	Note:		
	coded interface for the value represents a special case. In this case, the override factor of the 1st switch position is also used with "Override inactive" and 0% is issued as the override value for axes (acts the same as "Feed disable"); accordingly 50%, is issued for the spindle.		
Special cases, errors,	The spindle override is always accepted with 100% in the spindle "Oscillation mode".		
	The spindle override acts on the programmed values before the limits (e.g. G26) intervene.		
	The feedrate override is inactive if G33 is active.		
Related to	IS "Feedrate override" and IS "Spindle override"		
Note for the reader:	802D sl Description of Functions: V1		

V380x 0002.0	Cam activation		
Interface signal	Signal(s) to axis/spindle (PLC> NCK)		
Edge evaluation: no	1	Signal(s) updated: cyclically	Signal(s) valid from SW release: 2.1
Signal status 1 or signal transition 0> 1	The output of the minus and plus cam signals of an axis to the general PLC interface is activated.		
	The activation comes immediately into effect after processing of the activation" in the NCK.		
Signal status 0 or signal	nal The minus and plus cam signals of an axis are not output to the genera		are not output to the general PLC
transition 1> 0	interface.		
Related to	IS "Minus cam signal 1-32" (V2700 0004.0 bis .7)		
	IS "Plus cam signal 1-32" (V2700 0008.0 to .7)		

V380x 0002.2	Spindle reset/Delete distance-to-go			
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)			
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:			
Edge change 0> 1	Independent of MD 35040: SPIND_ACTIVE_AFTER_RESET, spindle reset has the following effects for the			
	different spindle modes:			
	Open-loop control mode:			
	- Spindle stops			
	- Program continues running			
	 Spindle continues to run with subsequent M and S programcommands 			
	Oscillation mode:			
	Oscillation is aborted			
	- Axes continue to run			
	Program is continued with current gear stage			
	 With a subsequent M value and a higher S value, IS "Setpoint speed limited" (V390x 2001.1) is set if necessary. 			
	Positioning mode:			
	– is stopped			

Signal state 0 or signal transition 1> 0	No effect
Related to	MD 35040: SPIND_ACTIVE_AFTER_RESET (own spindle reset) IS "Reset" (V300 00000.7)
	IS "Delete distance-to-go" (V380x 0002.2) is another name for the same signal; however, it applies to each
	axis.
Note for the reader:	802D sl Description of Functions: S1

V380x 0002.3	Clamping in progress			
Data block	Signal(s) to axis/spindle (PLC> NCK)			
Edge evaluation: no		Signal(s) updated:	cyclic	Signal(s) valid from SW:
Signal state 1 or	Clamping	Clamping in progress		
signal transition 0>	The clamping monitoring function is activated.			
Signal state 0 or signal transition 1> 0	speed monitoring function takes over from the clamping monitoring function.			
Related to	MD 36050: CLAMP_POS_TOL (clamping tolerance)			
Note for the reader:	802D sl Description of Functions: A3			

V380x 0003.1	Enable travel to fixed stop			
Interface signal	Signal(s) to axis/spindle (PLC> NCK)			
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or signal transition 0>	Meaning when "FXS" function is selected via part program, (IS "Activate travel to fixed stop" = 1):			
1	Travel to fixed stop is enabled and the axis traverses from the start position at the programmed velocity to the programmed target position.			
Signal state 0	Meaning when "FXS" function is selected via part program, (IS "Activate travel to fixed stop" = 1): → Travel to fixed stop is disabled. → The axis is at the start position with reduced torque. → Channel alarm "Wait: Auxiliary function acknowledgment missing" is displayed.			
Edge change 1>0	Meaning before the fixed stop has been reached IS "Fixed stop reached" = 0 → Travel to fixed stop is aborted → Alarm "20094: axis%1 Function aborted" is displayed			
	Meaning once fixed stop has been reached IS "Fixed stop reached" = 1. Torque limiting and the monitoring of the fixed stop monitoring window are canceled.			
IS irrelevant for	MD 37060: FIXED_STOP_ACKN_MASK (monitoring of PLC acknowledgments for travel to fixed stop) = 0 or 2			
Related to	MD 37060: FIXED_STOP_ACKN_MASK (monitoring of PLC acknowledgments for travel to fixed stop) IS "Activate travel to fixed stop"			
Note for the reader:	802D sl Description of Functions: F1			

V380x 0003.6	Velocity/spindle speed limitation			
Data block	Signal(s)			
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or signal transition 0>	The NCK limits the velocity/spindle speed to the limit value set in MD 35160: SPIND_EXTERN_VELO_LIMIT.			
Signal state 0 or signal transition 1> 0	No limiting active.			
Related to	MD 35100: SPIND_VELO_LIMIT (max. spindle speed) SD 43220: SPIND_MAX_VELO_G26 (prog. spindle speed limiting G26) SD 43230: SPIND_MAX_VELO_LIMIT (prog. spindle speed limiting G96)			
Note for the reader:	802D sl Description of Functions: A3			

V380x 0004.0 to .1	Activate handwheel (1 to 2)				
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)				
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:				
Signal state 1 or signal transition 0>	This PLC interface signal defines whether this machine axis is assigned to handwheel 1, 2 or no handwheel.				
1	Only one handwheel can be assigned to an axis at any one time.				
	If several "Activate handwheel" interface signals are set, priority "Handwheel 1" before "Handwheel 2" applies.				
	If the assignment is active, the machine axis can be traversed with the handwheel in JOG mode.				
Signal state 0 or signal transition 1> 0	Neither handwheel 1, 2 is assigned to this geometry axis.				
Application example(s)	The PLC user program can use this interface signal to disable the influence of turning the handwheel on the axis.				
Related to	IS "Handwheel active" 1 to 2 (V390x 0004.0 to .1)				
Note for the reader:	802D sl Description of Functions: H1				

V380x 0004.3	Feed stop/Spindle stop (axis-specific)				
Interface signal	Signal(s) to axis/spindle (PLC \rightarrow NCK)				
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:				
Signal state 1 or	The signal is active in all modes.				
signal transition 0>	Feed stop:				
1	The signal triggers a feed stop for the axis. Traversing axes are brought to a standstill under controlled braking (ramp stop). No alarm is output.				
	The signal triggers a feed stop for all path axes interpolating relative to each other when the "Feed stop" is activated for any one of these axes. In this case, all the axes are brought to a stop with adherence to the path contour. When the feed stop signal is canceled, execution of the interrupted part program is resumed.				
	The position control is retained, i.e. the following error is eliminated.				
	If a travel request is issued for an axis with an active "Feed stop", the request is retained. This pending travel request is executed immediately when "Feed stop" is canceled. If the axis is interpolating in relation to others, this also applies to these axes.				
	Spindle stop:				
	The spindle is brought to a standstill along the acceleration characteristic.				
	 In positioning mode, activation of the "Spindle stop" signal interrupts the positioning process. The above response applies with respect to individual axes. 				
Signal state 0 or	Feed stop:				
signal transition 1>	The feedrate is enabled for the axis.				
0	If a travel request ("Travel command") is active when the "Feed stop" is canceled, this is executed immediately.				
	Spindle stop:				
	The speed is enabled for the spindle.				
	The spindle is accelerated to the previous speed setpoint with the acceleration characteristic or, in positioning mode, positioning is resumed.				
Application	Feed stop:				
example(s)	The traversing motion in the machine axes is not started when "Feed stop" is active, if, for example, certain operating states that do not permit axis motion (e.g. door not closed) prevail.				
	Spindle stop:				
	Change a tool				
Special cases, errors,					
Note for the reader	202D at Deparintion of Functions: V4				
Note for the reader:	802D sl Description of Functions: V1				

V380x 0004.4	Traverse key disable				
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)				
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:				
Signal state 1 or signal transition 0>	The traverse keys plus and minus have no effect on the machine axes in question. It is thus not possible to traverse the machine axis in JOG with the traverse keys on the machine control panel.				
	If the traverse key disable is activated during a traverse movement, the machine axis is stopped.				
Signal state 0 or signal transition 1> 0	Traverse keys plus and minus are enabled.				
Application example(s)	It is thus possible, depending on the operating mode, to disable manual traverse of the machine axis in JOG mode with the traverse keys from the PLC user program.				
Related to	IS "Traverse key plus" and "Traverse key minus" (V380x 0004.7 and .6)				
Note for the reader:	802D sl Description of Functions: H1				

V380x 0004.5	Rapid traverse override				
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)				
Edge evaluation: no Signal(s) updated: cyclic Signal(s) valid from S			Signal(s) valid from SW:		
Signal state 1 or signal transition 0> 1	If interface signal "Rapid traverse override" is set together with "Traverse key plus"and "Traverse key minus", the machine axis in question traverses at rapid traverse. The rapid traverse velocity is defined in MD 32010: JOG_VELO_RAPID. Rapid traverse override is active in the following JOG modes: Continuous jogging Incremental jogging If rapid traverse override is active, the velocity can be modified with the axis-				
	specific feedrate override switch.				
Signal state 0 or signal transition 1> 0	The machine axis traverses at the defined JOG velocity (SD 41110: JOG_SET_VELO or SD 41130, or MD 32020: JOG_VELO).				
Signal irrelevant for	Operating modes AUTOMATIC and MDA				
	Reference point approach (JOG mode)				
Related to	IS "Traverse key plus" and "Traverse key minus" (V380x 0004.7 and .6)				
	specific "Feedrate override" (VB380x 0000)				
Note for the reader:	802D sl Description of Functions: H1				

V380x 0004.7 and .6	Plus and minus traverse keys					
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)					
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:					
Signal state 1 or	The selected axis can be traversed in both directions in JOG mode with the					
signal transition 0>	traverse keys plus and minus.					
1	Incremental traversing					
	With signal 1 the axis starts to traverse at the set increment. If the signal changes to the 0 state before the increment is traversed, the traversing movement is interrupted. When signal state 1 occurs again, the traverse motion is restarted. The traversing motion of the axis can be stopped and restarted multiple times as described above until the increment has been fully traversed.					
	Continuous traversing					
	If no INC measure is selected but "continuous" is, the axis travels for as long as the traverse key is actuated.					
	If both traverse signals (plus and minus) are set at the same time there is no movement or a current movement is aborted. The effect of the traverse keys can be disabled for every axis individually with the PLC interface signal "Traverse key disable".					
Signal state 0 or signal transition 1> 0	No traverse					
Signal irrelevant for	Operating modes AUTOMATIC and MDA					
Application example(s)	specific PLC interface (as a geometry axis). Al	larm 20062 is signaled.				
Special cases,	Indexing axes					
Related to	IS "Traverse key plus" and " minus"					
	for geometry axis 1 (V3200 1000.7 and .6)					
	for geometry axis 2 (V3200 1004.7 and .6)					
	for geometry axis 3 (V3200 1008.7 and .6)					
	IS "Traverse key disable" (V380x 0004.4)					
Note for the reader:	802D sl Description of Functions: H1					

06/2009 Interface Signals

V380x 0005.0 to .6	Machine functions INC1, INC10, INC100, INC1000, INC10000, INCvar, continuous				
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)				
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:				
Signal state 1 or signal transition 0>	This input range is only used if IS "INC inputs in mode group range active" (V2600 0001.0) is not set . The interface signals "INC" define how many increments the machine axis traverses when the traverse key is pressed or the handwheel is turned one				
	detent position. JOG must be active. With "INCvar" the value in the general SD 41010: JOG_VAR_INCR_SIZE applies.				
	In "continuous" mode the associated axis can be traversed with the plus or minus traversing key according to how the traverse key is pressed.				
	As soon as the selected machine function becomes active, this is signaled to the PLC interface (IS "Active machine function INC1").				
	If several machine function signals (INC1, INC or "Continuous jogging" selected at the interface simultaneously, no machine function is activated control.				
	Note: The input IS "INC" or "continuous" for changing an active machine function must be active for at least one PLC cycle. A static application is not required.				
Signal state 0 or signal transition 1>	The machine function in question is not selected. No change to the active machine function is requested.				
0	If an axis is currently traversing an increment, this movement is also aborted if this machine function is deselected or changed over.				
Related to	IS "Active machine function INC1," (V390x 0005.06) IS "INC inputs in the mode group area active" (V2600 0001.0)				
Note for the reader:	802D sl Description of Functions: H1				

V380x 1000.1 and .0	Hardware limit switches plus and minus			
Data block	Signal(s) to axis/spindle (PLC> NCK)			
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or signal transition 0>	A switch can be mounted at each end of the travel range of a machine axis which will cause a signal "Hardware limit switch plus or minus" to be signaled to the NC via the PLC if it is approached. If the signal is recognized as set, alarm 021614 "Hardware limit switch + or -" is output and the axis is decelerated immediately. The braking mode is defined in MD 36600: BRAKE_MODE_CHOICE (deceleration behavior on hardware limit switch).			
Signal state 0 or signal transition 1> 0	Normal condition, hardware limit switch not triggered.			
Related to	MD 36600: BRAKE_MODE_CHOICE (deceleration behavior on hardware limit switch)			
Note for the reader:	802D sl Description of Functions: A3			

V380x1000.3 or .2	2nd software limit switch plus or minus
Data block	Signal(s) to axis/spindle (PLC> NCK)

Edge evaluation: no	Signal(s) updated	cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	2nd software limit switch for the plus or minus direction is active. 1st software limit switch for the plus or minus direction is not active. The 2nd software limit switches (plus and minus) can be activated in addition to the 1st software limit switches (plus and minus) via this interface signal. The position is defined by MD 36130: POS_LIMIT_PLUS2, MD 36120: POS_LIMIT_MINUS2 (2nd software limit switch plus, 2nd software limit switch minus).			
Signal state 0 or signal transition 1> 0	1st software limit switch for the 2nd software limit switch sw			
Related to	MD 36110: POS_LIMIT_PLU MD 36100: POS_LIMIT_MIN limit switch plus, software lim	JS, MD 36120: F	OS_LIMIT_PLUS2, POS_LIMIT_MINUS2, (software	
Note for the reader:	802D sl Description of Function	ons: A3		

V380x1000.7	Reference point approach delay			
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)			
Edge evaluation: no	Sig	nal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	The machine axis is positioned at the reference cam.			
Signal state 0 or signal transition 1> 0	The machine axis is positioned in front of the reference cam. A reference cam of appropriate length (to the end of the traversing range) has been used to prevent the machine axis from being positioned behind the referencing cam.			
Related to				
Note for the reader:	802D sl Descri	ption of Functions: R1		

V380x 2000.0 to .2	Actual gear stage A to C					
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)					
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:					
Signal state 1 (level- operated)	When the new gear is engaged, the IS "Actual gear stage A to C" and "Gear changed" are enabled by the PLC user. This informs the NCK that the correct gear stage has been successfully engaged. The gear change is complete (spindle oscillation mode is deselected), the spindle accelerates in the new gear stage to the last programmed spindle speed and the next block in the part program can be executed. The actual gear stage is specified in coded format (ABC values). A parameter set is used for each of the 5 gear stages and is assigned as follows:					
	Parameter set no.	VDI code CBA	ode			
	0	-	Data for axis mod	de	Servo gain factor Monitoring functions	
	1	000 001	Data for 1st gear	stage	M40 speed Min/max speed Acceleration	
	2	010	Data for 2nd gea		etc.	
	3	011	Data for 3rd gea			
	4	100	Data for 4th gea			
	5	101 110 111	Data for 5th gea	rstage		
Special cases, errors,	If the PLC user reports back to the NCK with a different actual gear stage than issued by the NCK as the set gear stage, the gear change is still treated as having been successfully completed and the actual gear stage A to C is activated.					
Related to	IS "Set gear stage A" to "C" (V390x 2000.0 to .2) IS "Change gear" (V390x 2000.3) IS "Gear changed" (V380x 2000.3) IS "Oscillation speed" (V380x 2002.5) Parameter sets (MD) for gear stages.					
Note for the reader:	802D sl Description of Functions: S1					

V380x 2000.3	Gear changed		
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)		
Edge evaluation: yes	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	When the new gear is engaged, the IS "Actual gear stage A to C" and "Gear changed" are enabled by the PLC user. This informs the NCK that the correct gear stage has been successfully engaged. The gear stage change is complete (spindle oscillation mode is deselected), the spindle accelerates in the new gear stage to the last programmed spindle speed and the next block in the part program can be executed. The IS "Change gear" is reset by the NCK, which causes the PLC user to reset the IS "Gear changed".		
Signal state 0 or signal transition 1> 0	No effect		
Signal irrelevant for	All spindle modes except oscillation mode		

Special cases, errors,	If the PLC user reports back to the NCK with a different actual gear stage than issued by the NCK as the set gear stage, the gear change is still treated as having been successfully completed and the actual gear stage A to C is activated.
Related to	IS "Actual gear stage A" to C" (V380x 2000.0 to .2) IS "Set gear stage A" to "C" (V390x 2000.0 to .2) IS "Change gear" (V390x 2000.3) IS "Oscillation speed" (V380x 2002.5)
Note for the reader:	802D sl Description of Functions: S1

V380x 2001.0	Feedrate override for spindle valid (instead of spindle override)		
Interface signal	Signal(s) from axis/spindle (PLC -> NCK)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The "Feedrate override" value (VB380x 0000) is used for the spindle instead of the "Spindle override" value.		
Signal state 0 or signal transition 1>	The "Spindle override" value is used.		
Related to	IS Spindle override" (VB380x 2003) IS Feedrate override" (V380x 0000) IS Override active" (V380x 0001.7)		
Note for the reader:	802D sl Description of Functions: V1		

V380x 2001.4	Resynchronize spindle during positioning 1		
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1	The spindle must be resynchronized during	g positioning.	
Signal state 0 or signal transition 1> 0	No effect		
Signal irrelevant for	All spindle modes except for positioning mode		
Application example(s)	The spindle has an indirect measuring system and slipping may occur between the motor and the clamp. If the signal=1 when the positioning process is started, the old reference is deleted and the zero mark searched for again before the end position is approached.		
Related to	"Referenced/synchronizing 1" interface signal (V390x 0000.4)		
Note for the reader:	802D sl Description of Functions: S1		

V380x 2001.6	Invert M3/M4		
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The direction of rotation of the spindle motor changes with the following functions: • M3 • M4 • M5		
	 SPOS from movement; not active for SPOS 	from standstill.	
Application example(s)	The machine has a selector switch for a vertical and horizontal spindle. The mechanical design incorporates one gear wheel more on the horizontal spindle than on the vertical spindle. The direction of rotation must therefore be changed on the vertical spindle if the spindle is always to rotate clockwise with M3.		
Note for the reader:	802D sl Description of Functions: S1		

V380x 2002.4	Oscillation via PLC		
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	If the IS "Oscillation via PLC" is enabled , the IS "Oscillation speed" effects output of a speed only in conjunction with the IS "Direction of rotation setpoint counterclockwise and clockwise". The oscillation, i.e. the continuous change of the direction of rotation, is performed by the PLC user with the IS "Direction of rotation setpoint counter-clockwise and clockwise" (oscillation via PLC).		
Signal state 0 or signal transition 1> 0	If the IS "Oscillation via PLC" is not enabled , the IS "Oscillation speed" triggers automatic oscillation on the NCK. The two times for the directions of rotation are entered in MD 35440: SPIND_OSCILL_TIME_CW (oscillation time for M3 direction) SPIND_OSCILL_TIME_CW (oscillation time for M3 direction) and MD 35450: SPIND_OSCILL_TIME_CCW (oscillation time for M4 direction).		
Application example(s)	If the new gear stage cannot be engaged in spite of several attempts by the NCK, the system can be switched to oscillation via PLC. Both of the times can then be altered by the PLC user. This assures a reliable change of the gear stage, even with unfavorable gear wheel positions.		
Related to	MD 35440: SPIND_OSCILL_TIME_CW (oscillation time for direction M3) MD 35450: SPIND_OSCILL_TIME_CCW (oscillation time for M4 direction) IS "Oscillation speed" (V380x 2002.5) IS "Set direction of rotation counterclockwise" (V380x 2002.7) IS "Set direction of rotation clockwise" (V380x 2002.6)		
Note for the reader:	802D sl Description of Functions: S1		

V380x 2002.5	Oscillation speed		
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	If the gear stage must be changed (IS "Change gear" (V390x 2000.3) is enabled), the spindle changes to oscillation mode. The spindle decelerates to a standstill with different acceleration levels, according to the point when the IS "Oscillation speed" (V380x 2002.5) was enabled:		
	 The IS "Oscillation speed" is enabled before the IS "Change gear" is enabled by the NCK. The spindle is brought to a standstill with the acceleration during oscillation (MD: SPIND_OSCILL_ACCEL). Once the spindle is stationary, oscillation is immediately initiated. 		
	2. The IS "Oscillation speed" is enabled after the IS "Change gear" is enabled by the NCK and when the spindle is stationary. The position controller is disabled. The spindle decelerates with the deceleration rate in speed controlled mode. After the IS "Oscillation speed" is set, the spindle starts to oscillate with the oscillation acceleration (MD:SPIND OSCILL ACCEL).		
	If the IS "Oscillation via PLC" (V380x 2002.4) is not enabled , the IS "Oscillation speed" triggers automatic oscillation on the NCK. The two times for the directions of rotation are entered in MD: in SPIND_OSCILL_TIME_CW (oscillation time for M3 direction) and SPIND_OSCILL_TIME_CCW (oscillation time for M4 direction).		
	If the IS "Oscillation via PLC" is enabled , the IS "Oscillation speed" effects output of a speed only in conjunction with the IS "Direction of rotation setpoint counterclockwise and clockwise". The oscillation, i.e. the continuous change of the direction of rotation, is performed by the PLC user with the IS "Direction of rotation setpoint counter-clockwise and clockwise" (oscillation via PLC).		
Signal state 0 or signal transition 1> 0	The spindle does not oscillate.		
Signal irrelevant for	All spindle modes except oscillation mode		
Application example(s)	The oscillation speed is used to facilitate the engagement of a new gear stage.		
Related to	IS "Oscillation via the PLC" (V380x 2002.4) IS "Set direction of rotation counterclockwise" (V380x 2002.7) IS "Set direction of rotation clockwise" (V380x 2002.6)		
Note for the reader:	802D sl Description of Functions: S1		

V380x 2002.7 / .6	Setpoint direction of rotation, counter-clockwise/setpoint direction of rotation, clockwise		
Interface signal	Signal(s) to axis/spindle (PLC -> NCK)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	When the IS "Oscillation via PLC" is enabled, the two IS "Direction of rotation setpoint counterclockwise" and "Direction of rotation setpoint clockwise" can be used to set the direction of rotation for the oscillation speed. The times for the oscillation movement of the spindle motor are defined by enabling the IS "Direction of rotation setpoint counterclockwise and clockwise" for a corresponding length of time.		
Signal irrelevant for	All spindle modes except oscillation mode		
Application example(s)	See IS "Oscillation via PLC"		
Special cases, errors,	If both of the IS are enabled simultaneously, no oscillation speed is output.		
	If no IS are set, then an oscillation speed is not output.		
Related to	IS "Oscillation via the PLC" (V380x 2002.4) IS "Oscillation speed" (V380x 2002.5)		
Note for the reader:	802D sl Description of Functions: S1		

VB380x 2003	Spindle override		
Interface signal	Signal(s) to spindle (PLC \rightarrow NCK)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0> 1	The spindle override is defined via the PLC in gray coding. The override value determines the percentage of the programmed speed setpoint that is issued to the spindle.		
	Schalter- einstellung	for spindle override Code	Spindelkorrekturfaktor
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	00001 00011 00010 00110 00111 00101 00100 01100 01101 01111 01110 01010 01011 01001 01000 11000 11001 11011 11011 11101 11110 11111 11101 10101 10101	0.5 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20
	29 30 31	10010 10011 10001 10000	1.20 1.20 1.20 1.20
Related to	IS "Feedrate	override for spindle valid" (V380x	c 2001.0)
Note for the reader:	802D sl Description of Functions: V1		

4.7.3 Signals from axis/spindle

V390x 0000.0	Spindle/no axis			
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)			
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or	The machine axis is operated as a spindle in the following spindle modes:			
signal transition 0>	Control mode			
1	Oscillation mode			
	Positioning mode			
	Thread drilling (tapping) without compensating chuck (rigid tapping)			
	The IS to axis (V380x 1000 to V380x 1003) and from axis (V390x 1000 to V390x 1003) are invalid.			
	The IS to spindle (V380x 2000 to V380x 2003) and from spindle (V380x 2000 to V380x 2003) are valid.			
Signal state 0 or	The machine axis is operated as an axis			
signal transition 1>	The IS to axis (V380x 1000 to V380x 1003) and from axis (V390x 1000 to V390x 1003) are valid.			
	The IS to spindle (V380x 2000 to V380x 2003) and from spindle (V380x 2000 to V380x 2003) are invalid.			
Application examples	If a spindle is sometimes also used as a rotary axis on a machine tool (turning machine with spindle/C axis or milling machine with spindle/rotary axis for rigid tapping), the "Spindle/no axis" signal can be used to determine whether the machine axis is in axis mode or spindle mode.			
Note for the reader:	802D sl Description of Functions: S1			

V390x 0000.2	Encoder limit frequency exceeded 1		
Data block	Signal(s) from axis/spindle (NCK> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or	The axis velocity defined in MD 36300: ENC_FREQ_LIMIT (encoder limit		
signal transition 0>	frequency) has been exceeded.		
1	The reference point for the position measuring system concerned has been lost		
	(IS: Referenced/synchronized is in signal state 0). Proper position closed loop		
	control is no longer possible.		
	The spindles continue to run with speed control.		
	The axes are brought to a standstill with rapid stop (with open position control		
	loop) along a speed setpoint ramp.		
Signal state 0 or	The axis velocity defined in MD 36300: ENC_FREQ_LIMIT is no longer		
signal transition 1>	exceeded.		
0	For the edge change 1>, the encoder frequency must have dropped below the		
	setting in MD 36302: ENC_FREQ_LIMIT_LOW (% value of MD 36300:		
	ENC_FREQ_LIMIT).		
Note for the reader:	802D sl Description of Functions: A3		

V390x 0000.4	Referenced/synchronizing 1		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation:	Signal(s) updated: Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	Axes: When, during a reference point approach, the machine axis has reached the reference point (incremental measurement systems) or target point (linear measuring system with distance-coded reference marks), the machine axis is deemed to have been referenced and the "referenced/synchronizing 1" interface signal (depending on which position measurement system is active during referencing) is enabled. Spindles: A spindle is synchronized (zero mark crossed or BERO responded) after		
0:	Power On after one spindle revolut		
Signal state 0 or signal transition 1> 0	The machine axis/spindle with position measurement system 1 is not referenced/synchronizing.		
Related to	"Position measuring system 1" interface signal (V380x 0000.5)		
Note for the reader:	802D sl Description of Functions: R1, S1		

V390x 0000.6	Position reached with exact stop coarse		
Data block	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The axis is in the appropriate exact stop and no interpolator is active for the axis and		
1	The control system is in the Reset mode (Reset key or end of program).		
	The axis was last programmed as a positioning spindle.		
	The path movement was stopped with NC Stop.		
	The spindle is in position-controlled mode and is stationary.		
	The axis is switched from speed-controlled to position-controlled mode with IS "Position measuring system".		
Signal state 0 or signal transition 1>	The axis is not in the appropriate exact stop or the interpolator is active for the axis or		
0	The path movement was stopped with NC Stop.		
	The spindle is in the speed-controlled mode.		
	"Parking mode" is active for the axis.		
	• The axis is switched from the position-controlled to the speed-controlled mode with using the IS "Position measuring system".		
Signal irrelevant for			
Related to	MD 36000: STOP_LIMIT_COARSE (exact stop coarse)		
Note for the reader:	802D sl Description of Functions: B1		

V390x 0000.7	Position reached with exact stop fine		
Data block	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	See IS "Po	osition reached with exact stop coar	se"
Signal state 0 or signal transition 1>	See IS "Position reached with exact stop coarse"		
Signal irrelevant for			
Related to	MD 26040: STOD LIMIT FINE (exect step fine)		
	MD 36010: STOP_LIMIT_FINE (exact stop fine)		
Note for the reader:	802D sl Description of Functions: B1		

V390x 0002.3	Measurement active		
Interface signal	Signal(s) from axis/spindle (NCK \rightarrow PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or	The "Meas	suring" function is active.	
signal transition 0>	This displays the current measurement status of the axis (measuring block with this axis is running).		
Signal state 0 or	The "Measuring" function is not active.		
signal transition 1>			
Note for the reader:	802D sl Description of Functions: M5		

V390x 0002.4	Activate travel to fixed end stop		
Interface signal	Signal(s) from axis/spindle (NCK ! PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The "Trave	el to fixed stop function" is active.	
Signal state 0 or signal transition 1> 0	The "Travel to fixed stop function" is not active.		
Note for the reader:	802D sl Description of Functions: F1		

V390x 0002.5	Fixed stop reached		
Interface signal	Signal(s) from axis/spindle (NCK ! PLC)		
Edge evaluation: no	Signal(s) updated: cycl	ic Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	The fixed stop was reached after s	election of the "FXS" function.	
Signal state 0 or signal transition 1> 0	The fixed stop has still not been rea	ached after selection of the "FXS" function.	
Note for the reader:	802D sl Description of Functions: F	1	

V390x 0004.0 to .2	Handwheel active (1 to 3)		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	These PLC interface signals provide feedback whether the machine axis is assigned to handwheel 1, 2, 3 or no handwheel.		
1	Only one handwheel can be assigned to an ax	kis at any one time.	
	If several "Activate handwheel" interface signals are set, priority "Handwheel 1" before "Handwheel 2" before "Handwheel 3" applies. If the assignment is active, the machine axis can be traversed with the handwheel in JOG mode.		
Signal state 0 or signal transition 1> 0	Neither handwheel 1, 2 nor 3 is assigned to this geometry axis.		
Related to	IS "Activate handwheel" (V380x 0004.0 to .2)		
	IS "Handwheel selected" from HMI (V1900 0003, ff)		
Note for the reader:	802D sl Description of Functions: H1		

V390x 0004.7 and .6	Plus and n	ninus traverse keys	
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: no	Signal(s) updated: cyclic Signal(s) valid from SW:		Signal(s) valid from SW:
Signal state 1 or signal transition 0>	Depending		e executed in one or the other direction. ommand is triggered in different ways: verse key
		•	that takes the axis to the reference point
	AUT/MD		containing a coordinate value for the axis
Signal state 0 or signal transition 1>		mmand in the relevant axis d has been completed.	lirection has not been given or a traverse
0	JOG mo	ode:	
	 Cancela 	tion of traverse key.	
	 While ending traversing with the handwheel. REF submode: When the reference point is reached AUT/MDA mode: The program block has been executed (and the next block does not contain any coordinate values for the axis in question) 		
	Abort with "RESET", etc.		
	• IS "Axis	disable" is active	
Application	To release clamping of axes with clamping (e.g. on a rotary table).		
example(s)	Note:		
		ping is not released until the operated under continuous p	travel command is given, these axes ath control!
Related to	IS "Traverse key plus" and "Traverse key minus" (V380x 0004.7 and .6)		
Note for the reader:	802D sl Description of Functions: H1		

V390x 0005.0,, .6	Active machine function INC1,, continuous		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: no		Signal(s) updated: cyclic	Signal(s) valid from SW:
Signal state 1 or signal transition 0>	active for	the machine axes.	g which JOG mode machine function is
Signal state 0 or signal transition 1>	The mach	ine function in question is not a	ctive.
Related to	IS "Machine function INC1,,continuous" (V380x 0005.0,, .6)		
Note for the reader:	802D sl Description of Functions: H1		

V390x 2000.0 to .2	Set gear stage A to C		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: yes	Signal(s) updated:	cyclic	Signal(s) valid from SW:
Signal state 1 or	A gear stage can be defined as follows:		
signal transition 0>	Permanent definition in the part program (M41 to M45)		
1	Automatic definition by the programmed spindle speed (M40)		
	M41 to M45:		
	The gear stage can be permanently defined in the part program with M41 to M45. If the M41 to M45 commands select a gear stage which is not the same as the current (actual) gear stage, the IS "Change gear" and the IS "Set gear stage A to C" are enabled.		
	M40:		
	M40 in the part program causes the gear stage to be selected automatically by the control. The control checks which gear stage is possible for the programmed spindle speed (S function). If a gear stage is identified that is not equal to the current (actual) gear stage, the "Change gear" and "Set gear stage A" to "C" interface signals are set.		
	The set gear stage is output in coded format:		
	1st gear stage 0 0 0 (C B A)		
	1st gear stage	0 0 1	
	2nd gear stage	0 1 0	
	3rd gear stage	011	
	4th gear stage 5th gear stage	1 0 0 1 0 1	
	Invalid value	110	
	Invalid value	111	
Signal irrelevant for	Other spindle modes except of	oscillation mode	
Related to	IS "Change gear" (V390x 2000.3) IS "Actual gear stage A" to "C" (V380x 2000.0 to .2) IS "Gear changed" (V380x 2000.3)		
Note for the reader:	802D sl Description of Function	ons: S1	

V390x 2000.3	Change gear stage		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	A gear stage can be defined as follows: • Permanent definition in the part program (M41 to M45) • Automatic definition by the programmed spindle speed (M40) M41 to M45:		
	The gear stage can be permanently defined in the part program with M41 to M45. If the M41 to M45 commands select a gear stage which is not the same as the current (actual) gear stage, the IS "Change gear" and the IS "Set gear stage A to C" are enabled.		
	M40:		
	M40 in the part program causes the gear stage to be selected automatically by the control. The control checks which gear stage is possible for the programmed spindle speed (S function). If a gear stage is identified that is not equal to the current (actual) gear stage, the "Change gear" and "Set gear stage A" to "C" interface signals are set.		
	While the signal = 1, the text "Wait for gear stage change" is displayed in the channel operating message".		
Special cases, errors,	The IS "Change gear" is only enabled when a new gear stage is selected that is not equal to the current actual gear stage.		
Related to	IS "Set gear stage A" to C"(V390x 2000.0 to .2) IS "Actual gear stage A" to "C" (V380x 2000.0 to .2) IS "Gear changed" (V380x 2000.3)		
Note for the reader:	802D sl Description of Functions: S1		

V390x 2001.0	Speed limit exceeded		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	If the actual speed exceeds the maximum spindle speed MD 35100: SPIND_VELO_ LIMIT by more than the spindle speed tolerance MD 35150 SPIND_DES_VELO_TOL the IS "Speed limit exceeded" is enabled and ala 22050 "Maximum speed reached" is output. All axes and spindles of the character brought to a standstill.	rm	
Related to	MD 35150: SPIND_DES_VELO_TOL (spindle speed tolerance) MD 35100: SPIND_VELO_LIMIT (maximum spindle speed) Alarm 22050 "Maximum speed reached"		
Note for the reader:	802D sl Description of Functions: S1		

V390x 2001.1	Setpoint speed limited (programmed speed too high)		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic	Signal(s) valid from SW:	
Signal state 1 or signal transition 0>	If a spindle speed (rev/min) or a constant cutting speed (m/min or ft/min) is programmed, the value is exceeded one of the following limits:		
1	Max. speed of specified gear stage		
	Maximum spindle speed		
	Speed limited by the PLC interface signal		
	Progr. Spindle speed limiting G26		
	Progr. Spindle speed limiting for G96 The spindle speed is limited to the maximum limit.		
Signal state 0 or signal transition 1> 0	If a spindle speed (1/min) or a constant cutting programmed, none of the limit values have be		
Application example(s)	The IS "Setpoint speed limited" can be used to speed cannot be achieved. The PLC user can permissible and block path feed, or he can block channel. IS "Spindle in set range" is processed.	recognize this condition as not ock the path feed or the entire	
Note for the reader:	802D sl Description of Functions: S1		

V390x 2001.2	Setpoint speed increased (programmed speed too low)
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:
Signal state 1 or signal transition 0> 1	If a spindle speed (rev/min) or a constant cutting speed (m/min or ft/min) is programmed, the value is below one of the following limits: • Minimum speed of the specified gear stage • Min. spindle speed • Speed limited by the PLC • Progr. Spindle speed limiting G25
	Progr. spindle speed limit for G96 The spindle speed is limited to the minimum limit.
Signal state 0 or signal transition 1> 0	If a spindle speed (1/min) or a constant cutting speed (m/min or ft/min) is programmed, the value has not fallen below any of the limits.
Application example(s)	The IS "Setpoint speed increased" can be used to detect that the programmed speed cannot be achieved. The PLC user can recognize this condition as not permissible and block path feed, or he can block the path feed or the entire channel. IS "Spindle in set range" is processed.
Note for the reader:	802D sl Description of Functions: S1

V390x 2001.5	Spindle in setpoint range
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:
Signal state 1 or signal transition 0>	The IS "Spindle in setpoint range" reports whether the programmed, and possibly limited spindle speed has been reached.
	In the spindle "control mode", the speed setpoint (programmed speed + spindle override including limits) is compared with the actual speed. If the actual speed deviates from the set speed by less than the spindle speed tolerance in MD 35150: SPIND_DES_VELO_TOL, the IS "Spindle in setpoint range" is enabled.
Signal state 0 or signal transition 1> 0	The IS "Spindle in setpoint range" reports whether the spindle is still in the acceleration or braking phase.
	In the spindle control mode, the speed setpoint (programmed speed * spindle override) is compared with the actual value. If the actual speed deviates from the set speed by more than the spindle speed tolerance in SPIND_DES_VELO_TOL, the IS "Spindle in setpoint range" is reset.
Signal irrelevant for	all spindle modes except for speed mode (control mode).
Application example(s)	The path feed must generally be disabled when the spindle is in the acceleration phase (programmed speed setpoint not yet reached).
	This can be performed as follows:
	The IS "Spindle in setpoint range" is evaluated and the IS "Feed disable" (V3200 0006.0) is enabled.
	MD 35500: SPIND_ON_SPEED_AT_IPO_START (feed enable with spindle in setpoint range) is enabled and the NCK then internally evaluates whether the spindle is in the setpoint range. The path feed is only enabled if the spindle is within the setpoint range. The positioning axes are never stopped by this function.
Related to	MD 35500: SPIND_DES_VELO_TOL (spindle speed tolerance)
Note for the reader:	802D sl Description of Functions: S1

	,
V390x 2001.7	Actual direction of rotation clockwise
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:
Signal state 1 or signal transition 0>	When the spindle is rotating, "Actual direction of rotation clockwise" = 1 signals that the direction of rotation is CLOCKWISE. The actual direction of rotation is derived from the spindle position measurement encoder.
Signal state 0 or signal transition 1> 0	When the spindle is rotating, "Actual direction of rotation clockwise" = 0 signals that the direction of rotation is COUNTERCLOCKWISE.
Signal irrelevant for	 Spindle stationary, IS "Axis/spindle stationary" = 1 (at standstill it is not possible to evaluate a direction of rotation) Spindles without a position measuring encoder
Related to	IS "Spindle stationary" (V390x 0001.4)
Note for the reader:	802D sl Description of Functions: S1

V390x 2002.0	Constant cutting rate active		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	For programming G96 S the constant cutting rate function is carried out. The S word is now the cutting value.		
Related to			
Note for the reader:	802D sl De	escription of Functions: S1	

V390x 2002.3	Rigid tapping active (no compensation)			
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)			
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:			
Signal state 1 or signal transition 0>	The spindle is running in the rigid tapping function [no compensating chuck] (thread interpolation G331/G332).			
1	The spindle speed is also programmed with S in rev/min for rigid tapping, however the direction of rotation is stored in the sign for the pitch.			
	There is no specific interface signals such as: IS "Spindle reset" IS "Synchronize spindle" IS "Invert M3/M4" IS "Spindle in setpoint range" IS "Programmable speed too high"			
Application example(s)	Certain functions should not be used during rigid tapping (no compensating chuck), such as:			
	Reset IS "Controller enable" (V380x 0002.1)			
	• IS "Set feed stop" (V380x 0004.3)			
	Reset			
	When activating the EMERGENCY STOP during rigid tapping, it should be remembered that the tool and workpiece are locked together.			
Related to				
Note for the reader:	802D sl Description of Functions: S1			

V390x 2002.5	Active spindle positioning mode		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	When programming SPOS= the spindle is in positioning mode.		
Related to	IS "Active spindle mode control mode" (V390x 2002.7)		
	IS "Active spindle mode oscillation mode" (V390x 2002.6)		
Note for the reader:	802D sl Description of Functions: S1		

V390x 2002.6	Active spindle mode oscillation mode		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The spindle is in oscillation mode if a new gear stage was defined using the automatic gear stage selection (M40) or M41 to M45 (IS "Change gear" is enabled). The IS "Change gear" is only enabled when a new gear stage is selected that is not equal to the current actual gear stage.		
Related to	IS "Active spindle mode control mode" (V390x 2002.7) IS "Active spindle mode positioning mode" (V390x 2002.5) IS "Change gear" (V390x 2000.3)		
Note for the reader:	802D sl Description of Functions: S1		

V390x 2002.7	Active spindle control mode		
Interface signal	Signal(s) from axis/spindle (NCK -> PLC)		
Edge evaluation: yes	Signal(s) updated: cyclic Signal(s) valid from SW:		
Signal state 1 or signal transition 0>	The spindle is in control mode with the following functions: Spindle direction of rotation input M3/M4 or spindle stop M5		
Related to	IS "Active spindle mode oscillation mode" (V390x 2002.6) IS "Active spindle mode positioning mode" (V390x 2002.5)		
Note for the reader:	802D sl Description of Functions: S1		

V390x5004.2	Reciprocation reversal active			
Interface signal	Signal(s) from axis/spindle			
Edge evaluation: no		Signal(s) updated: Signal(s) valid from SW release: cyclically		
Signal status 1 or signal transition 0>	The braking phase after reciprocation reversal from external (DB31,DBX28.0) is active.			
Signal status 0 or signal transition 1> 0	No braking after reciprocation reversal from external is active.			

V390x5004.3	Reciprocation cannot be started.			
Interface signal	Signal(s) from axis/spindle			
Edge evaluation: no		Signal(s) updated: Signal(s) valid from SW release: cyclically		
Signal status 1 or signal transition 0>	The reciprocating axis cannot be started; faulty programming. This state can also occur if the traversing motion has already been performed.			
Signal status 0 or signal transition 1>	The reciprocating motion can be started.			

V390x5004.4	Error during the reciprocating motion		
Interface signal	Signal(s)		
Edge evaluation:	Signal(s) updated: Signal(s) valid from SW release 2.1		Signal(s) valid from SW release: 2.1
Signal status 1 or signal transition 0>	The reciprocating motion was canceled.		
Signal status 0 or signal transition 1> 0	The reciprocating motion is performed without errors.		

V390x5004.5	Sparking-out active		
Interface signal	Signal(s) from axis/spindle		
Edge evaluation: no	Signal(s) updated: cyclically Signal(s) valid from SW release:		
Signal status 1 or signal transition 0>	The axis performs sparking-out strokes.		
Signal status 0 or signal transition 1> 0	The axis is currently not performing any sparking-out strokes.		
Related to	DBX100.7		

V390x5004.6	Reciprocating motion active		
Interface signal	Signal(s) from axis/spindle		
Edge evaluation: no	Signal(s) updated: cyclically Signal	al(s) valid from SW release:	
Signal status 1 or signal transition 0> 1	The axis performs a reciprocating motion between 2 reversal points.		
Signal status 0 or signal transition 1> 0	The axis is currently not reciprocating.		
Signal not relevant with	DBX100.7 = 0		
Related to	DBX100.7		

Axis-/spindle-specific signals

V390x5004.7	Reciprocation active		
Interface signal	Signal(s) from axis/spindle		
Edge evaluation: no		Signal(s) updated: cyclically	Signal(s) valid from SW release:
Signal status 1 or	The axis is currently traversed as a reciprocating axis.		
signal transition 0>			
Signal status 0 or	The axis is a positioning axis.		
signal transition 1>			
Related to	DBX100.5, DBX100.6		

V390x5008.0 to .5	Active infeed axes		
Interface signal	Signal(s) from axis/spindle		
Edge evaluation: no	•	Signal(s) updated: cyclically	Signal(s) valid from SW release:
Signal status 1 or signal transition 0>	The axis that issues the signal is currently the reciprocating axis and reports its active infeed axes (104.0 axis 1 is infeed axis, 104.1 axis 2 is infeed axis, etc.) in this field.		
Signal status 0 or signal transition 1> 0	The appropriate axis is not an infeed axis.		
Related to	DBX100.7		

4.8 Tool management functions from NC channel

V5300 0000.0	Tool prewarning limit reached					
Interface signal	Signal(s) from channel (NCK> PLC)					
Edge evaluation: yes Signal(s) updated: Job controlled Signal(s) valid from SW: by NCK						
Signal state 1/ value	The prewarning limit for a tool to be monitored was reached. The T number is provided in VD5300 1000.					
Signal state 0	No prewarning limit reached					
Note for the reader:	802D sl Description of Functions: W1					

V5300 0000.1	Tool limit value reached					
Interface signal	Signal(s) from channel (NCK> PLC)					
Edge evaluation: yes	Signal(s) updated: Job controlled Signal(s) valid from SW: by NCK					
Signal state 1/ value	The limit for a tool to be monitored was reached. The T number is provided in VD5300 1004.					
Signal state 0	Limit value reached					
Note for the reader:	802D sl Description of Functions: W1					

VD5300 1000	T number	T number for tool prewarning limit					
Interface signal	Signal(s) f	Signal(s) from channel (NCK> PLC)					
Edge evaluation: yes		Signal(s) updated: Job controlled by NCK	Signal(s) valid from SW:				
Signal state 1/ value	The T nun	ber for which the tool prewarning li	mit is set is provided.				
Signal state 0	No tool nu	No tool number reported					
Note for the reader:	802D sl D	escription of Functions: W1					

VD5300 1004	T number f	T number for tool limit value					
Interface signal	Signal(s) fr	Signal(s) from channel (NCK> PLC)					
Edge evaluation: yes		Signal(s) updated: Job controlled by NCK	Signal(s) valid from SW:				
Signal state 1/ value	The T num	ber for which the tool limit value is	set is provided.				
Signal state 0	No tool nur	No tool number reported					
Note for the reader:	802D sl De	escription of Functions: W1					

Interface Signals 06/2009

Tool management functions from NC channel

PLC User Interface 5

5.1 Adressranges

Operand identifiers	Description	Area		
V	Data	V0.0 to V79999999.7 (see below)		
Т	Timers	T0 to T15 (100 ms) T16 to T39 (10 ms)		
С	Counters	C0 to C31		
I	Figure: digital inputs	I0.0 to I17.7		
Q	Figure: digital outputs	Q0.0 to Q11.7		
M	Flag	M0.0 to M383.7		
SM	Special flag	SM0.0 to SM 0.6 (see below)		
0	ACCU (logic)	AC0, AC1 (UDword)		
0	ACCU (arithmetic)	AC2, AC3 (Dword)		

Structure of V-range addresses:

Type identifier (DB no.)	Range No. (channel and axis No.)	Subarea	Offset	addressing
10	00	0	000	symbolic (8-digit)
(10-79)	(00-99)	(0-9)	(000-999)	

Special flag - SM bit definition (read-only):

SM bits	Description
SM0.0	Flag with defined ONE signal
SM0.1	Initial setting: first PLC cycle '1', following cycles '0'
SM0.2	Buffered data lost - only valid in first PLC cycle ('0' data ok, '1' data lost)
SM0.3	Power On: first PLC cycle '1', following cycles '0'
SM 0.4	60 s cycle (alternating '0' for 30 s, then '1' for 30 s)
SM 0.5	1 s cycle (alternating '0' for 0.5 s, then '1' for 0.5 s
SM 0.6	PLC cycle (alternating one cycle '0', then one cycle '1')

Adressranges

Note

All empty fields in the user interface are "Reserved for Siemens" and must not be written in or evaluated!

Fields marked with "0" always receive the value "logical 0".

References to the description of the interface signals refer to the corresponding chapters of the description of functions and are specified by [F "Chapter number"].

Variable access rights:

[r] labels the range "read only" allowed

[r/w] labels the range "read/ write" allowed additionally data format specification:

1: BIT

8: BYTE

16: INT/WORD

32: DINT/DWORD/REAL

Without data format specification: all named data formats are readable and writable.

06/2009 PLC User Interface

User data

5.2 User data

5.2.1 User data 1

1000		Data 1 [r/w]								
Data Block										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		-		Use	r data					
1000 0000										
up to			Į.	1	l	l		l		
		User data								
1000 0011										

5.2.2 User data 2

1100		Data 2 [r/w]						
Data Block								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
				Use	r data			1
1100 0000								
up to		<u> </u>		1		1		
	User data							
1100 0007								

5.2.3 Signals from MCP (connected to the MCPA module)

1000	D	ata 1 [r/w]						
Data block								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1000 1000	Key 8	Key 7	Key 6	Key 5	Key 4	Key 3	Key 2	Key 1
	JOG	Var. INC	User key 6	User key 5	User key 4	User key 3	User key 2	User key 1
1000 1001	Key 16	Key 15	Key14	Key 13	Key 12	Key 11	Key 10	Key 9
	4th axis	Spindle left	Spindle STOP	Spindle CW	MDA	Single block	AUTO	LOG REF
1000 1002	Key 24	Key 23	Key 22	Key 21	Key 20	Key 19	Key 18	Key 18
	4th axis	1st axis	2nd axis	3rd axis	Rapid	3rd axis	2nd axis	1st axis
	+	-	-	+	traverse override	-	+	+
1000 1003						Key 27	Key 26	Key 25
						START	STOP	RESET
1000 1004				Feedrate override switch				I
				Е	D	С	В	Α
1000 1005					Spin	dle override s	witch	•
				Е	D	С	В	Α

User data

5.2.4 Signals to MCP (connected to the MCPA module)

1000		Data 1 [r/w]						
Data block								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1100 1000			LED 6	LED 5	LED 4	LED 3	LED 2	LED 1

5.2.5 Reading/writing NC data: Job [F20.6]

1200		NC data I/s [r/w]							
Data Block		PLC interface> NCK							
Byte	Bit 7		Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1200 0000							PI services	Write variable	Start
1200 0001		Number variable index PI							

1200 1207	NC data	NC data I/s [r/w]											
Data Block	PLC interfa	PLC interface> NCK											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
120x1000		Variable index											
120x1001				Area	number								
120x1002			Line in	dex for the N	CK variable x	(WORD)							
120x1004			Column	index for the	NCK variable	x (WORD)							
120x1006													
120x1008		Writing	: Data to NCK	(variable x (d	Writing: Data to NCK variable x (data type of the variables: 14 bytes)								

5.2.6 Read/write NC data: Result [F20.6]

1200		NC data I/s [r/w]						
Data Block NCK interface> PLC								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1200 2000							Error in job	Request completed
1200 2001								
1200 2002								

06/2009 PLC User Interface

Retentive data area

1200 1207 NC data I/s [r/w]									
Data Block	NCK interface> PLC								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
120x3000								Invalid variable	
120x3001				Acces	s result				
120x3002									
120x3004		Reading: Data from NCK variable x (data type of the variables: 14 bytes)							

Access result:

0 No error

3 Illegal access to object

5 Invalid address

10 Object does not exist

5.3 Retentive data area

1400	R	Retentive data [r/w]									
Data Block											
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
		1	1	Use	r data		l .				
1400 0000											
up to		1	1	1		1	1				
		User data									
1400 0383											

User alarm

5.4 User alarm

Note:

Information on PLC alarms, including configuring user alarms, can be found in:

References:

Operating Instructions", Chapter "PLC alarms"

5.4.1 User alarm: Activation

1600		Activating al	larm [r/w]							
Data Block		PLC interface -	> HMI							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		Activation of alarm no.								
1600 0000	700007	7 700006	700005	700004	700003	700002	700001	700000		
				Activation	of alarm no.					
1600 0001	700015	700014	700013	700012	700011	700010	700009	700008		
		Activation of alarm no.								
1600 0002	700023	700022	700021	700020	700019	700018	700017	700016		
	Activation of alarm no.									
1600 0003	700031	700030	700029	700028	700027	700026	700025	700024		
				Activation	of alarm no.					
1600 0004	700039	700038	700037	700036	700035	700034	700033	700032		
				Activation	n of alarm no.					
1600 0005	700047	7 700046	700045	700044	700043	700042	700041	700040		
				Activation	of alarm no.					
1600 0006	700055	700054	700053	700052	700051	700050	700049	700048		
	Activation of alarm no.									
1600 0007	700063	700062	700061	700060	700059	700058	700057	700056		

				Activation	of alarm no.						
1600 0008	700071	700070	700069	700068	700067	700066	700065	700064			
	Activation of alarm no.										
1600 0009	700079	700078	700077	700076	700075	7000074	700073	700072			
	Activation of alarm no										
1600 0010	700087	700086	700085	700084	700083	700082	700081	700080			
		Activation of alarm no.									
1600 0011	700095	700094	700093	700092	700091	700090	700089	700088			
		Activation of alarm no.									
1600 0012	700103	700102	700101	700100	700099	700098	700097	700096			
				Activation	of alarm no.						
1600 0013	700111	700110	700109	700108	700107	700106	700105	700104			
				Activation	of alarm no.						
1600 0014	700119	700118	700117	700116	700115	700114	700113	700112			
	Activation of alarm no.										
1600 0015	700127	700126	700125	700124	700123	700122	700121	700120			

06/2009 PLC User Interface

User alarm

5.4.2 Variable for alarm

1600	Variable fo	Variable for alarm [r32/w32]						
Data Block	PLC interfa	C interface> HMI						
Start byte								
1600 1000	<u>.</u>	Var	riable for alarn	n 700000 (4 b	ytes)			
1600 1004		Var	riable for alarn	n 700001 (4 b	ytes)			
1600 1008		Var	riable for alarn	n 700002 (4 b	ytes)			
1600 1244		Variable for alarm 700125 (4 bytes)						
1600 1248		Variable for alarm 700126 (4 bytes)						
1600 1252		Variable for alarm 700127 (4 bytes)						

5.4.3 Active alarm reaction

1600	Active alarm reaction [r]								
Data Block		PLC interface	PLC interface> HMI						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1600 2000				PLC STOP	EMERGE NCY STOP	Feed disable on all axes	READ-in disable	NC start disable	
1600 2001		-				•			
1600 2002									
1600 2003									

5.5 Signals from/to HMI

5.5.1 Program control signals from HMI (retentive area)

1700		HMI signals [r]								
Data Block		HMI interface	> PLC							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
1700 0000		Test run feedrate selected [F-K1]	M01 selected [F-K1]		DRF selected					
1700 0001	Program test selected [F-K1]				Feedrate override for rapid traverse selected [[F-K1] [F-V1]					
1700 0002	Skip block 7 selected [F-K1]	Skip block 6 selected [F-K1]	Skip block 5 selected [F-K1]	Skip block 4 selected [F-K1]	Skip block 3 selected [F-K1]	Skip block 2 selected [F-K1]	Skip block 1 selected [F-K1]	Skip block 0 selected [F-K1]		
1700 0003	Measuring in JOG active [F-M5]	Measure value calculation not finished					Skip block 9 selected [F-K1]	Skip block 8 selected [F-K1]		

5.5.2 Program selection from PLC (retentive area)

1700		HMI signals [r/w]							
Data Block		PLC interface> HMI							
Byte	Bit	7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1700 1000		Program selection from PLC: Program number [F-A2]							
1700 1001				Comma	nd job from P	LC: Commar	nd [F-A2]		
1700 1002 to 1700 1003									

5.5.3 Checkback signal Program selection from HMI (retentive area)

1700		НМІ	HMI signals [r]							
Data Block		НМІ	MI interface> PLC							
Byte	Bi	t 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
1700 2000								Error Program selection [F-A2]	Program selected [F-A2]	

1700 2001				Error	Execute
				Command	command
				execution	[F-A2]
				[F-A2]	
1700 2002					
to					
1700 2003					

5.5.4 Signals from HMI

1800		НМІ	signals [r]									
Data Block		HMI interface> PLC										
Byte	Bi	7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
1800 0000	Re	set	Start measuring in JOG [F-M5]		Mode group change over disable [F-M5]		JOG mode [[F-M5]	MDA mode [F-M5]	AUTO mode [F-M5]			
1800 0001							Machine function REF [F-M5]		Machine function TEACH IN [F-M5]			

5.5.5 Signals from PLC

1800		Signals f	rom PLC	[r]					
Data Block		PLC interface							
Byte		Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1800 1000	MC	PA exists						up with saved data [F-A2]	up with default values [F-A2]
1800 1001									
1800 1002									
1800 1003									

Signals from/to HMI

5.5.6 Signals from operator panel (retentive area)

1900	ŀ	HMI signals [r/w]									
Data Block	F	HMI interface>	MI interface> PLC								
Byte	Bit 7	7 Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
1900 0000		Simulation active [F-K1]									
1900 0001											
1900 0002											
1900 0003											

5.5.7 General selection/status signals from HMI (retentive area)

1900	HMIs	signals [r]						
Data Block	HMI ir	nterface>	PLC					
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1900 1000						"		
1900 1001								
1900 1002								
					Axis nu	mber for hand	dwheel 1	
1900 1003	Machine					С	В	Α
	axis [F-H1]					[F-H1]	[F-H1]	[F-H1]
					Axis nu	mber for hand	dwheel 2	
1900 1004	Machine					С	В	Α
	axis [F-H1]					[F-H1]	[F-H1]]	[F-H1]
1900 1005								
1900 1006								
1900 1007								

5.5.8 General selection/status signals to HMI (retentive area)

1900			Sign	als to ope	rator panel	[r/w]			
Data Block			PLC	interface	-> HMI				
Byte	Bit 7	Bit	6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1900 5000							OP key disable [F-A2]		
1900 5001									Update tool list [F-W1]
1900 5002									Enable tool measuring in JOG [F-M5]
1900 5003									
1900 5004 1900 5007				T numbe	er for tool mea [F-	suring in JO M5]	G (DINT)		

5.6 Auxiliary function transfer from NC channel

2500	Au	Auxiliary functions from NCK channel[r]										
Data Block	NCI	K interface	> PLC									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
2500 0000												
up to												
2500 0003												
2500 0004				M fcts. 5	M fcts. 4	M fcts. 3	M fcts. 2	M fcts. 1				
				Change	Change	Change	Change	Change				
				[F-H2]	[F-H2]	[F-H2]	[F-H2]	[F-H2]				
2500 0005												
2500 0006								S fcts. 1 change [F-H2]				
2500 0007												
2500 0008								T function 1 change [F-H2]				
2500 0009												
2500 0010								D function 1 change [F-H2]				
2500 0011												
2500 0012						H fcts. 3 change [F-H2]	H fcts. 2 change [F-H2]	H fcts. 1 change [F-H2]				
2500 0013												
up to												
2500 0019												

5.6.1 Decoded M signals: (M0 - M99)

2500		M functions f	rom NCK c	hannel[r]							
Data Block		NCK interface	> PLC								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Dynamic M functions [F-H2]										
2500 1000	M7	M6	M5	M4	М3	M2	M1	MO			
			Dynam	nic M function	is [F-H2]						
2500 1001	M15	M14	M13	M12	M11	M10	M9	M8			
			Dynam	nic M function	is [F-H2]						
2500 1002	M23	M22	M21	M20	M19	M18	M17	M16			
		ı	I		ı	ı					
			Dynam	ic M function	s [F-H2]						
2500 1012					M99	M98	M97	M96			
2500 1013											
up to											
2500 1015											

Remarks:

The signals are output for the duration of a PLC cycle.

Static M functions must be created from dynamic M functions by the PLC user himself / herself.

Dynamic M functions are decoded by the basic program (M00 to M99).

5.6.2 Transferred T functions

2500	Т	T functions from NCK channel[r]								
Data Block	N	NCK interface> PLC								
Start byte	Bit 7	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0								
2500 2000		T function 1 (DINT) [F-H2]								
2500 2004										
to										
2500 2007										

5.6.3 Transferred M functions

2500	M	If functions from NCK channel[r]									
Data Block	N	ICK interface> PLC									
Start byte	Bit 7	t 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0									
2500 3000				M function 1 (D	DINT) [F-H2]	1					
2500 3004			Extend	ed address of	M function 1	(byte)					
2500 3008		M function 2 (DINT) [F-H2]									
2500 3012		Extended address of M function 2 (byte)									
2500 3016				M function 3 (D	DINT) [F-H2]						
2500 3020			Extend	ed address of	M function 3	(byte)					
2500 3024				M function 4 (D	DINT) [F-H2]						
2500 3028		Extended address of M function 4 (byte)									
2500 3032		M function 5 (DINT) [F-H2]									
2500 3036		Extended address of M function 5 (byte)									

5.6.4 Transferred S functions

2500	,	S functions from NCK channel[r]								
Data Block		ICK interface> PLC								
Start byte	Bit 7	7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 6								
2500 4000		S function 1 (REAL) [F-H2]								
2500 4004		Extended address of S function 1 (byte)								
2500 4008			S	function 2 (RI	EAL) [F-H2]					
2500 4012			Extende	ed address of	S function 2 (b	yte)				
2500 4016										
2500 4020										

NCK signals

5.6.5 Transferred D functions

2500		D functions from NCK channel[r]							
Data Block		NCK interface> PLC							
Start byte	Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0						
2500 5000		-	D function 1 (DINT) [F-H2]						
2500 5004									

5.6.6 Transferred H functions

2500	H functions from NCK channel[r]									
Data Block		NCK interface> PLC								
Start byte	Bit 7	7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1								
2500 6000		H function 1 (REAL) [F-H2]								
2500 6004		Extended address for H function 1 (INT) [F-H2]								
2500 6008				H function	2 (REAL)					
2500 6012			Extended	address for H	I function 2 (II	NT) [F-H2]				
2500 6016		H function 3 (REAL) [F-H2]								
2500 6020		Extended address for H function 3 (INT) [F-H2]								

5.7 NCK signals

5.7.1 General signals to NCK

2600	Gene	General signals to NCK [r/w]										
Data Block	PLC in	nterface>	NCK									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
2600 0000	Р	rotection leve	i [F-A2]			Acknowled ge EMERGE NCY STOP [F-N2]	EMERGE NCY STOP [F-N2]	Braking at contour in case of EMERGE NCY STOP [F-N2]				
	4	5	6	7								
2600 0001						Request axis distances- to-go [F-H1]	Request axis actual values [F-H1]	INC inputs in mode group range active 1) [F-H1]				
2600 0002												
2600 0003												

Remarks:

1) see operating mode signals

5.7.2 General signals from NCK

2700		General signals from NCK [r]											
Data Block		NCK	interface	> PLC									
Byte	Bit 7	,	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
2700 0000								EMERGE NCY STOP active [F-N2]					
2700 0001	INCI dimens syste [F-G2	ion m						Probe 2 actuated [F-M5]	Probe 1 actuated [F-M5]				
2700 0002			Drive ready [F-A2]	Drives in cyclical operation [F-A2]									
2700 0003			Air tempe- rature alarm [F-A2]						NCK alarm is active [F-A2]				
2700 0004	Softwa cam MINUS	ı	Software cam MINUS 6	Software cam MINUS 5	Software cam MINUS 4	Software cam MINUS 3	Software cam MINUS 2	Software cam MINUS 1	Software cam MINUS				
2700 0005													
2700 0006													
2700 0007													
2700 0008	Softwa cam PL 7		Software cam PLUS 6	Software cam PLUS	Software cam PLUS 4	Software cam PLUS	Software cam PLUS	Software cam PLUS	Software cam PLUS				
2700 0009													
2700 0010													
2700 0011													
2700 0012				Modification	counter for	motions of ha	andwheel 1		•				
2700 0013				Modification	counter for	motions of ha	andwheel 2						
2700 0014													
2700 0015				Modificati	on counter,	inch/metricun	it system						
2700 0016													
2700 0017													
2700 0018													
2700 0019													

5.7.3 Signals to fast inputs and outputs

2800		Sig	nals to fast	inputs and	outputs [r/	w]			
Data block		Inter	face PLC	-> NCK					
Byte	Bit 7	7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2800 0000				Disabl	e digital NCK	inputs	1		
	Input	8	Input 7	Input 6	Input 5	Input 4	Input 3	Input 2	Input 1
2800 0001				Values from t	he PLC for the	NCK inputs	1		
	Inpu	t 8	Input 7	Input 6	Input 5	Input 4	Input 3	Input 2	Input 1
2800 0004				Disable	digital NCK o	outputs			
	Outpu	t 8	Output 7	Output 6	Output 5	Output 4	Output 3	Output 2	Output 1
2800 0005			О	verwrite screen	nform for digit	al NCK output	S		
	Outpu	t 8	Output 7	Output 6	Output 5	Output 4	Output 3	Output 2	Output 1
2800 0006			Va	lue from the P	LC for the digi	tal NCK outpu	ts		
	Outpu	t 8	Output 7	Output 6	Output 5	Output 4	Output 3	Output 2	Output 1
2800 0007				Setpoint scree	enform for the	NCK outputs			
	Outpu	t 8	Output 7	Output 6	Output 5	Output 4	Output 3	Output 2	Output 1

2800		Sigr	nals to fast	inputs and	outputs [r/	w]					
Data block		Inter	face PLC	-> NCK							
Byte	Bit 7		Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
2800 1000		Disable external digital NCK inputs									
	Input 1	16	Input 15	Input 14	Input 13	Input 12	Input 11	Input 10	Input 9		
2800 1001			Va	lues from the F	LC for the ext	ernal NCK inp	uts				
	Input	16	Input 15	Input 14	Input 13	Input 12	Input 11	Input 10	Input 9		
2800 1008				Disable ext	ernal digital No	CK outputs					
	Outpu 16	ıt	Output 15	Output 14	Output 13	Output 12	Output 11	Output 10	Output 9		
2800 1009			Overwr	ite screenform	for the externa	l digital NCK	outputs				
	Outpu 16	ıt	Output 15	Output 14	Output 13	Output 12	Output 11	Output 10	Output 9		
2800 1010			Value	from the PLC f	or the external	digital NCK o	utputs				
	Outpu 16	ıt	Output 15	Output 14	Output 13	Output 12	Output 11	Output 10	Output 9		
2800 1011			Setpoi	nt screenform	for the external	digital NCK o	outputs				
	Outpu 16	ıt	Output 15	Output 14	Output 13	Output 12	Output 11	Output 10	Output 9		

06/2009 PLC User Interface

NCK signals

5.7.4 Signal from fast inputs and outputs

2900	Sig	nals from fa	ast inputs a	nd outputs	[r/w]							
Data block	Inter	Interface PLC> NCK										
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
2800 0000		Actual values of the digital NCK inputss										
	Input 8	Input 7	Input 6	Input 5	Input 4	Input 3	Input 2	Input 1				
2900 0004		Setpoints of the digital NCK outputs										
	Output 8	Output 7	Output 6	Output 5	Output 4	Output 3	Output 2	Output 1				

2900		Signals	Signals to fast inputs and outputs [r/w]									
Data block		Interface PLC> NCK										
Byte	Bit 7		Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
2900 1000				Actual value	ues of the ext	ernal digital N	ICK inputs					
	Input 1	16 Inp	put 15	Input 14	Input 13	Input 12	Input 11	Input 10	Input 9			
2900 1004			NCK	setpoint for the	ne external di	gital NCK out	puts					
	Outpu 16	ut O	utput 15	Output 14	Output 13	Output 12	Output 11	Output 10	Output 9			

5.7.5 Operating mode signals

3000		Oper	ating mode s	signals to N	ICK [r/w]				
Data Block		PLC ir	nterface> N	NCK					
Byte	Bi	t 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3000 0000		eset -K1]			Mode group changeov er disable [F-K1]		Operating mode		
					[]		JOG [F-K1]	MDI [F-K1]	AUTOM. [F-K1]
3000 0001							Ма	chine function	n
							REF [F-K1]		Teach In [F-K1]
				Machine fu	nction 1)	[F-H1]		I	
3000 0002			Continuous traversal	INCvar	INC10 000	INC1000	INC100	INC10	INC1
3000 0003									

Remarks:

Machine functionin order to use machine function signals in VB3000 0002, signal "INC inputs in mode group range active" (V2600 0001.0) must be set to "1" Machine function INC10 000 is not supported by all machine control panels.

NCK signals

3100		Oper	ating mode	signals to I	NCK [r]				
Data Block		PLC ir	nterface> I	NCK					
Byte	Bit	t 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3100 0000							Α	ctive mode	
						802-	JOG	MDI	AUTOM.
						READY	[F-K1]	[F-K1]	[F-K1]
						[F-K1]			
3000 0001							Active mach	ine function	
							REF		Teach In
							[F-K1]		[F-K1]
3000 0002			Continuous	var. INC	10 000	1000	100	10	1
			traversing active	active	INC active	INC active	INC active	INC active	INC active
3000 0003									

5.8 Channel Signals

5.8.1 Signals to NC channel

Control signals to NC channel

	Activate program test	Bit 6 Activate dry run feed [F-V1]	Bit 5 M01 Activate [F-K1]	-> NCK Bit 4 Single block 4) Activate [F-K1]	Bit 3 DRF Activate	Bit 2 Forward travel	Bit 1 Reverse travel	Bit 0
3200 0000	Activate program test	Activate dry run feed	M01 Activate	Single block ⁴⁾ Activate	DRF	Forward travel	Reverse	Bit 0
3200 0001	program test	dry run feed	Activate	block ⁴⁾ Activate		travel		
	program test					Activate	Activate	
1	[F-K1]						Enable protection zones [F-N4]	Activate referencing [F-R1]
	Activate Skip block 7"	Activate "Skip block 6"	Activate "Skip block 5"	Activate "Skip block 4"	Activate "Skip block 3"	Activate "Skip block 2"	Activate "Skip block 1"	Activate "Skip block 0" [F-K1]
	l.			Nibbling ar	nd punching			
3200 0003			Stroke initiated manually 2 [F-N4]	Delayed stroke [F-N4]	Stroke does not run [F-N4]	Stroke supp- ressed [F-N4]	Stroke initiated manually [F-N4]	Stroke disable [F-N4]
3200 0004			[]	Feedrate over	erride ²⁾ [F-V1]		[]	<u> </u>
	Н	G	F	Е	D	С	В	0
3200 0005			Ra	apid traverse	override ³⁾ [F-	V1]		
1	Н	G	F	E	D	С	В	0
	Feedrate override ¹⁾ active [F-V1]	Rapid traverse override active [F-V1]	Limited path velocity	Program level abort [F-K1]	Delete number of subroutine cycles [F-K1]	Delete distance to-go [F-A2]	Read-in disable [F-K1]	Feedrate disable [F-V1]
3200 0007			Suppress Start Lock	NC stop axes plus spindle [F-K1]	NC stop [F-K1]	NC Stop at block limit [F-K1]	NC Start [F-K1]	NC Start disable [F-K1]
3200 0008				nachine-relate	. •			1
3200 0009	Area 8	Area 7	Area 6	Area 5 te machine-re	Area 4	Area 3	Area 2	Area 1
3200 0009			Activat	.e macmine-re 	ateu protectio	on zone	Area 10	Area 9
3200 0010	<u>'</u>		Activat	e channel-sp	ecific protection	on zone		
	Area 8	Area 7	Area 6	Area 5	Area 4	Area 3	Area 2	Area 1
3200 0011			Activat	e channel-sp	ecific protection	on zone	Area 10	Area 9
3200 0012								

Channel Signals

3200 0013	Do not disable tool [F-W1]		Deactivate workpiece counter [F-W1]	Activatd PTP drive			
3200 0014						contour hand -/binary-coded	
	No tool change commands	JOG of cycle mode	Activate associated M01	Neg. direction for sim. contour handwheel	Sim. contour handwheel ON	Handwheel 2	Handwheel 1
3200 0015	Activate "Skip block 9"	Activate "Skip block 8"					

Remarks:

¹⁾+ Feedrate override activeEven if the feedrate override is not active, (=100%) the 0% position still functions.

²⁾+ Feedrate override31 positions (Gray code)

³⁾+ Rapid override31 positions (Gray code)

^{4)&#}x27;s Guide")

06/2009 PLC User Interface

Channel Signals

Control signals to geometry axes (axes in WCS)

3200	Signals to NCK channel [r/w]									
Data Block		PL	.C interface	> NCK						
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
			Ge	ometry axis	(axis 1 in W	CS)				
3200 1000	Traversir	ig keys	Rapid traverse override [F-H1]	Traversing key lock [F-H1]	Feedrate stop [F-V1]	Activ	Activate handwheel			
	+	-					2	1		
	[F-H1]	[F-H1]					[F-H1]	[F-H1]		
			Ge	eometry axis 1	(axis 1 in W	CS)				
3200 1001			Mach	ine function 1)	[F-H1]					
		Continuo us traversal	INCvar	INC10 000	INC1000	INC100	INC10	INC1		
3200 1002										
3200 1003										
			Ge	ometry axis 2	2 (axis 2 in W	CS)				
3200 1004	Traversir	ig keys	Rapid traverse override [F-H1]	Traversing key lock [F-H1]	Feedrate stop [F-H1]	Activate handwheel				
	+ [F-H1]	- [F-H1]					2 [F-H1]	1 [F-H1]		
			Ge	eometry axis 2						
3200 1005				Machine fund						
		Continuo us traversal	INCvar	INC10 000	INC1000	INC100	INC10	INC1		
3200 1006										
3200 1007										
			Ge	ometry axis	3 (axis 3 in W	CS)				
3200 1008	Traversir	ng keys	Rapid traverse override [F-H1]	Traversing key lock [F-H1]	Feedrate stop [F-H1]	Activ	Activate handwheel			
	+	-					2	1		
	[F-H1]	[F-H1]					[F-H1]	[F-H1]		
		1	Ge	eometry axis 3	`	,	II.	I .		
3200 1009				Machine fund						
		Continuo us traversal	INCvar	INC10 000	INC1000	INC100	INC10	INC1		
3200 1010										
3200 1011										

Remarks:1)

Machine function specification of machine function in VB3200 1001, VB3200 1005, VB3200 1009, only if signal "INC inputs in mode group range active" (V2600 0001.0) is not set. Machine function INC10 000 is not supported by all machine control panels.

2) Representation of the handwheel number depending on machine date \$MD_HANDWH_VDI_REPRESENTATION (= 0) in bit or (= 1) binary code.

5.8.2 Signals from NC channel

Status signals from NC channel

3300			Sig	nals from N	NCK chann	el [r]			
Data Block			NC	K interface	> PLC				
Byte	Bit 7	Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3300 0000		Last actior block active [F-K1) :	M0/M1 active [F-K1]	Approach block active [F-K1]	Action block active [F-K1]	Forward travel active [F-K1]	Reverse travel active [F-K1]	Program execution from ext. active
3300 0001	Program test active [F-K1]	Transfe m. activ	or ve	M2 / M30 active [F-K1]	Block search active [F-K1]	Handwhe el override active	Rev. feedrate active [F-V1]		Referencin g active [F-R1]
3300 0002									
2000 2000		channel s	status				Program stat	us	.
3300 0003	Reset [F-K1]	upted [F-K1		active [F-K1]	Aborted [F-K1]	upted [F-K1]	Stopped [F-K1]		Running [F-K1]
3300 0004	NCK alarm with processing stop present [F-A2]	specifi NCK alarm active	is e			all axes stationary [F-B1]	all axes reference d [F-R1]	Stop request	Start request
3300 0005								our handwhee oit-/binary-cod	
								Handwhee I 2	Handwheel 1
3300 0006					Nibbling ar	nd punching	1		
								Acknowl. of manual stroke initiation [F-N4]	Stroke initiation [F-N4]
3300 0007									Protection zones no longer guaranteed
3300 0008				Machine-r	elated protec	ction zones pr	reactivated		
		Area	7	Area 6	Area 5	Area 4	Area 3	Area 2	Area 1
3300 0009				Machine-r	elated proted	ction zones pr	reactivated	Area 10	Area 9
3300 0010		i				ction zones p			
0000 004:		Area	7	Area 6	Area 5	Area 4	Area 3	Area 2	Area 1
3300 0011						ction zones p		Area 10	Area 9
3300 0012			_			tection zones			
3300 0013		Area		Area 6 Machine	Area 5 e-related prof	Area 4 tection zones	Area 3	Area 2	Area 1
								Area 10	Area 9
3300 0014		Area	7	Channe Area 6	l-specific pro Area 5	tection zones Area 4	violated Area 3	Area 2	Area 1
		l .		·	1	1	1	l .	1

3300 0015	Channel-specific protection zones violated			-
		Area 10	Area 9	l

Status signals to geometry axes (axes in WCS)

3300		Sig	nals from I	NCK channe	el [r]			
Data Block		NC	K interface	> PLC				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			Ge	ometry axis 1	(axis 1 in W	CS)		
3300 1000	Motion o	command	Travel r	equest			Handwhe	el active
	plus	minus	plus	minus			2	1
	[F-H1]	[F-H1]	[F-H1]	[F-H1]			[F-H1]	[F-H1]
3300 1001			Active n	nachine function	on [F-H1]			
		Continuou s traversal	INCvar	INC10 000	INC1000	INC100	INC10	INC1
3300 1002								
3300 1003								
			Ge	ometry axis 2	2 (axis 2 in W	CS)		
3300 1004	Motion o	command	Travel r	equest			Handwhe	el active
	plus	minus	plus	minus			2	1
	[F-H1]	[F-H1]	[F-H1]	[F-H1]			[F-H1]	[F-H1]
3300 1005		Active machine function [F-H1]						l .
		Continuou s traversal	INCvar	INC10 000	INC1000	INC100	INC10	INC1
3300 1006								
3300 1007								
			Ge	ometry axis 3	(axis 3 in W	CS)		
3300 1008	Motion co	mmand	Travel r	equest			Handwhe	el active
	plus	minus	plus	minus			2	1
	[F-H1]	[F-H1]	[F-H1]	[F-H1]			[F-H1]	[F-H1]
3300 1009		•	Α	ctive machine	function [F-H	1]		
		Contin-	INCvar	INC10 000	INC1000	INC100	INC10	INC1
		uous						
2200 4042		traversal						
3300 1010								
3300 1011								

Further status signals from the NC channel

3300			Signals from NCK channel [r]							
Data Block			NC	NCK interface> PLC						
Byte	Bit 7	Bit 6	5	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
3300 4000									G00 active	
3300 4001					Travel request for drive test present			Workpiece setpoint reached [F-K1]	External language mode active [F-A2]	
3300 4002					STOP DELAY					

Channel Signals

3300 4003	No tool change commands	DELAY FST SUPPRE SS	DELAY FST		
3300 4004					
3300 4005		JOG of cycle mode active			

06/2009

G functions from NC channel

3500		Si	Signals from NCK channel [r]						
Data Block	Block NCK interface> PLC								
Byte	Bit 7	sit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1						Bit 0	
3500 0000		1	A	Active G functi	on of group 1			-	
3500 0001			A	Active G functi	on of group 2				
3500 00		Active G function of group							
3500 0063			A	ctive G function	on of group 64				

Note:

With SINUMERIK 802D, G group 2 is transferred in VB3500 0001 with values 0: - no group 2 G command is active,

1: G4, 2: G63, 3: G74, 4: G75, 11: G147, 12: G247, 13: G347, 14: G148, 15: G248, 16: G348 (other values: not available in SINUMERIK 802D)

Other settings are possible with MD 22510: see Section 21.3

When the NC program terminates or is aborted, the last status of the groups is retained. The meaning of the G commands is explained in

References:

"Operation and Programming", Section "Overview of instructions"

Note:

synchronous connection between the active NC block and the applied G codes at any given time. The connection does not exist, for instance, if temporally short blocks are used with continuous path mode (G64).

5.9 Axis/spindle signals

5.9.1 Transferred M/S functions, axis-specific

3700 37	04	M/S fu	M/S functions [r]							
Data block PLC interface> NCK										
Start byte	Bit 7	7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit0						Bit0		
370x 0000		M function for spindle (DINT) [F-S1]								
370x 0004			S function f	or spindle (RE	AL) [F-S1]					

5.9.2 Signals to axis/spindle

Common signals to axis/spindle

3800 38	04	Signal	s to axis/sp	indle [r/w]				
Data block		PLC inte	erface> N	ICK				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
			*	Feedrate ov	erride [F-V1]		'	
380x 0000	Н	G	F	Е	D	С	В	Α
380x 0001	Override active [F-V1]		Position measuring system 1 [F-A2]	Follow-up mode [F-A2]	Axis/spindl e disable [F-A2]	Sensor for fixed stop [F-F1]	Acknowled ge fixed stop reached [F-F1]	
380x 0002					Clamping in progress [F-A3]	Distance- to- go/spindle reset [F-S1]	Controller enable [F-A2]	Cam activation
380x 0003	Axis/spindl e enable program test [F-K1]	Velocity/ spindle speed limiting [F-A3]					Enable approach to fixed stop [F-F1]	
	Traversi	ng keys	Rapid traverse override	Traversing key lock	Feedrate stop Spindle stop	Ac	tivate handwh	eel
380x 0004	plus	minus	[F-H1]	[F-H1]	[F-V1]		2	1
	[F-H1]	[F-H1]					[F-H1]	[F-H1]
380x 0005			li .	Machine fun	ction ¹⁾ [F-H1]	ı	li .	
		Continuo us traversal	INCvar	INC10 000	INC1000	INC100	INC10	INC1
380x 0006								
up to								
380x 0011								

Axis/spindle signals

Remarks:

1) Machine functionSpecification of machine function in VB380x 0005, only if signal "INC inputs in modegroup range active" (V2600 0001.0) is not set. Machine function INC10 000 is not supported by all machine control panels.

Signals to axis

3800 38	05		Sigr	nals to axis	[r/w]				
Data block			PLC	interface	-> NCK				
Byte	Bit 7	Bit (6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Delay. Ref. pt. approach [F-R1]				Modulo Limit Enabled	2nd softv swi		Hardware li	mit switch
380x 1000						plus	minus	plus	minus
(axis)						[F-A3]	[F-A3]	[F-A3]	[F-A3]
380x 1001						JOG to position [F-H1]	JOG fixed- point approach 2 [F-H1]	JOG fixed- point approach 1 [F-H1]	JOG fixed- point approach 0 [F-H1]
380x 1002									
380x 1003									
380x 1004									
380x 1005									

Explanation:

The signals IC, DC, ACP, ACN may be effective only alternatively or none at all. If none of the signals is set, AC (Absolute Coordinate) will become effective.

Signals to spindle

3800 38	05	Sig	nals to spir	ndle [r/w]				
Data block		PLC	interface	-> NCK				
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	Clear S value	Spindle: No speed monitoring when switching the gear stage; resynchro nize 2	Spindle: Resynchro nize 2	Spindle: Resynchro nize 1	Gear changed [F-S1]	Acti	ual gear stage	0
380x 2000 (Spindle)		11123 2				C [F-S1]	B [F-S1]	A [F-S1]
380x 2001 (spindle)		Invert M3/M4 [F-S1]		Resynchro nize spindle during positioning 1 [F-S1]				Feedrate override valid for spindle [F-V1]
	Setpoint dir rotati		Oscillation speed [F-S1]	Oscillation via PLC [F-S1]				
380x 2002 (Spindle)	Left [F-S1]	Right [F-S1]						
380x 2003 (Spindle)	Н	G	F	Spindle ove	rride [F-V1] D	С	В	А

Signals to PLC axis

3800 38	05	Signal	s to PLC ax	(is [r/w]							
Data block		Interface	Interface PLC> NCK								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
380x 3000	Start positioning axis										
380x 3001											
380x 3002						Traversing	G function:	G function:			
						dimension:	Shortest	increment			
						Inch (not metric)	path (DC)	al (IC)			
380x 3003	Indexing						G function:	G function:			
	position						Abs. pos.	Abs. neg.			
							direction (ACP)	direction (ACN)			
380x 3004			Position (REAL, with in	ndexing axis:	DWORD)					
380x 3005											
380x 3006											
380x 3007											

Axis/spindle signals

380x 3008	Feedrate (REAL),
380x 3009	if = 0, value is taken from machine data POS_AX_VELO
380x 3010	
380x 3011	

Signals to drive

3800 380)5	Signal	Signals to axis/spindle [r/w]								
Data block		PLC int	PLC interface> NCK								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
380x 4000			Speed setpoint smoothing								
380x 4001	Pulse enable [F-A2]	Speed controller integrato r disable [F-A2]				Paramete	r set selection	[F-A2]			
						С	В	Α			
380x 4002											
380x 4003											

Signals to technology functions

3800 3805		Signal	Signals to axis/spindle [r/w]							
Data block		Interfac	Interface PLC> NCK							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
380x 5000	Master/ Slave on [F-T3]			Torque compen- satory controller on [F-T3]						
380x 5001										
380x 5002										
380x 5003	Stop HIAxMove	Stop Corr	Stop DEPBCS	Stop DEPMCS	Resume HIAxMove	Resume Corr	Resume DEPBCS	Resume DEPMCS		
380x 5004 (grinding) (reciprocat ing)	PLC controls axis [F-P2]	AxStop, stop [F-P2]	Stop at next reversal point [F-P2]	Change reversal point [F-P2]	Set reversal point [F-P2]	AxResume [F-P2]	AxReset [F-P2]	OscillAxExt Reversal		
380x 5005 (grinding)		Disable automa- tic sy- nchroni- zation	Start gantry synchroni- zation run							
380x 5006 (spindle)				Position- ing the spindle	Automatic gear stage change	Specified direction of rotation CCW	Specified direction of rotation CW	Spindle STOP		

5.9.3 Signals from axis/spindle

General signals from axis/spindle

3900 39	05		Signals from axis/spindle [r]							
Data block			NCK interface> PLC							
Byte	Bit 7 Bit 6		3	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
390x 0000	Position reached with exact stop,				Referen- ced/synch- ronized 1 [F-R1]		Encoder limit frequency exceeded 1 [F-A3]		Spindle/ no axis [F-S1]	
	fine	coars	-							
390x 0001	[F-B1] Current controller active [F-A2]	Speed control loop active	d ol	Position controller active [F-A2]	Axis/ spindle stationary (n < n _{min}) [F-A2]	Follow up mode active [F-A2]	Axis ready for opera- tion	AxAlarm	Travel request drive test	
390x 0002		Powe Fixed stop limited	i	Fixed stop reached [F-F1]	Activate travel to fixed stop [F-F1]	Measu- rement active [F-M5]	Revolution al feedrate active	Handwheel override active@	Cam active	
390x 0003										
	Motion command		Travel r Handwhe		•			handwhe	el aktiv 1)	
390x 0004	plus [F-H1]	minus [F-H1		plus	minus			2 [F-H1]	1 [F-H1]	
	Active machine function [F-F1]						[]	[]		
390x 0005		Continuo us		INCvar	INC10 000	INC1000	INC100	INC10	INC1	
390x 0006 up to 390x 0011	PLC axis assigned firmly									

Signals from axis

3900 3905			Signals from axis [r]							
Data block			NCK interface> PLC							
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
390x 1000				Modulo Limit Enabled active						

Axis/spindle signals

390x 1001	JOG Pos	JOG to	JOG fixed-	JOG fixed-	JOG fixed-	JOG fixed-	JOG fixed-	JOG fixed-
	reached	position	point	point	point	point	point	point
			approach 2	approach	approach	approach	approach	approach
		active	reached	1 reached	0 reached	2	1	0
			[F-H1]	[F-H1]	[F-H1]	[F-H1]	[F-H1]	[F-H1]
390x 1002	Rotary	Indexing	Positioning	Path axis				Lubrica-
	axis in	axis in	axis					tion pulse
	position	position						[F-A2]
390x 1003								

Representation of the handwheel number depending on machine date MD_HANDWH_VDI_REPRESENTATION (= 0) in bit or (= 1) binary code.

Signals from spindle

3900 39	05	;	Signals from spindle [r]						
Data block		1	NCK interface> PLC						
Byte	Bit 7 Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
					Gearbox	Se	et gear stage		
					change over				
					[F-S1]				
390x 2000						С	В	Α	
(Spindle)						[F-S1]	[F-S1]	[F-S1]	
390x 2001 (Spindle)	Actual direction of rotation clockwise [F-S1]	Speed moni- toring	Spindle In the setpoint range [F-S1]	Supporting range limit violated	Geometry monitoring	Setpoint speed increased [F-S1]	Setpoint speed limited [F-S1]	Speed limit exceeded [F-S1]	
		spindle r			Rigid tapping [F-S1]		SUG active	Const. cutting velocity active	
390x 2002 (Spindle)	Control mode [F-S1]	Oscilla- tion mode [F-S1]	Positionin g mode [F-S1]	Synchron- ous mode				[F-S1]	
390x 2003			Spindle in position						

Signals from PLC axis

3900 3905			Signals from spindle [r]						
Data block			Inter	face NCK	> PLC				
Byte	Bit 7	Bit 6		Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
390x 3000	Position- ing axis active [F-P2]	Positio reache [F-P2]	ed					Error during traversing [F-P2]	Axis cannot be started [F-P2]
390x 3001									
390x 3002									
390x 3003		-			Error numbe	r	•	•	•

Signals from drive

3900 39	05	Signal	Signals from axis/spindle [r]								
Data block		NCK int	NCK interface> PLC								
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
390x 4000											
390x 4001	Pulses enabled [F-A2]	Speed controller integrato r disabled [F-A2]	Drive ready [F-A2]			Active pa	arameter set	[F-A2]			
						С	В	Α			
390x 4002	Variable signaling function	n _{act} = n _{set} [F-A2]	n _{act} <nx [F-A2]</nx 	n _{act} <n<sub>min [F-A2]</n<sub>	Md <mdx [F-A2]</mdx 	Ramp-up completed [F-A2]	Temperature prewarning				
							Heat sink	Motor			
							[F-A2]	[F-A2]			
390x 4003											
								Uzk <uzk< td=""></uzk<>			

Axis/spindle signals

Signals from technology functions

3900 39	05	Signal	Signals from axis/spindle [r]						
Data block		Interfac	e NCK> I	PLC					
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
390x 5000	Master/ slave active [F-TE3]			Master/ slave Compen- satory controller active [F-TE3]	Master/ slave speed tolerance range coarse [F-TE3]	Master/ slave speed tolerance range fine [F-TE3]			
390x 5001									
390x 5002	ESR reaction initiated	Accelerat ion warning threshold reached	Velocity warning threshold reached	Overlaid movement					
390x 5003		Max. accelerat ion reached	Max. velocity reached	Synchroni zation running	Axis accelerate d				
390x 5004 (grinding) (reciprocat ing)	Recipro- cation active	Recipro- cating motion active	Sparking- out active	Error during the reciproca- ting motion	Reciprocat ion cannot be started.	OscillAxExt Reversal active			
390x 5005	gantry axis [F-G1]	gantry axis leading axis [F-G1]	gantry group is syn- chronous [F-G1]	Synchroni zation run ready to start [F-G1]	Gantry warning threshold exceeded [F-G1]	Gantry shutdown limit exceeded [F-G1]			
390x 5006									
390x 5007									
390x 5008			Act	tive additional	axis	ı			
			Axis 6	Axis 5	Axis 4	Axis 3	Axis 2	Axis 1	

06/2009 PLC User Interface

PLC machine data

5.10 PLC machine data

5.10.1 INT values (MD 14510 USER_DATA_INT)

4500	Signals from NCK [r16]					
Data block	NCK interface> PLC					
Start byte						
4500 0000	Int values (WORD/ 2 Byte)					
4500 0002	Int values (WORD/ 2 Byte)					
4500 0004	Int values (WORD/ 2 Byte)					
up to 4500 0062	Int values (WORD/ 2 Byte)					

5.10.2 HEX values (MD 14512 USER_DATA_HEX)

4500	Sig	Signals from NCK [r8]						
Data block	NCK interface> PLC							
Byte	•							
4500 1000		Hex va	lue (BYTE)					
4500 1001		Hex value (BYTE)						
up to 4500 1031		Hex va	alue (BYTE)					

PLC machine data

5.10.3 FLOAT values (MD 14514 USER_DATA_FLOAT)

4500	Signals from NCK [r32]						
Data block	NCK interface> PLC						
Start byte							
4500 2000	Float value (REAL/ 4 Byte)						
4500 2004	Float value (REAL/ 4 Byte)						
4500 2008	Float value (REAL/ 4 Byte)						
4500 2012	Float value (REAL/ 4 Byte)						
4500 2016	Float value (REAL/ 4 Byte)						
4500 2020	Float value (REAL/ 4 Byte)						
4500 2024	Float value (REAL/ 4 Byte)						
4500 2028	Float value (REAL/ 4 Byte)						

5.10.4 User alarm: Configuration (MD 14516 USER_DATA_PLC_ALARM)

4500	Signals from NCK [r8]					
Data block	NCK interface> PLC					
Byte						
4500 3000	Alarm reaction/ deletion criterion Alarm 700000					
4500 3001	Alarm reaction/ deletion criterion Alarm 700001					
up to						
4500 3027	Alarm reaction/ deletion criterion Alarm 700031					

Note:

Information on PLC alarms, including configuring user alarms, can be found in:

References: Up Guide", Section "PLC alarms"

5.10.5 Reading and writing PLC variables

4900	PLC variables [r/w]					
Data block	PLC interfa					
Byte						
4900 0000		Offset[0]				
4900 0001	Offset[1]					
4900 0003		Offset[2]				
up to						
4900 1021						
4900 1022	Offset[1022]					
4900 1023	Offset[1023]					

Note:

The application programmers of NCK and PLC themselves are responsible for the organization of this data area. Data type, position offset and meaning of the variables must be agreed. The memory range limits per data type must be observed (1, 2 or 4 byte types). Further information can be found in:

References:

"Operation and Programming", Section "Reading and writing PLC variables"

5.11 Tool management functions from NC channel

Change signals for tool management functions

5300		Tool n	Tool management functions [r]						
Data block NCK interface NCK PLC> PLC									
Byte	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
5300 0000							Tool limit value reached	Tool warning limit reached	
							[F-W1]	[F-W1]	

Transferred tool management functions

5300	Tool management functions [r32]
Data block	NCK interface> PLC
Byte	
5300 1000	T number for tool warning limit (DINT) [F-W1]
5300 1004	T number for tool limit value (DINT) [F-W1]
5300 1008	
5300 1012	

Axis actual values and distances-to-go

5700 5704 Signals from axis/sp			xis/spindle	[r32]				
Data block		NCK interface> PLC						
Byte								
570x 0000		Axis actual value (REAL)						
570x 0004		Axis distance-to-go (REAL)						

Note:

Axis actual values and distances-to-go can each be requested separately:

- V2600 0001.1 Request for axis actual values
- V2600 0001.2 Request for axis distances-to-go

Once the respective request has been set, these values are provided by NCK for all axes.

PLC User Interface 06/2009

Tool management functions from NC channel

SINAMICS Parameter

6

For the SINAMICS parameters, please refer to the documentation SINAMICS S, Lists Manualî.

LH1, SINAMICS_S, Parameter Manual

SINAMICS Parameter 06/2009

Index

Number	ACCESS_EXEC_CUS
1000 5-657	MD 11162 2-120
1100 5-657	ACCESS WRITE CMA
1200	MD 11166 2-121
1200 1207 5-658	ACCESS WRITE CST
1400 5-659	MD 11165 2-120
1600 5-660	ACCESS WRITE CUS
1700 5-662	MD 11167 2-121
1800 5-663	ACCESS WRITE MACCESS
1900 5-664	MD 11171 2-122
2500 5-665	ACCESS_WRITE_SACCESS
2600 5-668	MD 11170 2-122
2700 5-669	ACCESS_WRITE_UACCESS
2800 5-670	MD 11172 2-122
2900 5-671	ACT_POS_ABS
3000 5-671	MD 30250 2-395
3100 5-672	ADAPT_PATH_DYNAMIC
3200 5-673	MD 20465 2-267
3300 5-676	ADD_MOVE_ACCEL_RESERVE
3500 5-678	MD 20610 2-272
3700 3704 5-679	ADISPOSA_VALUE MD 43610 3-573
3800 3804 5-679	MD 43610 3-573
3800 3805 5-681	ALARM_CLR_NCSTART_W_CANCEL
3900 3905 5-683	MD 11414 2-139
4500 5-687	ALARM_PAR_DISPLAY_TEXT
4900 5-688	MD 11413 2-139
5300 5-689	ALARM_REACTION_CHAN_NOREADY
5700 5704 5-689	MD 11412 2-139
A	ALLOW_G0_IN_G96 MD 20750 2-279
AA_OFF_MODE	MD 20750 2-279
MD 36750 2-500	APPROACH_FEED MD 42120
ABS_INC_RATIO	MID 42120 3-543
MD 30260 2-396	ASSIGN_CHAN_TO_MODE_GROUP
ABSBLOCK_ENABLE	MD 10010 2-37
MD 42750 3-559	ASSIGN_FEED_PER_REV_SOURCE
ABSBLOCK_FUNCTION_MASK	MD 43300
MD 27100 2-370	ASSIGN_SPIN_TO_WP_SPIN1
AC_FILTER_TIME	MD 1088 2-32
MD 32920 2-449	ASSIGN_SPIN_TO_WP_SPIN2
ACCEL_REDUCTION_FACTOR	MD 1089 2-32 ASUP_EDIT_PROTECTION_LEVEL
MD 35230 2-479	MD 11612 2-147
ACCEL_REDUCTION_SPEED_POINT	ASUP EDITABLE
MD 35220 2-478	MD 11610 2-147
ACCESS_EXEC_CMA	ASUP_START_MASK
MD 11161 2-120	MD 11602 2-145
ACCESS_EXEC_CST	ASUP_START_PRIO_LEVEL
MD 11160 2-119	AGGI _GIANI_FINIO_LLVLL

MD 11604	2-146	AX_JERK_DAMP	
AUTO_GET_TYPE			2-426
MD 30552	2-405	AX_JERK_ENABLE	
AUTO_IPTR_LOCK		MD 32400	2-425
MD 22680	2-308	AX_JERK_FREQ	
AUXFU_ASSIGN_EXTENSION		MD 32412	2-426
MD 22020	2-293	AX_JERK_MODE	
AUXFU_ASSIGN_GROUP		MD 32402	2-425
MD 22000	2-292	AX_JERK_TIME	
AUXFU_ASSIGN_SPEC		MD 32410	2-426
MD 22035	2-294	AX_LOAD_DISPL	
AUXFU_ASSIGN_TYPE		MD 1107	2-35
MD 22010	2-292	AX_MOTION_DIR	
AUXFU_ASSIGN_VALUE		MD 32100	2-419
	2-293	AX_VELO_LIMIT	
AUXFU_ASSOC_M0_VALUE		MD 36200	2-490
-	2-299	AXCHANGE_MASK	
AUXFU_ASSOC_M1_VALUE		MD 10722	2-99
MD 22256	2-300	AXCONF_ASSIGN_MASTER_CHAN	
AUXFU_D_SYNC_TYPE		MD 30550	
	2-298	AXCONF_CHANAX_DEFAULT_NAME	
AUXFU_DL_SYNC_TYPE		MD 20082	2-229
	2-299	AXCONF_CHANAX_NAME_TAB	
AUXFU_GROUP_SPEC			2-228
	2-118	AXCONF_GEOAX_ASSIGN_TAB	
AUXFU_H_TYPE_INT			2-226
	2-296	AXCONF_GEOAX_NAME_TAB	
AUXFU_M_SYNC_TYPE			2-227
MD 22200	2-297	AXCONF_MACHAX_NAME_TAB	
AUXFU_MAXNUM_GROUP_ASSIGN		MD 10000	2-36
MD 11100	2-117	AXCONF_MACHAX_USED	
AUXFU_PREDEF_EXTENSION			2-228
MD 22060	2-295	AXES_SCALE_ENABLE	
AUXFU_PREDEF_GROUP			2-310
MD 22040	2-294	AXIS_DIAGNOSIS	
AUXFU_PREDEF_SPEC			2-497
MD 22080	2-295	AXIS_LANG_SUB_MASK	
AUXFU_PREDEF_TYPE		MD 30465	2-401
MD 22050	2-294	AXIS_VAR_SERVER_SENSITIVE	
AUXFU_PREDEF_VALUE		MD 11398	
MD 22070		Active alarm reaction	
AUXFU_QUICK_BLOCKCHANGE		Adressranges	
MD 22100		Auxiliary function transfer from NC char	nnel 4-
AUXFU_S_SYNC_TYPE		588	
MD 22210		Auxiliary function transfer from NC char	nnel 5-
AUXFU_T_SYNC_TYPE		665	
MD 22220		Axis/spindle signals	
AX_EMERGENCY_STOP_TIME		Axis-/spindle-specific signals	4-623
MD 36610	2-496	В	
AX_ESR_DELAY_TIME1	0.540	BACKLASH	
MD 37510		MD 32450	2-429
AX_ESR_DELAY_TIME2		BACKLASH_FACTOR	
MD 37511	2-519	MD 32452	2-429

BAG_MASK	CIRCLE_ERROR_FACTOR
MD 11600 2-145	MD 21010 2-282
BERO_DELAY_TIME_MINUS	CLAMP_POS_TOL
MD 31123 2-410	MD 36050 2-487
BERO_DELAY_TIME_PLUS	CMM_POS_COORDINATE_SYSTEM
MD 31122 2-410	MD 330
BRAKE_MODE_CHOICE	COL_OVERSIZE_TYPE_CHECKBOX
MD 36600 2-495	MD 395 2-31
C	COM_CONFIGURATION
	MD 10161 2-46
CC_HW_DEBUG_MASK	COM IPO STRATEGY
MD 10430 2-63	
CC_TDA_PARAM_UNIT	MD 10073 2-40
MD 10290 2-55	COMP_ADD_VELO_FACTOR
CC_TOA_PARAM_UNIT	MD 32760 2-445
MD 10292 2-56	COMPAR_ASSIGN_ANA_INPUT_1
CCS_TDA_PARAM_UNIT	MD 10530 2-76
MD 10291 2-56	COMPAR_ASSIGN_ANA_INPUT_2
CCS_TOA_PARAM_UNIT	MD 10531 2-76
MD 10293 2-57	COMPAR_THRESHOLD_1
CEC ENABLE	MD 41600
MD 32710 2-442	COMPAR_THRESHOLD_2
CEC MAX SUM	MD 41601 3-539
MD 32720 2-443	COMPAR_TYPE_1
CEC MAX VELO	MD 10540 2-77
MD 32730 2-444	COMPAR_TYPE_2
CEC_SCALING_SYSTEM_METRIC	MD 10541 2-78
	COMPRESS_ORI_ROT_TOL
MD 32711 2-443	MD 42477 3-550
CEC_TABLE_ENABLE	
MD 41300	COMPRESS_SMOOTH_FACTOR
CEC_TABLE_WEIGHT	MD 20485 2-267
MD 41310 3-530	COMPRESS_SPLINE_DEGREE
CENTRAL_LUBRICATION	MD 20486 2-268
MD 12300 2-159	CONE_ANGLE
CHAMFER_NAME	MD 42995
MD 10656 2-83	CONST_VELO_MIN_TIME
CHAN NAME	MD 20500 2-269
MD 20000 2-226	CONTOUR_DEF_ANGLE_NAME
CHBFRAME_POWERON_MASK	MD 10652 2-83
MD 24004 2-312	CONTOUR MASK
CHBFRAME RESET MASK	MD 331 2-25
MD 24002 2-312	CONTOUR_SAMPLING_FACTOR
CHFRND_MAXNUM_DUMMY_BLOCKS	MD 10682 2-85
MD 20200	CONTOUR_TOL
	MD 36400 2-494
CHFRND_MODE_MASK	CONTOURHANDWH_IMP_PER_LATCH
MD 20201 2-252	MD 11322 2-130
CHSFRAME_POWERON_MASK	CONTPREC
MD 24008 2-314	
CHSFRAME_RESET_CLEAR_MASK	MD 42450
MD 24007 2-313	CONTROL_UNIT_LOGIC_ADDRESS
CHSFRAME_RESET_MASK	MD 13120 2-164
MD 24006 2-312	CONVERT_SCALING_SYSTEM
CIRCLE_ERROR_CONST	MD 10260 2-53
MD 21000 2-282	COREFILE_NAME

MD 18930 2-225	CUTCOM_CURVE_INSERT_LIMIT
CORNER_SLOWDOWN_CRIT	MD 20230 2-255
MD 42526 3-555	CUTCOM_DECEL_LIMIT
CORNER_SLOWDOWN_END	MD 42528
MD 42522 3-554	CUTCOM_G40_STOPRE
CORNER_SLOWDOWN_OVR	MD 42490
MD 42524 3-555	CUTCOM_MAX_DISC
CORNER_SLOWDOWN_START	MD 20220 2-254
MD 42520 3-554	CUTCOM_MAXNUM_CHECK_BLOCKS
CORR_VELO	MD 20240 2-256
MD 32070 2-414	CUTCOM_MAXNUM_DUMMY_BLOCKS
COUP_SYNC_DELAY_TIME	MD 20250 2-256
MD 37240 2-512	CUTCOM_MAXNUM_SUPPR_BLOCKS
COUPLE_CYCLE_MASK	MD 20252 2-257
MD 11754 2-150	CUTDIRMOD
CPREC_WITH_FFW	MD 42984 3-565
MD 20470 2-267	CUTEDGE_PARAM_CHECK_ON
CRIT_SPLINE_ANGLE	MD 398 2-31
MD 42470 3-549	CUTMOD_INIT
CTAB_DEFAULT_MEMORY_TYPE	MD 20127 2-241
MD 20905 2-282	CUTTING_EDGE_DEFAULT
CTAB_ENABLE_NO_LEADMOTION	MD 20270 2-258
MD 20900 2-281	CUTTING_EDGE_RESET_VALUE
CTM_CROSS_AX_DIAMETER_ON	MD 20130 2-242
MD 291 2-24	CYC_TOOLNO_EDTMOD_MANUAL_MA
CTM_G91_DIAMETER_ON	MD 1102 2-34
MD 292 2-24	Channel Signals 5-673
CTM_POS_COORDINATE_SYSTEM	Channel-specific signals 4-598
MD 290 2-23	Checkback signal Program selection from HM
CTM_SIMULATION_TIME_NEW_POS	(retentive area) 5-662
MD 289 2-22	Cyclic signal exchange 4-581
CTRLOUT_LIMIT	D
MD 36210 2-491	D_NO_FCT_CYCLE_NAME
CTRLOUT_LIMIT_TIME	MD 11717 2-149
MD 36220 2-491	DEFAULT_FEED
CTRLOUT_MODULE_NR	MD 42110
MD 30110 2-391	DEFAULT_ROT_FACTOR_R
CTRLOUT_NR	MD 42150
MD 30120 2-392	DEFAULT_SCALE_FACTOR_AXIS
CTRLOUT_SEGMENT_NR	MD 43120
MD 30100 2-391	DEFAULT_SCALE_FACTOR_P
CTRLOUT_TYPE	MD 42140 3-545
MD 30130 2-392	DEFAULT_VALUES_MEM_MASK
CURV_EFFECT_ON_PATH_ACCEL	MD 11270 2-126
MD 20602 2-271	DEPTH_OF_LOGFILE_OPT
CURV_EFFECT_ON_PATH_JERK	MD 17600 2-175
MD 20603 2-271	DEPTH_OF_LOGFILE_OPT_PF
CUTCOM_ACT_DEACT_CTRL	MD 17610 2-176
MD 42494 3-551	DES_VELO_LIMIT
CUTCOM_CLSD_CONT	MD 36520 2-495
MD 42496 3-552	DIAMETER_AX_DEF
CUTCOM_CORNER_LIMIT	MD 20100 2-234
MD 20210 2-254	DISABLE_PLC_START

MD 22622 2-308	DRIVE_AX_RATIO2_DENOM
DISPLAY_AXIS	MD 31064 2-408
MD 20098 2-233	DRIVE_AX_RATIO2_NUMERA
DISPLAY_FUNCTION_MASK	MD 31066 2-408
MD 10284 2-55	DRIVE_ENC_RATIO_DENOM
DISPLAY_IS_MODULO	MD 31070 2-409
MD 30320 2-399	DRIVE_ENC_RATIO_NUMERA
DISPLAY_MODE_INDEXING_AXIS	MD 31080 2-409
MD 391 2-30	DRIVE_FUNCTION_MASK
DISPLAY_MODE_POSITION	MD 13070 2-162
MD 10136 2-45	DRIVE_LOGIC_ADDRESS
DISPLAY_RESOLUTION	MD 13050 2-161
MD 203 2-19	
	DRIVE_SIGNAL_TRACKING
DISPLAY_RESOLUTION_INCH	MD 36730 2-499
MD 204 2-20	DRIVE_TELEGRAM_TYPE
DISPLAY_RESOLUTION_SPINDLE	MD 13060 2-161
MD 205 2-20	DRIVE_TYPE_DP
DISPLAY_TOLI_H_NO	MD 13080 2-163
MD 393 2-30	DRY_RUN_FEED
DISPLAY_TOLI_SISTER_TOOL	MD 42100
MD 394 2-31	DRY_RUN_FEED_MODE
DPIO_LOGIC_ADDRESS_IN	MD 42101
MD 10500 2-74	DRYRUN_MASK
DPIO_LOGIC_ADDRESS_OUT	MD 10704 2-89
MD 10510 2-75	DYN_LIMIT_RESET_MASK
DPIO_RANGE_ATTRIBUTE_IN	MD 32320 2-424
MD 10502 2-74	DYN_MATCH_ENABLE
DPIO_RANGE_ATTRIBUTE_OUT	MD 32900 2-448
MD 10512 2-75	DYN_MATCH_TIME
DPIO_RANGE_LENGTH_IN	MD 32910 2-449
MD 10501 2-74	Decoded M signals
DPIO_RANGE_LENGTH_OUT	(M0-M99) 5-666
MD 10511 2-75	E
DRAM_FILESYST_CONFIG	_
MD 11292 2-128	ENABLE_ALARM_MASK
DRAM_FILESYST_SAVE_MASK	MD 11411 2-138
MD 11291 2-128	ENABLE_CHAN_AX_GAP
DRAM_FILESYSTEM_MASK	MD 11640 2-148
	ENABLE_START_MODE_MASK_PRT
MD 11290 2-127	MD 22621 2-308
DRESSER_FUNCTION_MASK	ENC_ABS_BUFFERING
MD 385 2-29	MD 30270 2-397
DRIFT_ENABLE	ENC_ABS_TURNS_MODULO
MD 36700 2-498	MD 34220 2-461
DRIFT_LIMIT	ENC_ABS_ZEROMON_INITIAL
MD 36710 2-498	MD 36314 2-493
DRIFT_VALUE	ENC_ABS_ZEROMON_WARNING
MD 36720 2-499	MD 36312 2-493
DRILL_VELO_LIMIT	ENC_ACTVAL_SMOOTH_TIME
MD 35550 2-484	MD 34990 2-465
DRIVE_AX_RATIO_DENOM	ENC_CHANGE_TOL
MD 31050 2-408	MD 36500 2-494
DRIVE_AX_RATIO_NUMERA	ENC_COMP_ENABLE
MD 31060 2-408	MD 32700 2-442
	32100

ENC_DIFF_TOL	MD 21380 2-28	38
MD 36510 2-494	ESR_DELAY_TIME2	
ENC_FEEDBACK_POL	MD 21381 2-28	38
MD 32110 2-420	ESR_REACTION	
ENC_FREQ_LIMIT	MD 37500 2-51	18
MD 36300 2-491	EVERY_ENC_SERIAL_NUMBER	
ENC_FREQ_LIMIT_LOW	MD 34232 2-46	32
MD 36302 2-492	EXACT_POS_MODE	-
ENC GRID POINT DIST	MD 20550 2-26	39
MD 31010 2-406	EXACT_POS_MODE_G0_TO_G1	,,
ENC_INPUT_NR	MD 20552 2-27	7∩
MD 30230 2-394	EXTERN_CHAN_SYNC_M_NO_MAX	U
ENC INVERS		าว
=	MD 10802 2-10)_
MD 34320 2-464	EXTERN_CHAN_SYNC_M_NO_MIN	20
ENC_IS_DIRECT	MD 10800 2-10	JZ
MD 31040 2-407	EXTERN_DIGITS_TOOL_NO	
ENC_IS_DIRECT2	MD 10888 2-11	12
MD 31044 2-407	EXTERN_DOUBLE_TURRET_DIST	
ENC_IS_INDEPENDENT	MD 42162	46
MD 30242 2-394	EXTERN_DOUBLE_TURRET_ON	
ENC_IS_LINEAR	MD 10812 2-10)6
MD 31000 2-406	EXTERN_FIXED_FEEDRATE_F1_F9	
ENC_MARKER_INC	MD 42160	45
MD 34310 2-463	EXTERN_FIXED_FEEDRATE_F1_ON	
ENC_MEAS_TYPE	MD 22920 2-31	10
MD 30244 2-395	EXTERN_FLOATINGPOINT_PROG	
ENC_MODULE_NR	MD 10884 2-11	11
MD 30220 2-393	EXTERN_FUNCTION_MASK	•
ENC_PULSE_MULT	MD 20734 2-27	77
MD 31025 2-406	EXTERN_G_NO_MAC_CYCLE	•
ENC_REFP_MARKER_DIST	MD 10816 2-10	าด
MD 34300 2-463	EXTERN_G_NO_MAC_CYCLE_NAME	JO
ENC_REFP_MODE		าก
	MD 10817 2-10	J
MD 34200 2-460	EXTERN_G0_LINEAR_MODE	
ENC_REFP_STATE	MD 20732 2-27	11
MD 34210 2-461	EXTERN_GCODE_GROUPS_TO_PLC	
ENC_RESOL	MD 22512 2-30)1
MD 31020 2-406	EXTERN_GCODE_RESET_MODE	
ENC_SEGMENT_NR	MD 20156 2-24	48
MD 30210 2-393	EXTERN_GCODE_RESET_VALUES	
ENC_SERIAL_NUMBER	MD 20154 2-24	17
MD 34230 2-462	EXTERN_INCREMENT_SYSTEM	
ENC_TYPE	MD 10886 2-11	11
MD 30240 2-394	EXTERN_INTERRUPT_BITS_M96	
ENC ZERO MONITORING	MD 10808 2-10)5
MD 36310 2-493	EXTERN_INTERRUPT_NUM_ASUP	
EPS_TLIFT_TANG_STEP	MD 10818 2-10)9
MD 37400 2-518	EXTERN_INTERRUPT_NUM_RETRAC	
EQUIV CURRCTRL TIME	MD 10820 2-10	ງ9
MD 32800 2-447	EXTERN_M_NO_DISABLE_INT	
EQUIV SPEEDCTRL TIME	MD 10806 2-10	ን⊿
MD 32810 2-448	EXTERN_M_NO_MAC_CYCLE	<i>7</i> T
ESR_DELAY_TIME1	MD 10814 2-10	77
EQU_DELAT_HIMET	ועוועו 100 ו4	JI

EXTERN_M_NO_MAC_CYCLE_NAME	FIXED_STOP_ACKN_MASK	
MD 10815 2-108	MD 37060	2-505
EXTERN_M_NO_SET_INT	FIXED_STOP_ALARM_MASK	
MD 10804 2-103	MD 37050	2-504
EXTERN_MEAS_G31_P_SIGNAL	FIXED_STOP_ALARM_REACTION	
MD 10810 2-106	MD 37052	2-505
EXTERN_PARALLEL_GEOAX	FIXED_STOP_ANA_TORQUE	
MD 22930 2-311	MD 37070	2-506
EXTERN_REF_POSITION_G30_1	FIXED_STOP_BY_SENSOR	
MD 43340 3-570	MD 37040	2-504
EXTERN_RIGID_TAPPING_M_NR	FIXED_STOP_CONTROL	
MD 20095 2-231	MD 37002	2-501
EXTERN_TOOLPROG_MODE	FIXED_STOP_MODE	
MD 10890 2-112	MD 37000	2-500
F	FIXED_STOP_SWITCH	_ 000
F_VALUES_ACTIVE_AFTER_RESET	MD 43500	3-572
MD 22410 2-300	FIXED_STOP_THRESHOLD	0 0.2
Read/write NC data	MD 37030	2-503
Result 5-658	FIXED_STOP_TORQUE	_ 000
Reading/writing NC data	MD 43510	3-572
	FIXED_STOP_TORQUE_DEF	0 012
Job 5-658 FASTIO ANA NUM INPUTS	MD 37010	2-501
MD 10300 2-57	FIXED_STOP_TORQUE_FACTOR	2 00 1
FASTIO_ANA_NUM_OUTPUTS	MD 37014	2-502
MD 10310 2-58	FIXED_STOP_TORQUE_RAMP_TIME	
FASTIO_DIG_NUM_INPUTS	MD 37012	- 2-502
MD 10350 2-58	FIXED_STOP_WINDOW	
FASTIO_DIG_NUM_OUTPUTS	MD 43520	3-573
MD 10360 2-59	FIXED_STOP_WINDOW_DEF	
FASTIO_DIG_SHORT_CIRCUIT	MD 37020	2-503
MD 10361 2-59	FLOAT values (MD 14514	
FFW_ACTIVATION_MODE	USER_DATA_FLOAT)	5-688
MD 32630 2-440	FOC_ACTIVATION_MODE	
FFW MODE	MD 37080	2-506
MD 32620 2-439	FOC_STANDSTILL_DELAY_TIME	
FG_GROUP1	MD 36042	2-487
MD 310 2-25	FPU_CTRLWORD_INIT	
FG_GROUP2	MD 18910	2-224
MD 311 2-25	FPU_ERROR_MODE	
FG_GROUP3	MD 18900	2-224
MD 312 2-25	FPU_EXEPTION_MASK	
FG_GROUP4	MD 18920	2-225
MD 313 2-25	FRAME_ACS_SET	
FG_GROUP5	MD 24030	2-315
MD 314 2-25	FRAME_ADAPT_MODE	
FGROUP_DEFAULT_AXES	MD 24040	2-316
MD 22420 2-301	FRAME_ADD_COMPONENTS	
FIPO_TYPE	MD 24000	2-311
MD 33000 2-450	FRAME_ANGLE_INPUT_MODE	_ = -
FIRST_LANGUAGE	MD 10600	. 2-79
MD 202 2-19	FRAME_GEOAX_CHANGE_MODE	a ==
FIX_POINT_POS	MD 10602	. 2-79
MD 30600 2-405	FRAME_OFFSET_INCR_PROG	

MD 42440 3-547	MD 37140	2-511
FRAME_OR_CORRPOS_NOTALLOWED	GANTRY_FUNCTION_MASK	
MD 32074 2-415	MD 37150	2-512
FRAME_SAA_MODE	GANTRY_POS_TOL_ERROR	
MD 24050 2-316	MD 37120	2-509
FRAME SAVE MASK	GANTRY_POS_TOL_REF	
MD 10617 2-82	MD 37130	2-510
FRAME_SUPPRESS_MODE	GANTRY_POS_TOL_WARNING	
MD 24020 2-315	MD 37110	2-508
FRICT_COMP_ACCEL1	GCODE_GROUPS_TO_PLC	_ 000
MD 32550 2-434	MD 22510	2-301
FRICT_COMP_ACCEL2	GCODE_GROUPS_TO_PLC_MODE	_ 00.
MD 32560 2-435	MD 22515	2-302
FRICT_COMP_ACCEL3	GCODE_RESET_MODE	2 002
MD 32570 2-436	MD 20152	2-246
FRICT_COMP_ADAPT_ENABLE	GCODE_RESET_VALUES	2 2 70
MD 32510 2-431	MD 20150	2-244
FRICT_COMP_CONST_MAX	GEAR_CHANGE_WAIT_TIME	2 2 7 7
MD 32520 2-432	MD 10192	. 2-48
FRICT_COMP_CONST_MIN	GEAR_STEP_CHANGE_ENABLE	. 2 40
MD 32530 2-433	MD 35010	2-466
FRICT_COMP_ENABLE	GEAR_STEP_CHANGE_POSITION	2-400
MD 32500 2-430	MD 35012	2-467
FRICT_COMP_INC_FACTOR	GEAR_STEP_MAX_VELO	2-401
MD 32580 2-437	MD 35110	2-472
FRICT_COMP_MODE	GEAR_STEP_MAX_VELO_LIMIT	2-412
MD 32490 2-429	MD 35130	2-474
FRICT_COMP_TIME	GEAR_STEP_MAX_VELO2	2 7/7
MD 32540 2-433	MD 35112	2-473
G	GEAR_STEP_MIN_VELO	2 470
	MD 35120	2-473
G_GROUP1 MD 305 2-24	GEAR_STEP_MIN_VELO_LIMIT	2
G GROUP2	MD 35140	2-476
MD 306 2-24	GEAR_STEP_MIN_VELO2	2 170
G GROUP3	MD 35122	2-474
MD 307 2-24	GEAR_STEP_PC_MAX_VELO_LIMIT	
G GROUP4	MD 35135	2-475
MD 308 2-24	GEAR_STEP_POSCTRL_ACCEL	
G GROUP5	MD 35210	2-477
MD 309 2-24	GEAR_STEP_POSCTRL_ACCEL2	
G0_LINEAR_MODE	MD 35212	2-478
MD 20730 2-276	GEAR_STEP_SPEEDCTRL_ACCEL	0
G00 ACCEL FACTOR	MD 35200	2-477
MD 32434 2-428	GEAR_STEP_USED_IN_AXISMODE	
G00_JERK_FACTOR	MD 35014	2-467
MD 32435 2-428	GEOAX_CHANGE_M_CODE	0.
G53 TOOLCORR	MD 22532	2-303
MD 10760 2-101	GEOAX_CHANGE_RESET	2 000
	MD 20118	2-240
GANTRY_ACT_POS_TOL_ERROR	GMMC_INFO_NO_UNIT	
MD 37135 2-510	MD 17200	2-170
GANTRY_AXIS_TYPE		_ ''
MD 27100 2 507		_
MD 37100 2-507 GANTRY BREAK UP	GMMC_INFO_NO_UNIT_STATUS MD 17201	

MD 30505 2-404
HMI_COLE_TITLE_FOCUS_BACK
MD 357 2-26
HMI_COLE_TITLE_FOCUS_FOR
MD 356 2-26
HW ASSIGN ANA FASTIN
MD 10362 2-60
HW_ASSIGN_ANA_FASTOUT
MD 10364 2-61
HW_ASSIGN_DIG_FASTIN
MD 10366 2-61
HW_ASSIGN_DIG_FASTOUT
MD 10368 2-63
HW_SERIAL_NUMBER
MD 18030 2-177
1
IGN_PROG_STATE_ASUP
MD 20191 2-250
IGNORE_INHIBIT_ASUP
MD 20116 2-239
IGNORE_OVL_FACTOR_FOR_ADIS
MD 20490 2-268
IGNORE_SINGLEBLOCK_ASUP
MD 20117 2-240
IGNORE_SINGLEBLOCK_MASK
MD 10702 2-86
INDEX_AX_ASSIGN_POS_TAB
MD 30500 2-402
INDEX_AX_DENOMINATOR
MD 30502 2-403
INDEX_AX_LENGTH_POS_TAB_1
MD 10900 2-113
INDEX_AX_LENGTH_POS_TAB_2
MD 10920 2-115
INDEX_AX_MODE
MD 10940 2-117
INDEX AX NUMERATOR
MD 30501 2-403
INDEX AX OFFSET
MD 30503 2-404
INDEX_AX_POS_TAB_1
MD 10910 2-114
INDEX_AX_POS_TAB_2
MD 10930 2-116
INFO_FREE_MEM_DPR
MD 18070 2-179
INFO_FREE_MEM_DYNAMIC
MD 18050 2-178
INFO_FREE_MEM_STATIC
MD 18060 2-179
INI_FILE_MODE
MD 11220 2-124
INIT_MD

MD 11200 2-123	MD 42693	3-558
INT values (MD 14510 USER_DATA_INT) 5-	JOG_CONT_MODE_LEVELTRIGGRD	
687		3-524
INT_INCR_PER_DEG	JOG_FEED_PER_REV_SOURCE	
MD 10210 2-49		3-556
INT_INCR_PER_MM	JOG_GEOAX_MODE_MASK	
MD 10200 2-48		3-566
INTERMEDIATE_POINT_NAME_TAB	JOG_INC_MODE_LEVELTRIGGRD	
MD 10660 2-84		2-129
INVERT_SPIN_ICON_MANUAL_MA	JOG_INCR_SIZE_TAB	
MD 1098 2-33		2-131
INVOLUTE_AUTO_ANGLE_LIMIT	JOG_INCR_WEIGHT	100
MD 21016 2-283		2-409
INVOLUTE_RADIUS_DELTA	JOG_MAX_ACCEL	101
MD 21015 2-283		2-424
IPO_CYCLE_TIME MD 10071 2-40	JOG_MAX_JERK	120
MD 10071 2-40 IPO_PARAM_NAME_TAB	MD 32436	2-428
MD 10650 2-83		100
IPO_SYSCLOCK_TIME_RATIO	JOG MODE MASK	2-100
MD 10070 2-40		2-100
IPOBRAKE BLOCK EXCHANGE	JOG POSITION	2-100
MD 43600 3-573	—	3-570
IS_CONCURRENT_POS_AX	JOG REV IS ACTIVE	5-010
MD 30450 2-401		3-525
IS_CONTINOUS_DATA_SAVE_ON	JOG_REV_SET_VELO	0-020
MD 18233 2-201		3-527
IS ROT AX	JOG_REV_VELO	021
MD 30300 2-398	_	2-413
IS_SD_MAX_PATH_ACCEL	JOG_REV_VELO_RAPID	
MD 42502		2-413
IS_SD_MAX_PATH_JERK	JOG_ROT_AX_SET_VELO	
MD 42512		3-528
IS_UNIPOLAR_OUTPUT	JOG_SET_VELO	
 MD 30134 2-392		3-526
IS VIRTUAL AX	JOG_SPIND_SET_VELO	
 MD 30132 2-392	MD 41200	3-528
Interface signals 4-581	JOG_VAR_INCR_SIZE	
Interfaces 4-581	MD 41010	3-523
J	JOG_VELO	
JOG_AND_POS_JERK_ENABLE	MD 32020 2	2-412
MD 32420 2-427	JOG_VELO_GEO	
JOG_AND_POS_MAX_JERK	MD 21165 2	2-286
MD 32430 2-427	JOG_VELO_RAPID	
JOG_CIRCLE_CENTRE	MD 32010 2	2-411
MD 42690 3-557	JOG_VELO_RAPID_GEO	
JOG_CIRCLE_END_ANGLE	MD 21160 2	2-285
MD 42694 3-559	L	
JOG_CIRCLE_MODE	LANG_SUB_NAME	
MD 42692 3-558	MD 15700 2	2-169
JOG_CIRCLE_RADIUS	LANG_SUB_PATH	
MD 42691 3-557	MD 15702 2	2-169
JOG_CIRCLE_START_ANGLE	LCD_CONTRAST	

MD 200 2-19	MD 32310 2-424
LCD_INVERSE	MAX_AX_ACCEL
MD 201 2-19	MD 32300 2-423
LEADSCREW_PITCH	MAX_AX_JERK
MD 31030 2-407	MD 32431 2-427
LIFTFAST_DIST	MAX_AX_VELO
MD 21200 2-286	MD 32000 2-411
LIFTFAST_STOP_COND	MAX_BLOCKS_IN_IPOBUFFER
MD 21204 2-287	MD 42990
LIFTFAST_WITH_MIRROR	MAX_LEAD_ANGLE
MD 21202 2-287	MD 21090 2-283
LOOKAH FFORM	MAX_NUM_CUTT_EDGE_MANUAL_MA
MD 20443 2-265	MD 1097 2-33
LOOKAH_FREQUENCY	MAX_NUM_CYCLE_MANUAL_MA
MD 32440 2-428	MD 1096 2-33
LOOKAH_FUNCTION_MASK	MAX_PATH_JERK
MD 20455 2-265	MD 20600 2-270
LOOKAH_NUM_OVR_POINTS	MAX_SPEED_G94_MANUAL_MA
MD 20430 2-264	MD 1094 2-33
LOOKAH_OVR_POINTS	MAX_SPEED_G95_MANUAL_MA
MD 20440 2-264	MD 1095 2-33
LOOKAH_RELIEVE_BLOCK_CYCLE	MAX_SPEED_G96_MANUAL_MA
MD 20450 2-265	MD 1093 2-33
LOOKAH_SMOOTH_FACTOR	MAX_SPINDEL_SPEED_MANUAL_MA
MD 20460 2-266	MD 1092 2-33
LOOKAH_SMOOTH_WITH_FEED	MAX TILT ANGLE
MD 20462 2-266	MD 21092 2-284
LOOKAH_SYSTEM_PARAM	MAXNUM_REPLACEMENT_TOOLS
MD 20442 2-264	MD 17500 2-170
LOOKAH_USE_VELO_NEXT_BLOCK	MAXNUM_USER_DATA_FLOAT
MD 20400 2-263	MD 14508 2-168
LUBRICATION_DIST	MAXNUM_USER_DATA_HEX
MD 33050 2-451	
LUD_EXTENDED_SCOPE	MD 14506 2-168 MAXNUM_USER_DATA_INT
MD 11120 2-119	
	MD 14504 2-168 MD FILE STYLE
M M NO FOT OVOLE	
M_NO_FCT_CYCLE	MD 11230 2-125 MEAS_CENTRAL_SOURCE
MD 10715 2-96	
M_NO_FCT_CYCLE_NAME	MD 13211 2-167
MD 10716 2-97	MEAS_PROBE_DELAY_TIME
M_NO_FCT_CYCLE_PAR	MD 13220 2-168
MD 10718 2-98	MEAS_PROBE_LOW_ACTIVE
M_NO_FCT_EOP	MD 13200 2-166
MD 10714 2-95	MEAS_PROBE_OFFSET
M_NO_FCT_STOPRE	MD 13231 2-168
MD 10713 2-94	MEAS_PROBE_SOURCE
M19_SPOS	MD 13230 2-168
MD 43240 3-569	MEAS_SAVE_POS_LENGTH2
M19_SPOSMODE	MD 373 2-28
MD 43250 3-570	MEAS_SPIN_ACTIV_MANUAL_MA
MAINTENANCE_DATA	MD 1100 2-34
MD 33060 2-451	MEAS_TYPE
MAX_ACCEL_OVL_FACTOR	MD 13210 2-167

MIN_CONTOUR_SAMPLING_TIME	MD 18800 2-22	23
MD 10680 2-84	MM_FILE_HASH_TABLE_SIZE	
MINFEED	MD 18290 2-20	05
MD 42460	MM_FLASH_FILE_SYSTEM_SIZE	
MINTIME_BETWEEN_STROKES	MD 18332 2-20	80
MD 42404	MM_FLASHFILESYS_MEM	
MIRROR REF AX	MD 18331 2-20	07
MD 10610 2-80	MM_FRAME_FINE_TRANS	•
MIRROR_TOGGLE	MD 18600 2-2	15
MD 10612 2-81	MM_GUD_VALUES_MEM	. •
MIRROR_TOOL_LENGTH	MD 18150 2-19	91
MD 42900	MM INCOA MEM SIZE	٠.
MIRROR_TOOL_WEAR	MD 18235 2-20	ი 1
MD 42910	MM_INT_TASK_STACK_SIZE	0 1
MM ABSBLOCK	MD 28502 2-38	87
MD 28400 2-387	MM_IPO_BUFFER_SIZE	0,
MM_ABSBLOCK_BUFFER_CONF	MD 28060 2-3	70
MD 28402 2-387	MM_IPO_TASK_STACK_SIZE	13
		15
MM_ACTFILESYS_LOG_FILE_MEM MD 18232 2-200		13
	MM_KIND_OF_SUMCORR MD 18112 2-18	00
MM_ARCLENGTH_SEGMENTS	MD 18112 2-18 MM LOOKAH FFORM UNITS	00
MD 28540 2-389		00
MM_BUFFERED_AC_MARKER	MD 28533 2-38	oэ
MD 28257 2-385	MM_LUD_HASH_TABLE_SIZE	ഹ
MM_BUFFERED_AC_PARAM	MD 18240 2-20	UZ
MD 28255 2-385	MM_LUD_VALUES_MEM	70
MM_CEC_MAX_POINTS	MD 28040 2-3	78
MD 18342 2-208	MM_M_FILE_MEM_SIZE	40
MM_CHAN_HASH_TABLE_SIZE	MD 18353 2-2	10
MD 18250 2-203	MM_MAINTENANCE_MON	22
MM_COM_COMPRESS_METHOD	MD 18860 2-22	23
MD 18390 2-212	MM_MAX_AXISPOLY_PER_BLOCK	00
MM_CYC_DATA_MEM_SIZE	MD 28520 2-38	00
MD 18237 2-202	MM_MAX_CUTTING_EDGE_NO	00
MM_DIR_HASH_TABLE_SIZE	MD 18105	86
MD 18300 2-205	MM_MAX_CUTTING_EDGE_PERTOOL	^^
MM_DRAM_FILE_MEM_SIZE	MD 18106 2-18	86
MD 18351 2-209	MM_MAX_SIZE_OF_LUD_VALUE	^^
MM_E_FILE_MEM_SIZE	MD 18242 2-20	
MD 18356 2-212	MM_MAX_SUMCORR_PER_CUTTEDGE	
MM_ENABLE_TOOL_ORIENT	MD 18110 2-18	87
MD 18114 2-189	MM_MAXNUM_ALARM_ACTIONS	
MM_ENC_COMP_MAX_POINTS	MD 18730 2-22	22
MD 38000 2-522	MM_NCK_HASH_TABLE_SIZE	
MM_EPSPARAM_DIMENSION	MD 18260 2-20	04
MD 18840 2-223	MM_NUM_AC_MARKER	
MM_EXTCOM_TASK_STACK_SIZE	MD 28256 2-38	85
MD 18500 2-214	MM_NUM_AC_PARAM	
MM_EXTERN_CNC_SYSTEM	MD 28254 2-38	84
MD 10880 2-110	MM_NUM_AC_SYSTEM_MARKER	
MM_EXTERN_GCODE_SYSTEM	MD 28276 2-38	86
MD 10881 2-110	MM_NUM_AC_SYSTEM_PARAM	
MM_EXTERN_LANGUAGE	MD 28274 2-38	86

MM_NUM_AN_TIMER	MD 18130 2-	-191
MD 18710 2-221	MM_NUM_GUD_NAMES_NCK	
MM_NUM_BASE_FRAMES		-190
MD 28081 2-380	MM_NUM_KIN_TRAFOS	
MM_NUM_BLOCKS_IN_PREP		-224
MD 28070 2-380	MM_NUM_LUD_NAMES_TOTAL	
MM_NUM_CC_MON_PARAM	MD 28020 2-	-378
MD 18098 2-184	MM_NUM_MAX_FUNC_NAMES MD 18170 2-	
MM_NUM_CC_TDA_PARAM	MD 18170 2-	-193
MD 18094 2-182	MM_NUM_MAX_FUNC_PARAM	
MM_NUM_CC_TOA_PARAM		-193
MD 18096 2-183	MM_NUM_MMC_UNITS	
MM_NUM_CCS_MON_PARAM	MD 10134	2-45
MD 18208 2-196	MM_NUM_PROTECT_AREA_ACTIVE	
MM_NUM_CCS_TDA_PARAM	MD 28210 2-	-383
MD 18204 2-194	MM_NUM_PROTECT_AREA_CHAN	
MM_NUM_CCS_TOA_PARAM	MD 28200 2-	
MD 18206 2-195	MM_NUM_PROTECT_AREA_CONTOU	R
MM_NUM_CP_MODUL_LEAD		-384
MD 18452 2-214	MM_NUM_PROTECT_AREA_NCK MD 18190 2-	
MM_NUM_CP_MODULES		-194
MD 18450 2-214	MM_NUM_R_PARAM	
MM_NUM_CURVE_POLYNOMS	MD 28050 2-	-379
MD 18404 2-213	MM_NUM_REORG_LUD_MODULES	
MM_NUM_CURVE_POLYNOMS_DRAM		-377
MD 18410 2-214	MM_NUM_SUBDIR_PER_DIR	
MM_NUM_CURVE_SEG_LIN		-204
MD 18403 2-213	MM_NUM_SUMCORR	
MM_NUM_CURVE_SEG_LIN_DRAM		-187
MD 18409 2-214	MM_NUM_SYNACT_GUD_AXIS	
MM_NUM_CURVE_SEGMENTS		-219
MD 18402 2-212	MM_NUM_SYNACT_GUD_BOOL	
MM_NUM_CURVE_SEGMENTS_DRAM		-218
MD 18408 2-213	MM_NUM_SYNACT_GUD_CHAR	
MM_NUM_CURVE_TABS		-220
MD 18400 2-212	MM_NUM_SYNACT_GUD_INT	
MM_NUM_CURVE_TABS_DRAM	MD 18661 2-	-217
MD 18406 2-213	MM_NUM_SYNACT_GUD_REAL	
MM_NUM_CUTTING_EDGES_IN_TOA	MD 18660 2-	-216
MD 18100 2-185	MM_NUM_SYNACT_GUD_STRING	
MM_NUM_DIR_IN_FILESYSTEM	MD 18665 2-	-221
MD 18310 2-206	MM_NUM_SYSTEM_FILES_IN_FS	
MM_NUM_FILES_IN_FILESYSTEM	MD 18321 2-	-207
MD 18320 2-207	MM_NUM_TOOL	
MM_NUM_FILES_PER_DIR	MD 18082 2-	-181
MD 18280 2-204	MM_NUM_TOOL_CARRIER	
MM_NUM_GLOBAL_BASE_FRAMES	MD 18088 2-	-181
MD 18602 2-216	MM_NUM_TOOL_ENV	_
MM_NUM_GLOBAL_USER_FRAMES	MD 18116 2-	-189
MD 18601 2-216	MM_NUM_TOOLHOLDERS	
MM_NUM_GUD_MODULES	MD 18075 2-	-180
MD 18118 2-190	MM_NUM_TRAFO_DATA_SETS	
MM_NUM_GUD_NAMES_CHAN	MD 18864 2-	-223

MM_NUM_USER_FRAMES	MD 18352	2-210
MD 28080 2-380	MM_USER_FILE_MEM_MINIMUM	
MM_NUM_USER_MACROS	MD 18350	2-209
MD 18160 2-192	MM_USER_MEM_BUFFERED	
MM_NUM_VDIVAR_ELEMENTS	MD 18230	2-199
MD 28150 2-382	MM_USER_MEM_BUFFERED_TYPE	OF
MM_NUM_WORKAREA_CS_GROUPS	MD 18231	2-200
MD 28600 2-390	MM_USER_MEM_DPR	
MM_PATH_VELO_SEGMENTS	MD 18220	2-199
MD 28530 2-388	MM_USER_MEM_DYNAMIC	
MM_PLC_TASK_STACK_SIZE	MD 18210	2-197
MD 18540 2-215	MMC_INFO_CUT_SPEED	
MM_PLCBG_TASK_STACK_SIZE	MD 27206	2-371
MD 18541 2-215	MMC_INFO_CUT_SPEED_STATUS	
MM_PLCINT_TASK_STACK_SIZE	MD 27207	2-371
MD 18542 2-215	MMC_INFO_NO_UNIT	
MM_PREP_TASK_STACK_SIZE	MD 27200	2-370
MD 28500 2-387	MMC_INFO_NO_UNIT_STATUS	_ 0.0
MM_REORG_LOG_FILE_MEM	MD 27201	2-371
MD 28000 2-377	MMC_INFO_POSN_LIN	2011
MM_S_FILE_MEM_SIZE	MD 27202	2-371
MD 18354 2-211	MMC_INFO_POSN_LIN_STATUS	2011
MM_SEARCH_RUN_RESTORE_MODE	MD 27203	2-371
MD 28560 2-390	MMC_INFO_REV_FEED	2 07 1
MM_SERVO_FIFO_SIZE	MD 27208	2-372
MD 18720 2-222	MMC_INFO_REV_FEED_STATUS	2-512
MM_SERVO_TASK_STACK_SIZE	MD 27209	2-372
MD 18510 2-215	MMC_INFO_VELO_LIN	2-512
MM_SHAPED_TOOLS_ENABLE	MD 27204	2-371
MD 28290 2-386	MMC_INFO_VELO_LIN_STATUS	2-071
MM_SYSTEM_DATAFRAME_MASK	MD 27205	2-371
MD 28083 2-381	MODESWITCH_MASK	2 07 1
MM_SYSTEM_FRAME_MASK	MD 20114	2-239
MD 28082 2-381	MODULO_RANGE	2-200
MM_T_FILE_MEM_SIZE	MD 30330	2-400
MD 18355 2-211	MODULO_RANGE_START	2-400
MM_TOOL_MANAGEMENT_MASK	MD 30340	2-400
MD 18080 2-181	MONITOR_ADDRESS	2 400
MM_TYPE_CC_MON_PARAM	MD 11380	2-133
MD 18099 2-184	MONITOR_DISPLAY_INT	2 100
MM_TYPE_CC_TDA_PARAM	MD 11382	2-133
MD 18095 2-182	MONITOR_DISPLAY_REAL	2-100
MM_TYPE_CC_TOA_PARAM	MD 11384	2_133
MD 18097 2-183	MONITOR_INPUT_INT	2-100
MM_TYPE_CCS_MON_PARAM	MD 11386	2 13/
MD 18209 2-197	MONITOR_INPUT_REAL	2-134
MM_TYPE_CCS_TDA_PARAM	MD 11388	2 13/
MD 18205 2-195	MONITOR_INPUT_STROBE	2-134
MM_TYPE_CCS_TOA_PARAM	MD 11300	2 124
MD 18207 2-196	MD 11390	2-10 4 1
MM_TYPE_OF_CUTTING_EDGE	MD 37250	
MD 18102 2-185	MS_ASSIGN_MASTER_TORQUE_C1	2-313 [R
MM_U_FILE_MEM_SIZE	MD 37252	
IVIIVI_O_I ILL_IVILIVI_OIZL	IVID 31 434	2-010

MS_COUPLING_ALWAYS_ACTIVE	NIBBLE_PUNCH_INMASK	
MD 37262 2-515	MD 26006	2-364
MS_FUNCTION_MASK	NIBBLE_PUNCH_OUTMASK	
MD 37253 2-513	MD 26004	2-363
MS_MAX_CTRL_VELO	NIBBLE_SIGNAL_CHECK	
MD 37260 2-515	MD 26020	2-370
MS_MOTION_DIR_REVERSE	NIBPUNCH_PRE_START_TIME	_ 0.0
MD 37274 2-517	MD 42402	3-547
MS_SPIND_COUPLING_MODE	NUM_ENCS	0 0 17
MD 37263 2-516	MD 30200	2 303
MS_TENSION_TORQ_FILTER_TIME	NUM_FIX_POINT_POS	2-393
MD 27066 2 516	MD 30610	2 405
MD 37266 2-516		2-405
MS_TENSION_TORQUE	NUM_GEAR_STEPS	0 474
MD 37264 2-516	MD 35090	2-4/1
MS_TORQUE_CTRL_ACTIVATION	NUM_GEAR_STEPS2	
MD 37255 2-514	MD 35092	2-471
MS_TORQUE_CTRL_I_TIME	0	
MD 37258 2-515	OEM_AXIS_INFO	
MS_TORQUE_CTRL_MODE	MD 37800	2-521
MD 37254 2-514	OEM_CHAN_INFO	
MS_TORQUE_CTRL_P_GAIN	MD 27400	2-372
MD 37256 2-514	OEM_GLOBAL_INFO	
MS_TORQUE_WEIGHT_SLAVE	MD 17400	2-170
MD 37268 2-516	OPERATING_MODE_DEFAULT	
MS VELO TOL COARSE	MD 10720	2-99
MD 37270 2-517	ORI_JOG_MODE	00
MS_VELO_TOL_FINE	MD 42660	3_557
MD 37272 2-517	ORI_TRAFO_ONLINE_CHECK_LIM	J-JJ1
N	MD 21198	2 206
NC signals 4-591		2-200
	ORIENTATION_IS_EULER	2 204
NC_LANGUAGE_CONFIGURATION	MD 21100	2-284
MD 10711 2-93	OSCILATE_FUNCTION_MASK	0.00
NC_USER_CODE_CONF_NAME_TAB	MD 1090	. 2-32
MD 10712 2-94	OSCILL_CTRL_MASK	
NC_USER_EXTERN_GCODES_TAB	MD 43770	3-577
MD 10882 2-110	OSCILL_DWELL_TIME1	
NCBFRAME_POWERON_MASK	MD 43720	3-575
MD 10615 2-81	OSCILL_DWELL_TIME2	
NCBFRAME_RESET_MASK	MD 43730	3-575
MD 10613 2-81	OSCILL_END_POS	
NCK signals 5-668	MD 43760	3-576
NCK_EG_FUNCTION_MASK	OSCILL_IS_ACTIVE	
MD 11756 2-151	MD 43780	3-578
NCK_LEAD_FUNCTION_MASK	OSCILL_MODE_MASK	
MD 11750 2-149	MD 11460	2-142
NCK_PCOS_TIME_RATIO	OSCILL_NUM_SPARK_CYCLES	
MD 10185 2-48	MD 43750	3-576
NCK_TRAIL_FUNCTION_MASK	OSCILL_REVERSE_POS1	0 0, 0
MD 11752 2-150	MD 43700	3_57/
NIBBLE_PRE_START_TIME	OSCILL_REVERSE_POS2	J-J14
MD 26018 2-369	MD 43710	2 574
		J-5/4
NIBBLE_PUNCH_CODE	OSCILL_START_POS	2 570
MD 26008 2-365	MD 43790	J-5/8

OSCILL_VELO	MD 12978 2-159
MD 43740 3-575	PLC_ANA_IN_NUM
OVR_AX_IS_GRAY_CODE	MD 12979 2-160
MD 12000 2-152	PLC_ANA_OUT_LOGIC_ADDRESS
OVR_FACTOR_AX_SPEED	MD 12982 2-160
MD 12010 2-152	PLC_ANA_OUT_NUM
OVR_FACTOR_FEEDRATE	MD 12983 2-160
MD 12030 2-153	PLC_CYCLE_TIME
OVR_FACTOR_LIMIT_BIN	MD 10075 2-41
MD 12100 2-156	PLC_CYCLE_TIME_AVERAGE
OVR_FACTOR_RAPID_TRA	MD 10110 2-43
MD 12050 2-154	PLC_CYCLIC_TIMEOUT
OVR_FACTOR_SPIND_SPEED	MD 10100 2-43
MD 12070 2-155	PLC_DEACT_IMAGE_LADDR_IN
OVR_FEED_IS_GRAY_CODE	MD 12986 2-160
MD 12020 2-153	PLC_DEACT_IMAGE_LADDR_OUT
OVR_FUNCTION_MASK	MD 12987 2-160
MD 12090 2-156	PLC_DIG_IN_LOGIC_ADDRESS
OVR_RAPID_FACTOR	MD 12970 2-159
MD 42122	PLC_DIG_IN_NUM
OVR_RAPID_IS_GRAY_CODE	MD 12971 2-159
MD 12040 2-154	PLC_DIG_OUT_LOGIC_ADDRESS
OVR_REFERENCE_IS_MIN_FEED	MD 12974 2-159
MD 12082 2-156	PLC_DIG_OUT_NUM
OVR_REFERENCE_IS_PROG_FEED	MD 12975 2-159
MD 12080 2-155	PLC_IPO_TIME_RATIO
	MD 10074 2-41
OVR_SPIND_IS_GRAY_CODE MD 12060 2-154	
	PLC_OB1_TRACE_DEPTH MD 11480 2-143
Operating mode signals 5-671	
P	PLC_OB35_TRACE_DEPTH MD 11481 2-143
PART_COUNTER	
MD 27880 2-374	PLC_OB40_TRACE_DEPTH
PART_COUNTER_MCODE	MD 11482 2-144
MD 27882 2-375	PLC_RUNNINGUP_TIMEOUT
PATH_IPO_IS_ON_TCP	MD 10120 2-44
MD 20260 2-257	PLCINT_POSCTRL_TIME_RATIO
PATH_MODE_MASK	MD 10172 2-47
MD 20464 2-267	POS_AX_VELO
PATH_TRANS_JERK_LIM	MD 32060 2-414
MD 32432 2-427	POS_LIMIT_MINUS
PERMANENT_FEED	MD 36100 2-488
MD 12202 2-157	POS_LIMIT_MINUS2
PERMANENT_ROT_AX_FEED	MD 36120 2-489
MD 12204 2-158	POS_LIMIT_PLUS
PERMANENT_SPINDLE_FEED	MD 36110 2-489
MD 12205 2-158	POS_LIMIT_PLUS2
PERMISSIVE FLASH TAB	MD 36130 2-490
MD 11700 2-149	POS_TAB_SCALING_SYSTEM
PFRAME_RESET_MODE	MD 10270 2-53
MD 24010 2-315	POSCTRL_CONFIG
PLC User Interface 5-655	MD 32230 2-421
PLC machine data 5-687	POSCTRL_CYCLE_DELAY
PLC_ANA_IN_LOGIC_ADDRESS	MD 10062 2-39

POSCTRL_CYCLE_DIAGNOSIS	MD 11250	2-126
MD 10063 2-39	PROFIBUS_TORQUE_RED_RESOL	
POSCTRL_CYCLE_TIME	MD 37620	2-521
MD 10061 2-39	PROFIBUS_TRACE_ADDRESS	
POSCTRL_DAMPING	MD 13110	2-163
MD 32950 2-450	PROFIBUS_TRACE_FILE_SIZE	
POSCTRL GAIN	MD 13112	2-163
MD 32200 2-420	PROFIBUS_TRACE_START	
POSCTRL_INTEGR_ENABLE	MD 13113	2-164
MD 32220 2-421	PROFIBUS_TRACE_START_EVENT	
POSCTRL_INTEGR_TIME	MD 13114	2-164
MD 32210 2-421	PROFIBUS_TRACE_TYPE	
POSCTRL_OUT_FILTER_ENABLE	MD 13111	2-163
MD 32930 2-449	PROG_EVENT_IGN_INHIBIT	
POSCTRL_OUT_FILTER_TIME	MD 20107	2-235
MD 32940 2-450	PROG_EVENT_IGN_PROG_STATE	
POSCTRL_SYSCLOCK_TIME_RATIO	MD 20192	2-250
MD 10060 2-38	PROG_EVENT_IGN_SINGLEBLOCK	
POSITIONING_TIME	MD 20106	2-235
MD 36020 2-486	PROG_EVENT_IGN_STOP	2 200
PREP_COM_TASK_CYCLE_RATIO	MD 20193	2-251
MD 10160 2-46	PROG_EVENT_MASK	2 201
PREP_PLCBG_TASK_CYCLE_RATIO	MD 20108	2-236
MD 10170 2-46	PROG_EVENT_MASK_PROPERTIES	
PREPDYN_MAX_FILT_LENGTH_GEO	MD 20109	, 2-236
MD 20607 2-272	PROG_EVENT_NAME	2-230
PREPDYN_MAX_FILT_LENGTH_RD	MD 11620	2_1/18
MD 20608 2-272	PROG_FUNCTION_MASK	2-140
PREPDYN_SMOOTHING_FACTOR	MD 10280	2-54
MD 20605 2-271	PROG_SD_POWERON_INIT_TAB	. 2-57
PREPDYN_SMOOTHING_ON	MD 10709	2_01
MD 20606 2-272	PROG_SD_RESET_SAVE_TAB	. 2-31
PREPROCESSING_LEVEL	MD 10710	2 02
MD 10700 2-85	PROG_TEST_MASK	. 2-32
PROBE_MODE		. 2-89
MD 369 2-28	PROTAREA_GEOAX_CHANGE_MOD	
PROCESSTIMER_MODE	MD 10618	
MD 27860 2-373	PROTOC_IPOCYCLE_CONTROL	
PROFIBUS_ACTVAL_LEAD_TIME	MD 11297	
MD 37600 2-519	PROTOC_PREPTIME_CONTROL	2-120
PROFIBUS_ALARM_ACCESS	MD 11298	2 120
MD 13140 2-165	PUNCH_DWELLTIME	2-129
PROFIBUS_ALARM_MARKER	MD 42400	3-546
MD 10059 2-38	PUNCH_PARTITION_TYPE	3-340
PROFIBUS_CTRL_CONFIG	MD 26016	2 260
MD 37610 2-520		2-368
PROFIBUS_OUTVAL_DELAY_TIME	PUNCH_PATH_SPLITTING MD 26014	2 267
	PUNCHNIB_ACTIVATION	2-367
MD 37602 2-519		2 266
PROFIBUS_SDB_NUMBER	MD 26012	2-366
MD 11240 2-125	PUNCHNIB_ASSIGN_FASTIN	0.000
PROFIBUS_SDB_SELECT	MD 26000	2-362
MD 11241 2-125	PUNCHNIB_ASSIGN_FASTOUT	0.000
PROFIBUS_SHUTDOWN_TYPE	MD 26002	2-363

PUNCHNIB_AXIS_MASK MD 26010 2-366		2-376
	REPOS_MODE_MASK	2 142
Program control signals from HMI (retentive		2-142
area) 5-662	RESET_MODE_MASK	0 007
Program selection from PLC (retentive area)		2-237
5-662	ROT_IS_MODULO	
Program-control signals from HMI 4-582	MD 30310	2-399
R	RUN_OVERRIDE_0	
RADIUS_NAME	MD 12200	
MD 10654 2-83	Reading and writing PLC variables	5-688
RATED OUTVAL	Retentive data area	5-659
MD 32250 2-422	S	
RATED VELO	S_VALUES_ACTIVE_AFTER_RESET	
MD 32260 2-423		2-300
REBOOT_DELAY_TIME	SCALING_FACTOR_G70_G71	_ 000
MD 10088 2-42		2-411
REFP_CAM_DIR_IS_MINUS	SCALING_FACTORS_USER_DEF	Z- 7 11
	MD 10230	2 50
		. 2-50
REFP_CAM_IS_ACTIVE	SCALING_SYSTEM_IS_METRIC	0.54
MD 34000 2-452	MD 10240	. 2-51
REFP_CAM_MARKER_DIST	SCALING_USER_DEF_MASK	0.40
MD 34093 2-457	MD 10220	. 2-49
REFP_CAM_SHIFT	SCALING_VALUE_INCH	
MD 34092 2-457	MD 10250	. 2-52
REFP_CYCLE_NR	SD_MAX_PATH_ACCEL	
MD 34110 2-459	MD 42500	3-552
REFP_MAX_CAM_DIST	SD_MAX_PATH_JERK	
MD 34030 2-453	MD 42510	3-553
REFP_MAX_MARKER_DIST	SEARCH_RUN_MODE	
MD 34060 2-455	MD 11450	2-141
REFP_MOVE_DIST	SERUPRO_MASK	
MD 34080 2-456	MD 10708	2-90
REFP_MOVE_DIST_CORR	SERUPRO_SPEED_FACTOR	
MD 34090 2-456	<u> </u>	2-307
REFP_NC_START_LOCK	SERUPRO_SPEED_MODE	
MD 20700 2-276		2-306
REFP PERMITTED IN FOLLOWUP	SERUPRO_SYNC_MASK	_ 000
MD 34104 2-459	MD 42125	3-544
REFP_SEARCH_MARKER_REVERSE	SERVO_DISABLE_DELAY_TIME	0 0 1 1
MD 34050 2-454	MD 36620	2_407
REFP SET POS	SETINT_ASSIGN_FASTIN	2-431
MD 34100 2-458		2 200
	MD 21210	2-200
REFP_STOP_AT_ABS_MARKER	SHAPED_TOOL_CHECKSUM	0 004
MD 34330 2-464	MD 20372	2-261
REFP_SYNC_ENCS	SHAPED_TOOL_TYPE_NO	
MD 34102 2-458	MD 20370	2-260
REFP_VELO_POS	SIEM_TRACEFILES_CONFIG	
MD 34070 2-455	MD 11294	2-128
REFP_VELO_SEARCH_CAM	SIMU_AX_VDI_OUTPUT	
MD 34020 2-453	MD 30350	2-400
REFP_VELO_SEARCH_MARKER	SINAMICS_ALARM_MASK	
MD 34040 2-453	MD 13150	2-166
REORG_LOG_LIMIT	SINAMICS_IBN_TIMEOUT_VALUE	

MD 1091 2-32	SPIND_POSIT_DELAY_TIME
SINGLEBLOCK2_STOPRE	MD 35310 2-480
MD 42200 3-546	SPIND_POSITIONING_DIR
SLASH MASK	MD 35350 2-480
MD 10706 2-89	SPIND_RIGID_TAPPING_M_NR
SMOOTH_ORI_TOL	MD 20094 2-230
MD 42466	SPIND S
SOFT_ACCEL_FACTOR	MD 43200
MD 32433 2-428	SPIND_SPEED_TYPE
SOFTKEY_CENTRE_ADJ	MD 43206
MD 1106 2-35	SPIND_STOPPED_AT_IPO_START
SPF_END_TO_VDI	MD 35510 2-483
MD 20800 2-280	SPIND_VELO_LIMIT
SPIND_ACTIVE_AFTER_RESET	MD 35100 2-472
MD 35040 2-470	
	SPINDEL_LOAD_BAR_COL1
SPIND_ASSIGN_TO_MACHAX	MD 366 2-27
MD 35000 2-465	SPINDEL_LOAD_BAR_MAX
SPIND_CONSTCUT_S	MD 365 2-27
MD 43202 3-567	SPINDEL_LOAD_DISPLE1
SPIND_DEF_MASTER_SPIND	MD 360 2-26
MD 20090 2-229	SPINDLE_DISP_MODE
SPIND_DEFAULT_ACT_MASK	MD 379 2-29
MD 35030 2-468	SPINDLE_LOAD_BAR_COL2
SPIND_DEFAULT_MODE	MD 367 2-27
MD 35020 2-467	SPINDLE_LOAD_BAR_COL3
SPIND_DES_VELO_TOL	MD 368 2-27
MD 35150 2-476	SPINDLE_LOAD_BAR_LIM2
SPIND_EXTERN_VELO_LIMIT	MD 363 2-27
MD 35160 2-477	SPINDLE_LOAD_BAR_LIM3
SPIND_FUNC_RESET_MODE	MD 364 2-27
MD 35032 2-468	SPINDLE_LOAD_DISPLE2
SPIND_FUNCTION_MASK	MD 362 2-27
MD 35035 2-468	SPLINE_FEED_PRECISION
SPIND_MAX_VELO_G26	MD 20262 2-257
MD 43220	SPOS_TO_VDI
SPIND_MAX_VELO_LIMS	MD 20850 2-281
MD 43230	STANDSTILL_DELAY_TIME
SPIND_MIN_VELO_G25	MD 36040 2-486
MD 43210	STANDSTILL_POS_TOL
SPIND_ON_SPEED_AT_IPO_START	MD 36030 2-486
MD 35500 2-483	STANDSTILL_VELO_TOL
SPIND_OSCILL_ACCEL	MD 36060 2-488
MD 35410 2-481	START_MODE_MASK
SPIND_OSCILL_DES_VELO	MD 20112 2-238
MD 35400 2-480	START_MODE_MASK_PRT
SPIND_OSCILL_START_DIR	MD 22620 2-307
MD 35430 2-481	STARTUP_WITH_MMP
SPIND_OSCILL_TIME_CCW	MD 1105 2-34
MD 35450 2-482	
	STAT_NAME MD 10670 2-84
SPIND_OSCILL_TIME_CW	STIFFNESS_CONTROL_CONFIG
MD 35440 2-482	
SPIND_POSCTRL_VELO	MD 32642 2-441
MD 35300 2-479	STIFFNESS_CONTROL_ENABLE

MD 32640 2-441	SW_CAM_MINUS_TIME_TAB_2
STIFFNESS DELAY TIME	MD 41522
MD 32644 2-441	SW_CAM_MINUS_TIME_TAB_3
STOP_CUTCOM_STOPRE	MD 41524
MD 42480	SW_CAM_MINUS_TIME_TAB_4
STOP_LIMIT_COARSE	MD 41526
MD 36000 2-484	SW_CAM_MODE
STOP_LIMIT_FACTOR	MD 10485 2-73
MD 36012 2-485	SW_CAM_PLUS_LEAD_TIME
STOP_LIMIT_FINE	MD 10461 2-67
MD 36010 2-485	SW_CAM_PLUS_POS_TAB_1
STOP_MODE_MASK	MD 41501 3-531
MD 11550 2-144	SW_CAM_PLUS_POS_TAB_2
STOP_ON_CLAMPING	MD 41503
MD 36052 2-487	SW_CAM_PLUS_POS_TAB_3
STROKE_CHECK_INSIDE	MD 41505
MD 22900 2-309	SW_CAM_PLUS_POS_TAB_4
SUBPRESS_STOPPER_ALARM	MD 41507
MD 399 2-31	SW_CAM_PLUS_TIME_TAB_1
SUMCORR_DEFAULT	MD 41521
MD 20272 2-258	SW_CAM_PLUS_TIME_TAB_2
SUMCORR_RESET_VALUE	MD 41523
MD 20132 2-242	SW_CAM_PLUS_TIME_TAB_3
SUPPRESS_ALARM_MASK	MD 41525
MD 11410 2-136	SW_CAM_PLUS_TIME_TAB_4
SUPPRESS_ALARM_MASK_2	MD 41527
MD 11415 2-140	SW_CAM_TIMER_FASTOUT_MASK
SUPPRESS_SCREEN_REFRESH	MD 10480 2-72
MD 10131 2-44	SYSCLOCK_CYCLE_TIME
SW_CAM_ASSIGN_FASTOUT_1	MD 10050 2-37
MD 10470 2-68	SYSCLOCK_SAMPL_TIME_RATIO
SW_CAM_ASSIGN_FASTOUT_2	MD 10080 2-42
MD 10471 2-69	Signal from fast inputs and outputs 5-671
SW_CAM_ASSIGN_FASTOUT_3	Signals from HMI
MD 10472 2-70	Signals from MCP (connected to the MCPA
SW_CAM_ASSIGN_FASTOUT_4	module)
MD 10473 2-71	Signals from NC channel 5-676
SW_CAM_ASSIGN_TAB	Signals from PLC
MD 10450 2-65 SW_CAM_COMP_NCK_JITTER	Signals from exercise panel (retentive area)
MD 10490 2-74	Signals from operator panel (retentive area)
SW_CAM_MINUS_LEAD_TIME	5-664 Signals from the channel 4-613
MD 10460 2-66	Signals from/to HMI
SW_CAM_MINUS_POS_TAB_1	Signals to MCP 5-658
MD 41500	Signals to NC channel 5-673
SW_CAM_MINUS_POS_TAB_2	Signals to axis/spindle 4-625, 5-679
MD 41502	Signals to channel 4-598
SW_CAM_MINUS_POS_TAB_3	Signals to charmer 5-670
MD 41504 3-533	T
SW_CAM_MINUS_POS_TAB_4	-
MD 41506	T_M_ADDRESS_EXT_IS_SPINO
SW_CAM_MINUS_TIME_TAB_1	MD 20096 2-232
MD 41520	T_NO_FCT_CYCLE_MODE
TIOEO	MD 10719 2-98

T_NO_FCT_CYCLE_NAME	MD 42980 3-564
MD 10717 2-97	TOOL_CARRIER_RESET_VALUE
TANG_OFFSET	MD 20126 2-241
MD 37402 2-518	TOOL_CHANGE_ERROR_MODE
TAPPINGCYCLE_MODE_MANUAL_MA	MD 22562 2-304
MD 1103 2-34	TOOL_CHANGE_M_CODE
TARGET_BLOCK_INCR_PROG	MD 22560 2-304
MD 42444	TOOL_CHANGE_MODE
TCI_TRACE_ACTIVE	MD 22550 2-303
MD 11405 2-135	TOOL_CHG_MANUALMODE_MA
TECHNOLOGY_MODE	MD 1104 2-34
MD 27800 2-372	TOOL_CORR_MODE_G43G44
TEMP_COMP_ABS_VALUE	MD 20380 2-261
MD 43900 3-579	TOOL_CORR_MOVE_MODE
TEMP_COMP_REF_POSITION	MD 20382 2-262
MD 43920	TOOL_CORR_MULTIPLE_AXES
TEMP_COMP_SLOPE	MD 20384 2-262
MD 43910 3-579	TOOL_DATA_CHANGE_COUNTER
TEMP_COMP_TYPE	MD 17530 2-173
MD 32750 2-444	TOOL_DEFAULT_DATA_MASK
THREAD_RAMP_DISP	MD 17520 2-172
MD 42010	TOOL_GRIND_AUTO_TMON
THREAD_START_ANGLE	MD 20350 2-260
MD 42000	TOOL_LENGTH_CONST
TIME_LIMIT_NETTO_COM_TASK	MD 42940 3-562
MD 10130 2-44	TOOL_LENGTH_TYPE
TIME_LIMIT_NETTO_INT_TASK	MD 42950
MD 27920 2-376	TOOL_LIST_PLACE_NO
TIME_LIMIT_NETTO_PLCBG_TASK	MD 332 2-26
MD 10171 2-47	TOOL_MANAGEMENT_MASK
TIME_LIMIT_PLCINT_TASK	MD 20310 2-259
MD 10173 2-47	TOOL_OFFSET_DRF_ON
TIME_LIMIT_PLCINT_TASK_DIAG	MD 20396 2-263
MD 10174 2-47	TOOL_OFFSET_INCR_PROG
TOCARR_BASE_FRAME_NUMBER	MD 42442
MD 20184 2-249	TOOL_PARAMETER_DEF_MASK
TOCARR_CHANGE_M_CODE	MD 20360 2-260
MD 22530 2-302	TOOL_PRESEL_RESET_VALUE
TOCARR_FINE_CORRECTION	MD 20121 2-241
MD 42974 3-563	TOOL_REF_PROBE_AXIS1
TOCARR_FINE_LIM_LIN	MD 370 2-28
MD 20188 2-249	TOOL_REF_PROBE_AXIS2
TOCARR_FINE_LIM_ROT	MD 371 2-28
MD 20190 2-250	TOOL_REF_PROBE_AXIS3
TOCARR_ROT_ANGLE_INCR	MD 372 2-28
MD 20180 2-249	TOOL_RESET_VALUE
TOCARR_ROT_ANGLE_OFFSET	MD 20120 2-240
MD 20182 2-249	TOOL_RESETMON_MASK
TOCARR_ROT_OFFSET_FROM_FR	MD 17515 2-171
MD 21186 2-286	TOOL_TEMP_COMP
TOCARR_ROTAX_MODE	MD 42960 3-563
MD 20196 2-251	TOOL_TEMP_COMP_LIMIT
TOFRAME_MODE	MD 20392 2-263

MD 20390	TOOL_TEMP_COMP_ON	MD 21508 2-290
MD 20320		TRACLG_VERT_DIR_SUPPORTAX_2
TOOL_WEAR_LIMIT_VALUE MD 24997	TOOL_TIME_MONITOR_MASK	MD 21512 2-290
MD 374		TRACON_CHAIN_3
TOOLTYPES_ALLOWED	TOOL_WEAR_LIMIT_VALUE	MD 24997 2-349
MD 17540 2-174 TRACON_CHAIN_5 TRAANG_ANGLE_1 MD 25495 2-361 MD 24700 2-335 TRACON_CHAIN_6 MD 25496 2-361 MD 24750 2-337 TRACON_CHAIN_7 TRACON_CHAIN_7 TRACON_CHAIN_8 2-361 MD 24710 2-335 TRACON_CHAIN_8 TRACON_CHAIN_8 TRACON_CHAIN_8 TRACON_CHAIN_8 TRACON_CHAIN_8 TRACON_CHAIN_8 TRACON_CHAIN_8 MD 25497 2-361 MD 2470 2-361 MD 25497 2-361 MD 25497 2-361 MD 25497 2-361 MD 25497 2-361 MD 25498 2-361 MD 25498 2-361 MD 25498 2-361 MD 25498 2-361 MD 25497 2-361 MD 25498 2-361 MD 24820 2-361 MD 24820 2-341 MD 24820 2-341 MD 24820 2-341 MD 24820 2-341 MD 24820 2-342 MD 24800 3-342 MD 24800 3-342	MD 374 2-28	TRACON_CHAIN_4
TRAANG_ANGLE_1 MD 25495 2-361 MD 24700 2-335 TRACON_CHAIN_6 TRAANG_ANGLE_2 MD 25496 2-361 MD 24750 2-337 TRACON_CHAIN_7 TRAANG_BASE_TOOL_1 MD 25497 2-361 MD 24710 2-335 TRACON_CHAIN_8 TRAANG_BASE_TOOL_2 MD 25498 2-361 MD 24720 2-335 TRACON_CHAIN_8 MD 25498 2-361 TRAANG_PARALLEL_ACCEL_RES_1 MD 24820 2-341 MD 24820 2-341 MD 24771 2-337 TRACYL_BASE_TOOL_1 TRACYL_BASE_TOOL_2 MD 24820 2-341 MD 24771 2-337 TRACYL_BASE_TOOL_2 MD 24820 2-341 MD 24771 2-337 TRACYL_BASE_TOOL_1 TRACYL_BASE_TOOL_2 MD 24820 2-341 MD 24770 2-338 TRACYL_BASE_TOOL_2 MD 24820 2-341 MD 24720 2-338 TRACYL_DEFAULT_MODE_1 MD 24808 2-340 TRACYL_DEFAULT_MODE_1 MD 24808 2-340 TRACYL_ROT_AX_FRAME_1 MD 24805	TOOLTYPES_ALLOWED	MD 24998 2-349
MD 24700	MD 17540 2-174	TRACON_CHAIN_5
TRAANG_ANGLE_2 MD 24750 2-361 MD 24750 2-337 TRACON_CHAIN_7 MD 24710 2-335 TRACON_CHAIN_8 MD 24710 2-335 TRACON_CHAIN_8 MD 24760 2-338 MD 25498 2-361 MD 24760 2-338 TRACYL_BASE_TOOL_1 MD 24721 2-337 TRAANG_PARALLEL_ACCEL_RES_1 MD 24820 2-341 MD 24721 2-337 TRACYL_BASE_TOOL_2 MD 24820 2-341 MD 24771 2-339 TRACYL_BASE_TOOL_2 MD 24820 2-341 MD 24771 2-339 TRACYL_BASE_TOOL_2 MD 24820 2-341 MD 24770 2-336 TRACYL_BASE_TOOL_2 MD 24800 2-344 MD 24770 2-338 TRACYL_DEFAULT_MODE_1 MD 24808 2-340 MD 24550 2-291 TRACYL_ROT_AX_FRAME_1 MD 24808 2-343 MD 21520 2-291 TRACYL_ROT_AX_FRAME_2 MD 24858 2-342 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24800 2-339 MD		
MD 24750		TRACON_CHAIN_6
TRAANG_BASE_TOOL_1 MD 25497 2-361 MD 24710 2-335 TRACON_CHAIN_8 TRAANG_BASE_TOOL_2 MD 24760 2-338 MD 24760 2-338 MD 25498 2-361 TRAANG_PARALLEL_ACCEL_RES_1 MD 24820 2-341 MD 24771 2-339 TRACYL_BASE_TOOL_2 2-344 MD 24770 2-336 TRACYL_BASE_TOOL_2 340 MD 24720 2-336 TRACYL_BASE_TOOL_2 340 MD 24770 2-338 TRACYL_DEFAULT_MODE_1 340 MD 24870 2-340 340 340 TRACCL_GCNTACT_LOWER_1 340 340 340 340		
MD 24710		
TRAANG_BASE_TOOL_2 MD 25498 2-361 MD 24760 2-338 TRACYL_BASE_TOOL_1 TRAANG_PARALLEL_ACCEL_RES_1 MD 24721 2-341 MD 24771 2-337 TRACYL_BASE_TOOL_2 MD 24771 2-339 TRACYL_DEFAULT_MODE_1 MD 24770 2-336 TRACYL_DEFAULT_MODE_2 MD 24770 2-338 TRACYL_DEFAULT_MODE_2 MD 24770 2-338 TRACYL_DEFAULT_MODE_2 MD 24808 2-340 TRACE_SELECT MD 24808 2-343 MD 24770 2-338 TRACYL_DEFAULT_MODE_2 MD 24808 2-343 TRACE_SELECT MD 24805 2-343 TRACYL_ROT_AX_FRAME_1 MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 MD 24855 2-342 TRACLG_CONTACT_UPPER_LIMIT MD 24855 2-342 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24800 2-343 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_2 MD 24810 2-342 TRACLG_GCINLSPI_HOR_OFFSET MD 24800 2-343 </td <td>— — — — — — — — — — — — — — — — — — —</td> <td></td>	— — — — — — — — — — — — — — — — — — —	
MD 24760		
TRAANG_PARALLEL_ACCEL_RES_1 MD 24721 2-337 TRACYL_BASE_TOOL_2 2-341 TRAANG_PARALLEL_ACCEL_RES_2 MD 24771 2-339 TRACYL_BASE_TOOL_2 2-344 MD 24770 2-336 TRACYL_DEFAULT_MODE_1 MD 24808 2-340 TRACR_PARALLEL_VELO_RES_2 MD 24870 TRACYL_DEFAULT_MODE_2 MD 24808 2-340 MD 24770 2-338 TRACYL_DEFAULT_MODE_2 MD 24858 2-343 TRACE_SELECT MD 24858 2-343 TRACYL_ROT_AX_FRAME_1 MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 MD 24855 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24850 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24850 2-342 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 MD 24850 2-342 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 <td><u> </u></td> <td></td>	<u> </u>	
MD 24721 2-337 TRACYL_BASE_TOOL_2 TRAANG_PARALLEL_ACCEL_RES_2 MD 24870 2-344 MD 24771 2-339 TRACYL_DEFAULT_MODE_1 TRAANG_PARALLEL_VELO_RES_1 MD 24808 2-340 MD 24720 2-336 TRACYL_DEFAULT_MODE_2 MD 24870 TRAANG_PARALLEL_VELO_RES_2 4D 24876 2-340 MD 24770 2-338 TRACYL_DEFAULT_MODE_2 MD 24858 2-343 TRACE_SELECT MD 24858 2-343 TRACYL_ROT_AX_FRAME_1 MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 MD 24855 2-342 MD 11400 2-235 TRACYL_ROT_AX_FRAME_2 MD 24855 2-342 TRACLG_CONTACT_LOWER_LIMIT MD 24855 2-342 MD 24855 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24800 2-339 TRACLG_CTRLSPI_NR MD 24850 2-342 MD 24850 2-342 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24850 2-342 MD 21526 2-289 TRACYL_RO		
TRAANG_PARALLEL_ACCEL_RES_2 MD 24771 2-339 TRACYL_DEFAULT_MODE_1 TRAANG_PARALLEL_VELO_RES_1 MD 24808 2-340 MD 24720 2-336 TRACYL_DEFAULT_MODE_2 TRAANG_PARALLEL_VELO_RES_2 MD 24858 2-343 MD 24770 2-338 TRACYL_ROT_AX_FRAME_1 MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 MD 24805 2-340 MD 21520 2-291 TRACYL_ROT_AX_FRAME_2 MD 24805 2-340 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24800 2-342 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24800 2-349 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 MD 24800 2-349 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 24800 2-349 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24800 2-342 TRACYL_ROT_AX_OFFSET_3 MD 24810 2-341 MD 24810 2-341 MD 21506 2-292 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24810 2-341 <td></td> <td></td>		
MD 24771 2-339 TRACYL_DEFAULT_MODE_1 TRAANG_PARALLEL_VELO_RES_1 MD 24808 2-340 MD 24720 2-336 TRACYL_DEFAULT_MODE_2 TRAANG_PARALLEL_VELO_RES_2 MD 24858 2-343 MD 24770 2-338 TRACYL_ROT_AX_FRAME_1 MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 MD 24805 2-340 MD 21520 2-291 TRACYL_ROT_AX_FRAME_2 MD 24805 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24855 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24800 2-339 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24800 2-349 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 24800 2-349 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 24810 2-342 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24810 2-341 MD 21526 2-292 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2		
TRAANG_PARALLEL_VELO_RES_1 MD 24720 2-336 TRACYL_DEFAULT_MODE_2 TRAANG_PARALLEL_VELO_RES_2 MD 24858 2-343 MD 24770 2-338 TRACYL_DEFAULT_MODE_2 MD 24770 2-338 TRACYL_ROT_AX_FRAME_1 MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 MD 21520 2-291 TRACYL_ROT_AX_FRAME_2 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 MD 24800 2-339 TRACLG_CTRLSPI_NR MD 24850 2-342 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 24850 2-342 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 TRACYL_ROT_SIGN_IS_PLUS_1 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 MD 24810 2-341 MD 21501 2-292 TRACYL_ROT_SIGN_IS_PLUS_1 TRACYL_ROT_SIGN_IS_PLUS_1 MD 21501 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 TRACYL_ROT_SIGN_IS_PLUS_1 <td></td> <td></td>		
MD 24720 2-336 TRACYL_DEFAULT_MODE_2 TRAANG_PARALLEL_VELO_RES_2 MD 24858 2-343 MD 24770 2-338 TRACYL_ROT_AX_FRAME_1 TRACE_SELECT MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 MD 21520 2-291 TRACYL_ROT_AX_FRAME_2 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24524 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24524 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACLG_GCTRLSPI_VERT_OFFSET MD 24850 2-342 MD 24526 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24526 2-292 TRAFO_AXES_IN_1 MD 24529 TRAFO_AXES_IN_1 MD 24529 TRAFO_AXES_IN_1 MD 24529 TRAFO_AXES_		
TRAANG_PARALLEL_VELO_RES_2 MD 24770 2-338 TRACYL_ROT_AX_FRAME_1 TRACE_SELECT MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 TRACLG_CONTACT_LOWER_LIMIT MD 24855 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21528 MD 24800 2-339 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_1 MD 24550 2-342 TRACYL_ROT_AX_OFFSET_1 MD 24800 2-342 MD 24524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24526 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24500 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24850 2-342 TRACYL_ROT_AX_OFFSET_1 MD 24850 MD 24850 2-342 TRACYL_ROT_AX_GRIS_IN_1 TRACYL_ROT_AX_GRIS_IN_1 MD 24860 2-342 TRACYL_ROT_AX_GRIS_IN_		
MD 24770 2-338 TRACYL_ROT_AX_FRAME_1 TRACE_SELECT MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 TRACLG_CONTACT_LOWER_LIMIT MD 24855 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21502 MD 24850 2-342 TRACLG_CTRLSPI_NR MD 24850 2-342 MD 21502 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24810 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 MD 24860 2-341 MD 21506 2-292 TRAFO_AXES_IN_1 MD 24860 2-343 TRACLG_GRINDSPI_HOR_OFFSET MD 24480 2-343 MD 21501 2-289 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-351 MD	MD 24720 2-336	
TRACE_SELECT MD 24805 2-340 MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 TRACLG_CONTACT_LOWER_LIMIT MD 24855 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_1 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACLG_CTRLSPI_VERT_OFFSET MD 24810 2-342 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24850 2-342 MD 24850 2-342 MD 24860 2-342 MD 24870 2-341 MD 24870 2-341 MD 24870 2-342 MD 24870 2-341 MD 24870		
MD 11400 2-135 TRACYL_ROT_AX_FRAME_2 TRACLG_CONTACT_LOWER_LIMIT MD 24855 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 TRACLG_CONTACT_UPPER_LIMIT MD 24800 2-339 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21524 2-291 TRACYL_ROT_AX_OFFSET_2 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACLG_CTRLSPI_VERT_OFFSET MD 24850 2-342 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24860 2-342 MD 24810 2-341 MD 24860 2-342 MD 24860 2-342 MD 24860 2-343 TRACLG_GINDSPI_HOR_OFFSET MD 24480 2-343 MD 21501 2-289 TRAFO_AXES_IN_1 MD 24402 2-318 MD 21502 2-329 TRAFO_AXES_IN_11 MD 25102 2-350 MD 25112 2-351 MD 25122 2-352 <		
TRACLG_CONTACT_LOWER_LIMIT MD 24855 2-342 MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 TRACLG_CONTACT_UPPER_LIMIT MD 24800 2-339 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 TRACLG_CTRLSPI_NR MD 24850 2-342 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACLG_CTRLSPI_VERT_OFFSET MD 24810 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_1 MD 24800 2-342 MD 24850 2-342 MD 24800 2-342 MD 24810 2-342 MD 24810 2-342 MD 24810 2-341 MD 24800 2-342 MD 24810 2-342 MD 24810 2-341 MD 24800 2-342 MD 24810 2-341 MD 24800 2-342 MD 24810 2-341 MD 24860 2-343 MD 24110 2-318 MD 24482 2-332 TRACLG_GRINDSPI_VERT_OFFSET MD 25102	_	
MD 21520 2-291 TRACYL_ROT_AX_OFFSET_1 TRACLG_CONTACT_UPPER_LIMIT MD 24800 2-339 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 TRACLG_CTRLSPI_NR MD 24850 2-342 MD 21524 TRACYL_ROT_SIGN_IS_PLUS_1 TRACYL_ROT_SIGN_IS_PLUS_1 MD 21502 TRACYL_ROT_SIGN_IS_PLUS_2 TRACYL_ROT_SIGN_IS_PLUS_2 TRACLG_GO_IS_SPECIAL MD 24860 2-343 MD 21526 2-292 TRAFO_AXES_IN_1 TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-348 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21502 2-291 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-352 MD 25132 2-353 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 <		
TRACLG_CONTACT_UPPER_LIMIT MD 24800 2-339 MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 TRACLG_CTRLSPI_NR MD 24850 2-342 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACLG_CTRLSPI_VERT_OFFSET MD 24810 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 TRACLG_GO_IS_SPECIAL MD 24810 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 MD 24860 2-343 MD 21526 2-292 TRAFO_AXES_IN_1 MD 21501 2-289 TRAFO_AXES_IN_1 MD 24100 2-318 MD 24480 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21510 2-289 TRAFO_AXES_IN_12 TRAFO_AXES_IN_13 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21516 2-289		
MD 21518 2-291 TRACYL_ROT_AX_OFFSET_2 TRACLG_CTRLSPI_NR MD 24850 2-342 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACLG_CTRLSPI_VERT_OFFSET MD 24810 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 TRACLG_GO_IS_SPECIAL MD 24860 2-343 MD 21526 2-292 TRAFO_AXES_IN_1 TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_11 TRAFO_AXES_IN_12 MD 25102 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 25142 2-354 TRAFO_AXES_IN_15 TRAFO_AXES_IN_15 MD 25142 2-354		
TRACLG_CTRLSPI_NR MD 24850 2-342 MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACLG_CTRLSPI_VERT_OFFSET MD 24810 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 TRACLG_GO_IS_SPECIAL MD 24860 2-343 MD 21526 2-292 TRAFO_AXES_IN_1 TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-352 MD 21506 2-289 TRAFO_AXES_IN_14 TRAFO_AXES_IN_15 TRAFO_AXES_IN_15 TRAFO_AXES_IN_15 TRAFO_AXES_IN_16 TRAFO_AXES_IN_16 TRAFO_AXES_IN_16 TRAFO_AXES_IN_17 TRAFO_AXES_IN_17		
MD 21524 2-291 TRACYL_ROT_SIGN_IS_PLUS_1 TRACLG_CTRLSPI_VERT_OFFSET MD 24810 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 TRACLG_GO_IS_SPECIAL MD 24860 2-343 MD 21526 2-292 TRAFO_AXES_IN_1 TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_SUPPORT_HOR_OFFSET MD 25122 2-352 MD 21506 2-289 TRAFO_AXES_IN_14 TRACLG_SUPPORT_LEAD_ANGLE MD 25132 2-353 MD 21516 2-290 TRAFO_AXES_IN_15 TRAFO_AXES_IN_16 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-354 MD 21504 2-289 TRAFO_AXES_IN_17		
TRACLG_CTRLSPI_VERT_OFFSET MD 24810 2-341 MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 TRACLG_GO_IS_SPECIAL MD 24860 2-343 MD 21526 2-292 TRAFO_AXES_IN_1 TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRAFO_AXES_IN_16 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_16 TRAFO_AXES_IN_17		
MD 21502 2-289 TRACYL_ROT_SIGN_IS_PLUS_2 TRACLG_GO_IS_SPECIAL MD 24860 2-343 MD 21526 2-292 TRAFO_AXES_IN_1 TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
TRACLG_G0_IS_SPECIAL MD 24860 2-343 MD 21526 2-292 TRAFO_AXES_IN_1 TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
MD 21526 2-292 TRAFO_AXES_IN_1 TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
TRACLG_GRINDSPI_HOR_OFFSET MD 24110 2-318 MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
MD 21501 2-289 TRAFO_AXES_IN_10 TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
TRACLG_GRINDSPI_NR MD 24482 2-332 MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
MD 21522 2-291 TRAFO_AXES_IN_11 TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
TRACLG_GRINDSPI_VERT_OFFSET MD 25102 2-350 MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
MD 21500 2-289 TRAFO_AXES_IN_12 TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
TRACLG_HOR_DIR_SUPPORTAX_1 MD 25112 2-351 MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
MD 21510 2-290 TRAFO_AXES_IN_13 TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
TRACLG_HOR_DIR_SUPPORTAX_2 MD 25122 2-352 MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
MD 21514 2-290 TRAFO_AXES_IN_14 TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		MD 25122 2-352
TRACLG_SUPPORT_HOR_OFFSET MD 25132 2-353 MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
MD 21506 2-289 TRAFO_AXES_IN_15 TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
TRACLG_SUPPORT_LEAD_ANGLE MD 25142 2-354 MD 21516 2-290 TRAFO_AXES_IN_16 TRACLG_SUPPORT_VERT_OFFSET MD 25152 2-355 MD 21504 2-289 TRAFO_AXES_IN_17		
MD 21516		
TRACLG_SUPPORT_VERT_OFFSET MD 25152		
MD 21504		

TRAFO_AXES_IN_18		MD 24420	2-325
MD 25172	2-357	TRAFO_GEOAX_ASSIGN_TAB_5	
TRAFO_AXES_IN_19		MD 24434	2-326
MD 25182	2-358	TRAFO_GEOAX_ASSIGN_TAB_6	
TRAFO_AXES_IN_2		MD 24444	2-328
MD 24210	2-321	TRAFO_GEOAX_ASSIGN_TAB_7	
TRAFO_AXES_IN_20		MD 24454	2-329
MD 25192	2-359	TRAFO_GEOAX_ASSIGN_TAB_8	
TRAFO_AXES_IN_3		MD 24464	2-330
MD 24310	2-323	TRAFO_GEOAX_ASSIGN_TAB_9	
TRAFO_AXES_IN_4		MD 24474	2-332
MD 24410	2-325	TRAFO_INCLUDES_TOOL_1	
TRAFO_AXES_IN_5		MD 24130	2-320
MD 24432	2-326	TRAFO_INCLUDES_TOOL_10	
TRAFO_AXES_IN_6		MD 24486	2-333
MD 24442	2-327	TRAFO_INCLUDES_TOOL_11	
TRAFO_AXES_IN_7		MD 25106	2-350
MD 24452	2-329	TRAFO_INCLUDES_TOOL_12	
TRAFO_AXES_IN_8		MD 25116	2-351
MD 24462	2-330	TRAFO_INCLUDES_TOOL_13	
TRAFO_AXES_IN_9		MD 25126	2-352
MD 24472	2-331	TRAFO_INCLUDES_TOOL_14	
TRAFO_CHANGE_M_CODE		MD 25136	2-353
MD 22534	2-303	TRAFO_INCLUDES_TOOL_15	
TRAFO_GEOAX_ASSIGN_TAB_1		MD 25146	2-354
MD 24120	2-319	TRAFO_INCLUDES_TOOL_16	
TRAFO_GEOAX_ASSIGN_TAB_10		MD 25156	2-355
MD 24484	2-333	TRAFO_INCLUDES_TOOL_17	
TRAFO_GEOAX_ASSIGN_TAB_11		MD 25166	2-356
MD 25104	2-350	TRAFO_INCLUDES_TOOL_18	
TRAFO_GEOAX_ASSIGN_TAB_12		MD 25176	2-357
MD 25114	2-351	TRAFO_INCLUDES_TOOL_19	
TRAFO_GEOAX_ASSIGN_TAB_13		MD 25186	2-358
	2-352	TRAFO_INCLUDES_TOOL_2	
TRAFO_GEOAX_ASSIGN_TAB_14		MD 24230	2-322
	2-353	TRAFO_INCLUDES_TOOL_20	
TRAFO_GEOAX_ASSIGN_TAB_15	_ 000	MD 25196	2-359
MD 25144	2-354	TRAFO_INCLUDES_TOOL_3	
TRAFO_GEOAX_ASSIGN_TAB_16	_ 00 .	MD 24330	2-324
MD 25154	2-355	TRAFO_INCLUDES_TOOL_4	_ 0
TRAFO_GEOAX_ASSIGN_TAB_17	2 000	MD 24426	2-325
MD 25164	2-356	TRAFO_INCLUDES_TOOL_5	2 020
TRAFO_GEOAX_ASSIGN_TAB_18	2 000	MD 24436	2-327
MD 25174	2-357	TRAFO_INCLUDES_TOOL_6	2-021
TRAFO_GEOAX_ASSIGN_TAB_19	2-007	MD 24446	2-328
MD 25184	2-358	TRAFO_INCLUDES_TOOL_7	2-020
TRAFO_GEOAX_ASSIGN_TAB_2	2-330	MD 24456	2-320
MD 24220	2 222	TRAFO_INCLUDES_TOOL_8	2-525
TRAFO_GEOAX_ASSIGN_TAB_20	L-022	MD 24466	2_221
MD 25194	2-350	TRAFO_INCLUDES_TOOL_9	<u> 2</u> -00 l
TRAFO_GEOAX_ASSIGN_TAB_3	2-008	MD 24476	3 -333
	2 222	TRAFO_MODE_MASK	2-332
MD 24320 TRAFO_GEOAX_ASSIGN_TAB_4	2-323	MD 20144	2 242
INAFO_GEOAA_ASSIGN_IAD_4		IVID 20144	∠- ∠43

TRAFO_RESET_NAME	MD 24576 2-334
MD 20142 2-243	TRAFO6_BASE_ORIENT_NORMAL_2
TRAFO_RESET_VALUE	MD 24676 2-334
MD 20140 2-242	TRAFO6_BASE_ORIENT_NORMAL_3
TRAFO_TYPE_1	MD 25276 2-360
MD 24100 2-317	TRAFO6_BASE_ORIENT_NORMAL_4
TRAFO_TYPE_10	MD 25376 2-360
MD 24480 2-332	TRAFO6_JOINT_OFFSET_2_3_1
TRAFO_TYPE_11	MD 24561 2-333
MD 25100 2-349	TRAFO6_JOINT_OFFSET_2_3_2
TRAFO_TYPE_12	MD 24661 2-334
MD 25110 2-350	TRAFO6_JOINT_OFFSET_2_3_3
TRAFO_TYPE_13	MD 25261 2-359
MD 25120 2-351	TRAFO6_JOINT_OFFSET_2_3_4
TRAFO_TYPE_14	MD 25361 2-360
MD 25130 2-352	TRANSMIT_BASE_TOOL_1
TRAFO_TYPE_15	MD 24920 2-346
MD 25140 2-353	TRANSMIT BASE TOOL 2
TRAFO_TYPE_16	MD 24970 2-349
MD 25150 2-354	TRANSMIT_POLE_SIDE_FIX_1
TRAFO_TYPE_17	MD 24911 2-346
MD 25160 2-355	TRANSMIT_POLE_SIDE_FIX_2
TRAFO_TYPE_18	MD 24961 2-348
MD 25170 2-356	TRANSMIT_ROT_AX_FRAME_1
TRAFO_TYPE_19	MD 24905 2-345
MD 25180 2-357	TRANSMIT_ROT_AX_FRAME_2
TRAFO_TYPE_2	MD 24955 2-347
MD 24200 2-321	TRANSMIT_ROT_AX_OFFSET_1
TRAFO_TYPE_20	MD 24900 2-344
MD 25190 2-358	TRANSMIT_ROT_AX_OFFSET_2
TRAFO_TYPE_3	MD 24950 2-347
MD 24300 2-323	TRANSMIT_ROT_SIGN_IS_PLUS_1
TRAFO TYPE 4	MD 24910 2-345
MD 24400 2-324	TRANSMIT_ROT_SIGN_IS_PLUS_2
TRAFO TYPE 5	MD 24960 2-348
MD 24430 2-326	TU NAME
TRAFO TYPE 6	MD 10672 2-84
MD 24440 2-327	Tool management functions from NC channel
TRAFO_TYPE_7	4-653, 5-689
MD 24450 2-328	Transferred D functions 5-668
TRAFO_TYPE_8	Transferred H functions 5-668
MD 24460 2-330	Transferred M functions 5-667
TRAFO_TYPE_9	Transferred M/S functions, axis-specific . 5-
MD 24470 2-331	679
TRAFO5_AXIS3_1	Transferred S functions 5-667
MD 24573 2-333	Transferred T functions 5-667
TRAFO5_AXIS3_2	Transferred axis-specific M and S functions
MD 24673 2-334	4-624
TRAFO5 AXIS3 3	U
MD 25273 2-360	_
TRAFO5 AXIS3 4	UNLOCK_EDIT_MODESWITCH MD 10780 2-102
MD 25373 2-360	UPLOAD_MD_CHANGES_ONLY
TRAFO6_BASE_ORIENT_NORMAL_1	MD 11210 2-124
···-·-··-··-··-··	IVID 11210

USE_FIXPOINT_MANUAL_MA	MD 24080 2-316
MD 1099 2-33	USER_MANUAL_MA_SHOW_PAGE_NO
USEKT_RESET_VALUE	USER_MANUAL_MA_SHOW_PAGE_NO MD 401 2-31
MD 20123 2-241	USER MANUAL MA TOOL CHANGE
USER_CLASS_DIR_ACCESS	USER_MANUAL_MA_TOOL_CHANGE MD 400 2-31
MD 221 2-21	USER_MEAS_TOOL_CHANGE
USER CLASS LADDER VIEW	MD 361 2-27
USER_CLASS_LADDER_VIEW MD 378 2-29	
USER CLASS PLC ACCESS	USER_TOOL_CHG_MANUAL_MA MD 1101 2-34
USER_CLASS_PLC_ACCESS MD 222 2-22	User alarm
HIGED OF ACC DEAD OFFICE DID	Activation 5-660
USER_CLASS_READ_CUSS_DIR MD 375 2-28	Configuration (MD 14516
HEED CLASS DEAD DOCCDAM	` `
USER_CLASS_READ_PROGRAM MD 213 2-21	USER_DATA_PLC_ALARM) 5-688
MD 213 2-21	User data
USER_CLASS_READ_TOA MD 207 2-20	User data 1
MD 207 2-20	User data2 5-657
USER_CLASS_SELECT_PROGRAM MD 215 2-21	V
MD 215 2-21	V1700 0000.5 4-582
USER_CLASS_SET_V24 MD 219 2-21	V1700 0000.6 4-582
MD 219 2-21	V1700 0001.3 4-582
USER_CLASS_WRITE_CMA_DIR MD 386 2-30	V1700 0001.7 4-583
MD 386 2-30	V1700 0002
USER_CLASS_WRITE_CUS_DIR MD 376 2-28	V1700 0003.0 to .1 4-583
MD 376 2-28	V1700 0003.7 *** 4-583
USER CLASS WRITE CYCLES	V1800 0000.0 4-584
USER_CLASS_WRITE_CYCLES MD 217 2-21	V1800 0000.1
USER CLASS WRITE LOC NO	V1800 0000.2
USER_CLASS_WRITE_LOC_NO MD 392 2-30	V1800 0000.4
USER CLASS WRITE PROGRAM	V1800 0000.6 ***
USER_CLASS_WRITE_PROGRAM MD 214 2-21	V1800 0000.0 4-585
LISER CLASS WRITE PWA	V1900 00001.2
USER_CLASS_WRITE_PWA MD 223 2-22	
IISED CLASS WDITE DDA	V1900 0003.7 4-586
USER_CLASS_WRITE_RPA MD 218 2-21	V1900 0004.7
LICED OLACE MOITE OFA	V1900 1003.0 to .2 4-586
USER_CLASS_WRITE_SEA MD 212 2-21	V1900 1004.0 to .2 4-586
	V1900 5001.0 4-587
USER_CLASS_WRITE_TO_MON_DAT	V1900 5002.0 4-587
MD 377 2-29	V24_PG_PC_BAUD
USER_CLASS_WRITE_TOA_GEO	MD 247 2-22
MD 208 2-20	V24_PPI_ADDR_DRV1
USER_CLASS_WRITE_TOA_WEAR	MD 383 2-29
MD 209 2-20	V24_PPI_ADDR_MMC
USER_CLASS_WRITE_ZOA	MD 343 2-26
MD 210 2-20	V24_PPI_ADDR_NCK
USER_DATA_FLOAT	MD 281 2-22
MD 14514 2-169	V24_PPI_ADDR_PLC
USER_DATA_HEX	MD 280 2-22
MD 14512 2-169	V24_PPI_MODEM_ACTIVE
USER_DATA_INT	MD 344 2-26
MD 14510 2-169	V24_PPI_MODEM_BAUD
USER_DATA_PLC_ALARM	MD 345 2-26
MD 14516 2-169	V24 PPI MODEM PARITY
USER FRAME POWERON MASK	MD 346 2-26
	עועו טאַט 2-20

V2500 0004. 0 to .4 4-588	V3200 1001.0 to .6 4-612
V2500 0006.0 4-588	V3200 1004.0 to .1 4-610
V2500 0008.0 4-588	V3200 1004.3 4-610
V2500 0010.0	V3200 1004.4 4-611
V2500 0012.0 to .2 4-588	V3200 1004.5 4-611
V2600 0000.1 4-591	V3200 1004.7 and .6 4-611
V2600 0000.2	V3200 1005.0 to .6 4-612
V2600 0001.0 4-591	V3200 1008.0 to .1
V2700 0000.1	V3200 1008.3 4-610
V2700 0001.0	V3200 1008.4
V2700 0001.7 4-592	V3200 1008.5
V2700 0004.0 to .7 4-593	V3200 1008.7 and .6 4-611
V2700 0008.0 to .7 4-593	V3200 1009.0 to .6
V3000 0000.0	V3300 0000.3
V3000 0000.0 to .6 4-596	V3300 0000.4
V3000 0000.1	V3300 0000.5
V3000 0000.1	V3300 0000.5
V3000 0000.2	V3300 0001.0
V3000 0000.4	V3300 0001.0
V3000 0000.7	V3300 0001.2
	V3300 0001.5
	V3300 0001.6
V3100 0000.2	V3300 0001.7
V3100 0000.3	V3300 0003.0
V3100 0001.2 4-598	V3300 0003.2
V3200 000.5	V3300 0003.3
V3200 0000.4	V3300 0003.4
V3200 0000.6	V3300 0003.5
V3200 0001.0 4-599	V3300 0003.6
V3200 0001.7	V3300 0003.7
V3200 0002.0	V3300 0004.2
V3200 0003.0	V3300 0004.3 4-619
V3200 0003.1 4-600	V3300 0006.0
V3200 0003.2 4-601	V3300 0006.1 4-619
V3200 0003.3 4-601	V3300 0008
V3200 0003.4 4-601	V3300 0009 4-619
V3200 0003.5 4-601	V3300 0010
V3200 0006.0 4-604	V3300 0011
V3200 0006.1 4-605	V3300 0012 4-620
V3200 0006.4 4-605	V3300 0013 4-620
V3200 0006.6 4-606	V3300 0014 4-620
V3200 0006.7 4-606	V3300 0015 4-620
V3200 0007.0 4-607	V3300 1000.0 to .1 4-621
V3200 0007.1 4-607	V3300 1000.7 and .6 4-621
V3200 0007.2 4-607	V3300 1001.0,, .6 4-622
V3200 0007.3 4-608	V3300 1004.0 to .1 4-621
V3200 0007.4 4-609	V3300 1004.7 and .6 4-621
V3200 0013.5 4-609	V3300 1005.0,, .6 4-622
V3200 1000.0 to .1 4-610	V3300 1008.0 to .1 4-621
V3200 1000.3 4-610	V3300 1008.7 and .6 4-621
V3200 1000.4 4-611	V3300 1009.0,, .6 4-622
V3200 1000.5 4-611	V3300 4001.1 4-622
V3200 1000.7 and .6 4-611	V380x 0001.1 4-626

1,000	\/D0500 4000
V380x 0001.2	VB2500 1000
V380x 0001.7 4-626	VB2500 1012 4-588
V380x 0002.0 4-627	VB2500 3004 4-589
V380x 0002.2 4-627	VB2500 3012 4-589
V380x 0002.3 4-628	VB2500 3020 4-589
V380x 0003.1 4-628	VB2500 3028 4-589
V380x 0003.6 4-629	VB2500 3036 4-589
V380x 0004.0 to .2 4-629	VB2500 4004
V380x 0004.3 4-630	VB2500 4012 4-589
V380x 0004.4	VB3200 0004
V380x 0004.5 4-631	VB3200 0005 4-603
V380x 0004.7 and .6 4-632	VB380x 0000 4-625
V380x 0005.0 to .6	VB380x 2003
V380x 1000.1 and .0 4-633	VD1900 5004
V380x 2000.0 to .2	VD2500 2000
V380x 2000.3	VD2500 3000
V380x 2000.5	VD2500 3008
V380x 2001.4	VD2500 3016
V380x 2001.6	VD2500 3024
V380x 2002.4	VD2500 3032
V380x 2002.5	VD2500 4000
V380x 2002.7 / .6	VD2500 4008
V380x1000.3 or .2 4-633	VD2500 5000
V380x1000.7	VD2500 6000
V390x 0000.0	VD2500 6008 4-590
V390x 0000.2	VD2500 6016 4-590
V390x 0000.4	VD370x 0000
V390x 0000.6 4-642	VD370x 0004
V390x 0000.7 4-643	VD5300 1000 4-653
V390x 0002.3 4-643	VD5300 1004 4-653
V390x 0002.4 4-643	VDI_FUNCTION_MASK
V390x 0002.5 4-643	MD 17900 2-177
V390x 0004.0 to .2 4-644	VDI_UPDATE_IN_ONE_IPO_CYCLE
V390x 0004.7 and .6 4-644	MD 18000 2-177
V390x 0005.0,, .6 4-645	VELO_FFW_WEIGHT
V390x 2000.0 to .2 4-645	MD 32610 2-438
V390x 2000.3 4-646	VERSION_INFO
V390x 2001.0 4-646	MD 18040 2-178
V390x 2001.1 4-647	VW2500 6004 4-590
V390x 2001.2 4-647	VW2500 6012 4-590
V390x 2001.5 4-648	VW2500 6020 4-590
V390x 2001.7 4-648	Variable for alarm 5-661
V390x 2002.0 4-649	W
V390x 2002.3 4-649	WAB_CLEARANCE_TOLERANCE
V390x 2002.5 4-649	MD 20204 2-253
V390x 2002.6 4-650	WAB_MAXNUM_DUMMY_BLOCKS
V390x 2002.7 4-650	MD 20202 2-253
V390x5004.2 4-650	WALIM_GEOAX_CHANGE_MODE
V390x5004.3 4-650	MD 10604 2-80
V390x5004.4 4-651	WEAR SIGN
V390x5004.5 4-651	MD 42930 3-561
V5300 0000.0 4-653	WEAR_SIGN_CUTPOS
V5300 0000.1	MD 42920 3-560
	0 000

WEAR_TRANSFORM	WORKAREA_MINUS_ENABLE
MD 42935 3-561	MD 43410 3-571
WEIGHTING_FACTOR_FOR_SCALE	WORKAREA_PLUS_ENABLE
MD 22910 2-309	MD 43400 3-571
WHEEL_TYPE_MASK	WORKAREA_WITH_TOOL_RADIUS
MD 384 2-29	MD 21020 2-283
WORKAREA_CHECK_TYPE	WPD_INI_MODE
MD 30800 2-405	MD 11280 2-127
WORKAREA_LIMIT_MINUS	X
MD 43430 3-571	X AXIS IN OLD X Z PLANE
WORKAREA_LIMIT_PLUS	MD 21110 2-285
MD 43420 3-571	

То	Suggestions
Siemens AG	Corrections
A&D MC MS1	For publication/manual:
Postfach 3180	SINUMERIK 802D sl
D-91050 Erlangen	Parameter Manuals
Fax +49 (0) 9131 98 - 2176 [documentation]	
	Manufacturer Documentation
From:	
Name:	Order No.: 6FC5397-5CP10-2BA0
	Ausgabe 06/2009
Company/Dept.	
	Should you come across any print-
Address	ingerrors when reading this publica-
Zip code: City :	tion, please notify us on this sheet.
Telephon :/	Suggestions for improvement are
Telefax :/	also welcome.
Telefax :	

Suggestions and/or corrections